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§1. The object of this paper is to essay an analytical statement

of the reduction of the integration of a canonic system of differential

equations (into which time does not enter explicitly) to that of

the partial differential equation of Jacobi and Hamilton; and to

illustrate the principle of duality by an outline of the solution

for the problem of two bodies both by the standard form of the

equation referred to and by the analogous form which that principle

involves. Most statements of the reduction are verifications and

somewhat obscure the symmetry of the canonic form. The shortest

procedure, of course, is by means of the well known theorem of

Jacobi, and this verificatory method is followed by Tisserand,

Charlier and Appell. Poincare gives a proof depending on a

simple form given by him to the conditions for a canonical change

of variables, but again the statement lacks analytical form. The

essentials of this proof will be given here, but in an entirely

different way. An analytical treatment of the subject has been

given by Professor L. Becker in his class lectures at Glasgow, but

it has not been published.

§2. On the Conditions for a Canonical Change of Variables.

To transform the canonic system

3H(o, p) dB.(g, p)

*- —*r' ^ " - ^ T ' r = 1 > 2> •••"• (1)

p, q being functions of £, ij.
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3H(g;i>) /3H(g, p) 3 ^ ! SH(j?._P) f

a&,*.) ''3(6.1
p«,g«) . 3(p«, g«) |

The conditions that the new system takes the canonic form

l_jm^i.+™LLJl,r-l, I,...* (2)
are therefore

vS(?«. 9*) = Q | for a n y v a lUes of r, «, (i)
* 8(£r> S.)

2 3 ^* ' y<c) = 1, if r = «, for any value of s ]
*9(£» f.) [ (i»)

= 0, if /•#=«, for any values of r, s]

§3. Poincarfs Form of Condition.

The form of condition used by Poincare" is

W = (S (3)

This is an adaptation of a transformation theorem of Jacobi
(quoted on p. 15 of Nouoelles Methodes, I.), and its equivalence
with the Jacobian form of §2 is most easily shown as follows :

(*4» ft*.) = f

Coefficient of d£r =

Coefficient of d-q, = s
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—K?« — - & ) = — 2( ?* — - 6 ),

On differentiating out, these at once reduce to (i), (ii), (iii)
of §2.

A corollary is
(

= dS'.
Poincare's form is elegant, easy to remember, and in general

more convenient to apply than the alternative form. The object
of introducing it here, however, is to discuss the integration of
a canonic system by transforming it to a new and integrable
canonic system.

§4. Integration of the Canonic Equations.

The form of S(p, rj) required to satisfy Poincare's condition is
arbitrary. Let us suppose some particular form written down,
and let the change of variables be denned by

dS(p, V) dS(p, V)
qK=~dp-T' iK=~~d^~' K = l>2'-» W

This definition is suggested by (3) as immediately giving a
canonic change, but in order to be valid we must have

By solving (4) we find pK($, 17), qK(£, rj), and hence H(£; ij);
but the success of the transformation depends on the suitableness
of the H(£ ; ri) produced, that is, on the choice of S(p, 17).

Problem. Can a canonic change of variables be found which
will convert the function H(y, p) into an assigned form_/"(£, 17) 1

Not in general. For, if possible, we must have

dl
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S(p, -q) must therefore be the integral of a partial differential
equation whose form resolves it into

1 (7)

But these two equations give just that form of S which is
excluded by (5). There are two exceptional cases however:
when H(g, p) does not contain q, and wheny(£, r]) does not contain
£; for, one of the equations (7) is no longer differential, and one
set of the variables may be taken as the integration constants. If
H(g', p) does not contain q, the original system becomes immediately
integrable. We are thus narrowed down to/(£, r)) = <f>(ij), and now
the new system

J<t>(v)
* = +

. 3*(i)
flic= ~ ~M~ =

is at once integrable, giving
<Wa)

<j>(rj) may be put equal to %, since it is arbitrary. This gives

£K = PK = r , K * l .
OrjK

These are the integrals of the original system.

§5. The Principle of Duality.

The alternative form of Poincare's condition shows that the
change of variables may also be assumed in the form

In other words, the integration is reduced to that of either of
the equations

/
H(<7' (9)
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This follows also from considerations of symmetry. H is of
arbitrary form with respect to both p and q, and the canonic system
does not change its form when p, q are interchanged and the sign
of H altered.

When the system referred to is dynamical H(p, q) is, in general,
quadratic with reference to the p's (the momenta) but arbitrary
with reference to the ^'s (the coordinates); and this restriction
probably accounts for the fact that little mention is made of the
Principle of Duality in the literature of the subject. Both methods
remain valid, of course, in dynamics, but in general (9) is more easily
integrated than (9)a. Elementary cases, however, are not wanting
in which there is little to choose between the alternatives. As it
will not generally be known that the unpromising case of the
problem of two bodies can be treated by (9)a, it seems worth while
to indicate the steps of its integration.

§6. Procedure for Dynamical Problems.

F o r m the K .E . funct ion T(q, q), and express in te rms of q, p by

means of t h e re la t ions pK = — r ^ — . F o r m the force function ~U(q).
dqK " '

Then B.(q,p) = T(q,p)-TJ(q).

(i) Solve

Then the integrals are

p
, q)

or (ii) Solve *

Then the integrals are

da,

CaK

In each case the remaining variables can be obtained as
functions of t by elimination.
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§7. Outline of the Solutions for the Problem of Two Bodies.

(For elliptic motion 04 is negative: the sign has been changed
throughout for convenience).

If r = q and d = qK we find

)=p* + \p*--^ = -2a,( f t a, positive) (10)

q, is an ignorable coordinate, so that pt = c (const.)

/"ir«< method.

Dropping suffixes, we have

8S r

da J

4a' J J( - 2ao2 + lUJ-c>) 4a «,/2a Jwhere K + k^-%- and A]A2 = ^ ; (12)

E
If we put q-k1 = (kt-kjsin*—,

we derive Kepler's equation

n(t + p) = E - esinE,

4a J2i , 2o
where n = and e = —(«2 - «j).

Another form of the second integral in (13) is

- ^ . s i n
4aV2a

Second method.

From (10) we have to integrate
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Solving as a quadratic,

as;_ /x V B

37~ 2 A * 2A~'

where A = p* + 2a = ^—-•—,

If we take v B = + (/* ), only the upper sign for — can
\ <J / op

be taken, since
O/ -2\

by (14).
1

Corresponding to (11) we have

as'

f/' JL
J\ A*A* A'

A2 A VB A2 J

The first and third terms are reduced by the relations

d/p\ 1 4a
dp\K)= ~ A~ + A~2'

(/i2 - 8cJa) 4a/x3

dp\ A

Hence we find

J As F 4a A 4aJ p*+

J A ' N /

2a

(16)
4a A 4
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The remaining integral —~=z is of standard form, and is
J A vB

easily shown to be

—sin"1

/2

B

for a positive.

On substituting this with (16) and (17) in (15), the result is

+ —*-p=( sin-1 J . tan-'-prr )•
4a J2o\ * ju2 - 8c2a A N/2O/ J

The last term is simplified by putting

(18)

VW*A . — mil ,

JYa. N/A
and applying the formula

sin-'a; - sin-'y = sin~'(o; v l —y2- y s/1 - x3)-
2

This gives s^nl7—7~s—^

Now apply (14) to eliminate p from the whole expression
in (18).

A

and

Hence (13) is again found (with the second form of the second
integral).
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