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On families of 7- and 11-congruent elliptic curves

Tom Fisher

Abstract

We use an invariant-theoretic method to compute certain twists of the modular curves X(n)
for n = 7, 11. Searching for rational points on these twists enables us to find non-trivial pairs
of n-congruent elliptic curves over Q, that is, pairs of non-isogenous elliptic curves over Q
whose n-torsion subgroups are isomorphic as Galois modules. We also find a non-trivial pair of
11-congruent elliptic curves over Q(T ), and hence give an explicit infinite family of non-trivial
pairs of 11-congruent elliptic curves over Q.

Supplementary materials are available with this article.

1. Introduction

Elliptic curves E1 and E2 over a field K are n-congruent if their n-torsion subgroups E1[n]
and E2[n] are isomorphic as Galois modules. They are directly n-congruent if the isomorphism
φ : E1[n] ∼= E2[n] respects the Weil pairing en, and reverse n-congruent if

en(φP, φQ) = en(P,Q)−1

for all P,Q ∈ E1[n]. The elliptic curves directly n-congruent to a given elliptic curve E are
parameterised by the modular curve YE(n) = XE(n) \ {cusps}.

For n 6 5 we have XE(n) ∼= P1 and the corresponding families of elliptic curves were
computed by Rubin and Silverberg [28, 30, 31]. It was shown independently by Papadopoulos
[25] and Rubin and Silverberg [29] that XE(6) is the elliptic curve y2 = x3 +∆E , where ∆E is
the discriminant of E. However for n > 7 the genus of XE(n) is greater than 1. This prompted
Mazur [23] to ask whether there are any pairs of non-isogenous elliptic curves over Q that are
directly n-congruent for any n > 7. This was answered by Kraus and Oesterlé [22] who gave
the example of the directly 7-congruent elliptic curves 152a1 and 7448e1. The labels here are
those in Cremona’s tables [4]. Nowadays it is easy to find further examples by searching in
Cremona’s tables, for example

n = 11 190b1 and 2470a1,

n = 13 52a2 and 988b1,

n = 17 3675b1 and 47775b1.

In each case the n-congruence is proved by computing sufficiently many traces of Frobenius.
See for example [22, Proposition 4].

Motivated by Mazur’s question, Kani and Schanz [18] studied the geometry of the surfaces
that parametrise pairs of n-congruent elliptic curves. This prompted them to conjecture that
for any n 6 12 there are infinitely many pairs of n-congruent non-isogenous elliptic curves
over Q. It is understood that we are looking for examples with distinct pairs of j-invariants,
since otherwise from any single example we could construct infinitely many examples by taking
quadratic twists. The conjecture was proved in the case n = 7 by Halberstadt and Kraus [15],
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who subsequently [16] gave an explicit formula for XE(7) and used it to show that there are
infinitely many 6-tuples of directly 7-congruent non-isogenous elliptic curves over Q. In this
paper we find a formula for XE(11) and use it to construct a non-trivial pair of 11-congruent
elliptic curves over Q(T ). This proves the conjecture in the case n = 11. In contrast the proof
by Kani and Rizzo [17] does not construct any explicit examples.

We briefly mention three further motivations for studying n-congruence of elliptic curves.
– The modular approach to solving Diophantine equations sometimes requires us to find

all elliptic curves n-congruent to a given elliptic curve. For example the paper of Poonen,
Schaefer and Stoll [26] makes essential use of the formula for XE(7) due to Halberstadt
and Kraus.

– There is a correspondence between pairs of reverse n-congruent elliptic curves and curves
of genus 2 that admit a degree n morphism to an elliptic curve. See for example [14].

– It was observed by Cremona and Mazur [6] that if elliptic curves E and F are n-congruent
then the Mordell–Weil group of F can sometimes be used to explain elements of the
Tate–Shafarevich group of E.

As each of these motivations makes clear, we should also be interested in congruences that
do not respect the Weil pairing. The elliptic curves reverse n-congruent to E are parameterised
by the modular curve Y −E (n) = X−E (n) \ {cusps}. The families of elliptic curves parameterised
by Y −E (3) and Y −E (4) were computed in [11], and the analogous problem for n = 5 was solved
in [12]. An equation for X−E (7) was given in [26, § 7.2]. In this paper we find equations for
X−E (11).

In § 1.1 we recall the definitions of X(n) and its twists. We then record the formulae for
XE(n) and X−E (n) for n = 7, 11 in § 1.2. In the case n = 7 these are the formulae given in
[16, 26], but our method for finding them is new. In the case n = 11 the formulae themselves
are new.

In § 2 we derive Klein’s equations for X(n) for n > 5 an odd integer. The original approach
of Klein was via theta functions, but our treatment is purely algebraic. We also give explicit
formulae for the action of SL2(Z/nZ) on X(n). Then in § 3 we use invariant theory for
SL2(Z/nZ) to compute the twists XE(n) and X−E (n) for n = 7, 11.

In § 4 we work out formulae for the families of elliptic curves parameterised by YE(n) and
Y −E (n) for n = 7, 11. Computing the j-invariant maps j : XE(n)→ P1 and j : X−E (n)→ P1 is
reasonably straightforward. Finding the right quadratic twists takes considerably more work,
although in specific numerical examples one can always fall back on the method in [15, 22]. In
the case of YE(7) a formula is given in [16], but this formula does not quite cover all cases. We
give a new proof leading to formulae that work in all cases. We then generalise to the families
of elliptic curves parameterised by Y −E (7), YE(11) and Y −E (11).

Our formulae reduce the problem of finding elliptic curves n-congruent to E to that of finding
rational points on XE(n) and X−E (n). However, before searching for rational points it helps
to simplify the equations by making a change of co-ordinates. We have written programs in
Magma [3] to do this in the case K = Q, using ideas of minimisation and reduction similar
to those in [5]. We will report on this in future work. In fact we have written a program in
Magma that given an elliptic curve E/Q and n ∈ {7, 11} searches for rational points (up to a
specified height bound) on minimised and reduced models for XE(n) and X−E (n), and returns
the corresponding list of elliptic curves n-congruent to E. In § 5 we give some examples over Q
to illustrate how this works, and also some examples over Q(T ), which by specialisation of T
give infinite families of examples over Q. The examples over Q may be checked, independent
of the methods we use to find them, by checking that the traces of Frobenius are congruent
mod n for sufficiently many primes.

All computer calculations in support of this work were performed using Magma [3]. A Magma
file checking all our formulae, together with a table of 11-congruent elliptic curves over Q, is
available as supplementary material with the online version of this paper [13]. We have used
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the same methods to study families of 9-congruent elliptic curves, and will report on this in
future work. Our restriction to odd n is explained by our use of Klein’s equations (see § 2.1).

1.1. Some modular curves

We work over a field K of characteristic 0 and write K for the algebraic closure. Let n > 3 be
an integer and M a Galois module, isomorphic to (Z/nZ)2 as an abelian group, and equipped
with a non-degenerate alternating Galois equivariant pairing M ×M → µn. We temporarily
write YM for the algebraic curve defined over K whose L-rational points (L a field extension
of K) parametrise the isomorphism classes of pairs (E, φ), where E is an elliptic curve defined
over L and φ : E[n] ∼= M is a symplectic isomorphism (one that matches up the given pairing
on M with the Weil pairing on E[n]) commuting with the action of Gal(L/L). Two such pairs
(E1, φ1) and (E2, φ2) are isomorphic if there is an L-isomorphism α : E1 → E2 such that
φ1 = φ2 ◦ (α|E1[n]).

Let XM be the smooth projective model of YM . We write X(n) and Y (n) for XM and YM
in the case M = µn × Z/nZ with pairing

〈(ζ, a), (ξ, b)〉 = ζbξ−a.

Given an elliptic curve E/K, let XE(n) be XM in the case M is E[n] equipped with the

Weil pairing. More generally let X
(r)
E (n) be XM in the case M is E[n] equipped with the rth

power of the Weil pairing for some r ∈ (Z/nZ)×. Since multiplication by m ∈ (Z/nZ)× is an

automorphism of E[n] that raises the Weil pairing to the power m2, the curve X
(r)
E (n) only

depends on the class of r mod squares. Since we are interested in the cases n = 7, 11 it will

suffice to take r = ±1. We write X−E (n) for X
(−1)
E (n).

Let ζn ∈ K be a primitive nth root of unity. Over K(ζn) we may identify the Galois modules
µn×Z/nZ and (Z/nZ)2, and hence the group of symplectic automorphisms of µn×Z/nZ with
SL2(Z/nZ). There is then a natural action of PSL2(Z/nZ) := SL2(Z/nZ)/{±I2} on X(n) with
quotient map j : X(n) → P1. From the analytic theory we know that the j-map is ramified
above 0, 1728 and ∞ with ramification indexes 3, 2 and n. Hence by the Riemann–Hurwitz
formula the genus of X(n) is

g(n) =
n− 6

12n
#PSL2(Z/nZ) + 1

where for n > 3 we have #PSL2(Z/nZ) = (n3/2)
∏
p|n(1− 1/p2). For some small values of n

the genus is as follows.

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

g(n) 0 0 0 0 1 3 5 10 13 26 25 50 49 73 81 133

1.2. Statement of results

A formula for XE(7) was obtained by Halberstadt and Kraus [16]. Their method relies on
studying the points on the Klein quartic X(7) = {x3y+ y3z+ z3x = 0} ⊂ P2 corresponding to
an elliptic curve E and the elliptic curves Ea, Eb, Ec that are 2-isogenous to E. By combining
this result with some classical invariant theory, Poonen, Schaefer and Stoll [26, § 7.2] then gave
a formula for X−E (7).

Theorem 1.1 (Halberstadt, Kraus, Poonen, Schaefer, Stoll). Let E be an elliptic curve
with Weierstrass equation y2 = x3 + ax+ b. Then XE(7) ⊂ P2 has equation F = 0 where

F = ax4 + 7bx3z + 3x2y2 − 3a2x2z2 − 6bxyz2 − 5abxz3 + 2y3z + 3ay2z2 + 2a2yz3 − 4b2z4,
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and X−E (7) ⊂ P2 has equation G = 0 where

G = −a2x4 + 2abx3y − 12bx3z − (6a3 + 36b2)x2y2 + 6ax2z2 + 2a2bxy3 − 12abxy2z

+ 18bxyz2 + (3a4 + 19ab2)y4 − (8a3 + 42b2)y3z + 6a2y2z2 − 8ayz3 + 3z4.

We give a new proof of Theorem 1.1 and then extend to the case n = 11. Although we
believe our formulae in the case n = 11 are correct for all elliptic curves E, our proof does
not naturally extend to the cases j(E) = 0, 1728. We therefore assume for simplicity that
j(E) 6= 0, 1728. It was observed by Klein [20] (see also [2, Example 22.3]) that X(11) may be
embedded in P4 as the singular locus of the Hessian of the cubic threefold

{v2w + w2x+ x2y + y2z + z2v = 0} ⊂ P4.

Theorem 1.2. Let E be an elliptic curve with Weierstrass equation y2 = x3 + ax + b. If
j(E) 6= 0, 1728 then XE(11) ⊂ P4 is the singular locus of the Hessian of

F = v3 + av2z − 2avx2 + 4avxy − 6bvxz + avy2 + 6bvyz + a2vz2 − w3

+ aw2z − 4awx2 − 12bwxz + a2wz2 − 2bx3 + 3bx2y + 2a2x2z + 6bxy2

+ 4abxz2 + by3 − a2y2z + abyz2 + 2b2z3,

and X−E (11) ⊂ P4 is the singular locus of the Hessian of

G = v2z + 2vwy + 4vxy + 2w2x− aw2z + 2wx2 − 2awy2 − 6bwyz

+ 6x3 − 6ax2z + 2a2xz2 + by3 − 2a2y2z − 5abyz2 − b2z3.

2. Equations for X(n)

We derive equations of Klein [19–21] for the modular curves X(n). Our treatment follows the
survey in [8, Chapter 4], but see also [2, 34].

2.1. Klein’s equations

Suppose to begin with that ζn ∈ K. Then the modular curve Y (n) parametrises the triples
(E,P,Q) where E is an elliptic curve and P,Q is a basis for E[n] with en(P,Q) = ζn. If we
embed E ⊂ Pn−1 by a complete linear system |D| of degree n then the translation maps τP
and τQ extend to automorphisms of Pn−1. In fact we have the following lemma, as proved in
[9, § 2.1].

Lemma 2.1. (i) We may change co-ordinates on Pn−1 (over K) so that τP and τQ are given
by

M1 =



1 0 0 . . . 0

0 ζn 0 . . . 0

0 0 ζ2n . . . 0

...
...

...
...

0 0 0 . . . ζn−1n

 and M2 =



0 0 . . . 0 1

1 0 . . . 0 0

0 1 . . . 0 0

...
...

...
...

0 0 . . . 1 0

.
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(ii) If n is odd and [−1]∗D ∼ D then there is a unique choice of co-ordinates (over K) such
that τP , τQ and multiplication by −1 are given by M1, M2 and

[−1] =



1 0 . . . 0 0

0 0 . . . 0 1

0 0 . . . 1 0

...
...

...
...

0 1 . . . 0 0

.

It is well known that if n > 4 then the image of E ⊂ Pn−1 is defined by quadrics. In fact
the homogeneous ideal is generated by a vector space of quadrics of dimension n(n− 3)/2. See
[10, § 5.1] for a short proof, or [24] for a more general result.

We restrict to n > 5 an odd integer. If we embed E ⊂ Pn−1 via the complete linear system
|n.0E |, and choose co-ordinates as in Lemma 2.1, then sending (E,P,Q) to the image of 0E
defines an embedding Y (n) ⊂ Pn−1. We check injectivity as follows. If we know the co-ordinates
of 0E ∈ Pn−1 then M1 and M2 allow us to write down n2 points on E. By Bezout’s theorem any
quadric not containing E meets E in at most 2n points. Therefore E is defined by the quadrics
containing these n2 points, and P,Q ∈ E[n] are the translates of 0E under M1 and M2.

We now drop our assumption that ζn ∈ K. The subgroup of PGLn(K) generated by M1 and
M2 is isomorphic to µn ×Z/nZ as a Galois module. In view of the definition of X(n) in § 1.1,
it follows that the embedding Y (n) ⊂ Pn−1 described in the last paragraph is defined over K,
and not just over K(ζn).

We write (x0 : x1 : . . . : xn−1) for our co-ordinates on Pn−1 and agree to read all subscripts
mod n. Since n is odd we have

n.0E ∼ 0E + P + 2P + . . .+ (n− 1)P.

The divisor on the right is a hyperplane section and is invariant under translation by P . It is
also the only such divisor with 0E in its support. Therefore 0E belongs to exactly one of the
hyperplanes fixed by M1. But 0E is fixed by [−1], so we have either

0E = (0 : a1 : a2 : . . . : a2 : a1) (+)

or 0E = (0 : a1 : a2 : . . . : −a2 : −a1) (−)

where a1, a2, . . . are non-zero.
Let W be the vector space of quadrics on Pn−1 and V the subspace of quadrics vanishing on

E. Then dimW = n(n + 1)/2 and dimV = n(n − 3)/2. The action of M1 allows us to write
these as direct sums V = ⊕Vi and W = ⊕Wi with

Vi ⊂Wi = 〈x2i , xi−1xi+1, . . .〉.

The Vi and Wi are the subspaces on which M1 acts with eigenvalue ζ2in . The action of M2 shows
that Vi ∼= Vi+1 and Wi

∼= Wi+1 for all i. Therefore dimVi = (n−3)/2 and dimWi = (n+ 1)/2.
The requirement that the quadrics in V0 vanish at 0E = (a0 : a1 : . . . : an−1), and its translates
under M2, imposes some linear conditions on the coefficients of these quadrics. Since V0 ⊂W0

has codimension 2 it follows that rank(ai−jai+j)
n−1
i,j=0 6 2.

If 0E is of the form (+) then this matrix is symmetric, and the vanishing of the top left
3 × 3 minor contradicts that a1, a2, a3 are non-zero. Therefore 0E must be of the form (−).
This motivates the following definition.

Definition 2.2. For n > 5 an odd integer let Z(n) ⊂ Pn−1 be the subvariety defined by
a0 = 0, an−i = −ai and

rank(ai−jai+j)
n−1
i,j=0 6 2. (2.1)
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We note that (2.1) is equivalent to the vanishing of the 4×4 Pfaffians of this skew-symmetric
matrix. Using minors instead of Pfaffians also works, but gives equations of larger degree. The
above construction shows that Y (n) ⊂ Z(n). It is natural to ask whether X(n) = Z(n). Vélu
[34] proved this in the case n = p is a prime. However if n is composite then Z(n) has extra
components.

When n = 7 we put 0E = (0 : a : b : −c : c : −b : −a) so that Z(7) ⊂ P2 with co-ordinates
(a : b : c). Then Z(7) is defined by

rank


0 −a2 −b2 −c2
a2 0 ac −bc
b2 −ac 0 ab
c2 bc −ab 0

 6 2.

Computing the Pfaffian of this matrix (that is, the square root of its determinant) shows that
X(7) = Z(7) is the Klein quartic {a3b+ b3c+ c3a = 0} ⊂ P2.

When n = 11 we put 0E = (0 : a : −c : b : e : d : −d : −e : −b : c : −a) so that Z(11) ⊂ P4

with co-ordinates (a : b : c : d : e). Computing 4× 4 Pfaffians shows that X(11) = Z(11) is the
singular locus of the Hessian of the cubic threefold

{a2b+ b2c+ c2d+ d2e+ e2a = 0} ⊂ P4.

In other words, X(11) is defined by the vanishing of the partial derivatives of the determinant
of the matrix 

b a 0 0 e
a c b 0 0
0 b d c 0
0 0 c e d
e 0 0 d a

 . (2.2)

We refer to [2] for further details. In fact, as we checked using Magma, the homogeneous ideal
of X(11) is generated by the 4× 4 minors of (2.2).

2.2. The action of SL2(Z/nZ)

We suppose ζn ∈ K so that Y (n) parametrises the triples (E,P,Q) where E is an elliptic curve
and P,Q is a basis for E[n] with en(P,Q) = ζn. The natural action of SL2(Z/nZ) on Y (n) is
given by (

a b
c d

)
: (E,P,Q) 7→ (E, dP − cQ,−bP + aQ). (2.3)

This extends to an action on X(n), and so defines a group homomorphism

ρ : SL2(Z/nZ)→ Aut(X(n)). (2.4)

We now take n > 5 an odd integer. In § 2.1 we defined an embedding X(n) ⊂ Pm−1 where
m = (n − 1)/2. In this setting (2.4) becomes a projective representation ρ : SL2(Z/nZ) →
PGLm(K). We show that it lifts to a representation. See [2, Appendix I] for a discussion of
how this relates to work of Weil. We write ∝ for equality in PGLn(K).

Proposition 2.3. The projective representation ρ : SL2(Z/nZ) → PGLm(K) lifts to a
representation ρ : SL2(Z/nZ)→ GLm(K).

Proof. If we embed X(n) ⊂ Pn−1 as described in § 2.1 then the action (2.3) extends to a
projective representation π : SL2(Z/nZ)→ PGLn(K) where the image of γ =

(
a b
c d

)
is uniquely

determined by the properties that

π(γ)−1Mu
1M

v
2 π(γ) ∝Mdu−bv

1 M−cu+av2 (2.5)
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for all u, v ∈ Z/nZ, and π(γ) commutes with [−1]. We regard π as describing an action on
Pn−1 = P(W ) where W is an n-dimensional vector space. The action of [−1] gives an eigenspace
decomposition W = W+ ⊕W− with dimW± = (n ± 1)/2. We may then identify ρ with the
restriction of π to P(W−) = Pm−1. To prove the proposition we prove the stronger result that
π lifts to a representation π : SL2(Z/nZ)→ GLn(K).

Let S =
(

0 1
−1 0

)
and T =

(
1 1
0 1

)
be the usual generators of SL2(Z/nZ). In view of the relations

(ST )3 = S4 = Tn = I2, the only non-trivial one-dimensional characters of SL2(Z/nZ) are
the ones, in the case n is a multiple of 3, that factor via PSL2(Z/3Z) ∼= A4. Using (2.5) we
compute

π(S) ∝ (ζijn )n−1i,j=0, π(T ) ∝ Diag(ζi
2/2
n )n−1i=0 (2.6)

where the exponents are read as elements of Z/nZ.
If M ∈ GLn(K) acts on each of the subspaces W± then we write M± for the endomorphisms

obtained by restricting to W±. Since

3(12 + 22 + . . .+m2) ≡ 0 (mod n)

it is clear that if M = Diag(ζ
i2/2
n )n−1i=0 then the determinants of M+ and M− are cube roots of

unity. So by (2.6) there is a lift π(T ) of π(T ), and one-dimensional characters χ± of SL2(Z/nZ),
such that det(π(T )±) = χ±(T ). Next we lift π(S) to a matrix π(S) such that

π(S)π(T )−1π(S) = π(T )π(S)π(T ). (2.7)

Restricting to W± and taking determinants it follows that det(π(S)±) = 1 = χ±(S). For each
γ ∈ SL2(Z/nZ) we now let π(γ) be the unique lift of π(γ) such that det(π(γ)±) = χ±(γ).
These lifts exist since S and T generate SL2(Z/nZ) and are unique since dimW− and dimW+

are coprime. It is evident that the map π so defined is a group homomorphism.

Remark 2.4. (i) A calculation using (2.7) shows that π(S) = g−1n (ζijn )n−1i,j=0 where the Gauss

sum gn =
∑n−1
i=0 ζ

−i2/2
n satisfies g2n = (−1)(n−1)/2n.

(ii) If we take 0E = (0 : a1 : a2 : . . . : −a2 : −a1) then with respect to co-ordinates
(a1 : . . . : am) we may take

ρ(S) = g−1n (ζijn − ζ−ijn )mi,j=1, ρ(T ) = Diag(ζi
2/2
n )mi=1.

In particular ρ(−I2) = (−1)(n+1)/2Im.
(iii) If n is not divisible by 3 then SL2(Z/nZ) has no one-dimensional characters, and so the

lift we have constructed is unique. If n is divisible by 3 then m is not divisible by 3 and we can
make ρ unique by demanding that det ρ(T ) = 1, equivalently that ρ takes values in SLm(K).

3. Equations for XE(n) and X−E (n)

We derive our equations for XE(n) and X−E (n) by using invariant theory for the group
SL2(Z/nZ) to twist the equations for X(n) in § 2.1. We first make some general remarks
about twisting and then split into the cases n = 7, 11.

3.1. Preliminaries on twisting

Let n > 3 be an integer. We recall that Y (n) parametrises the pairs (E, φ) where E is an
elliptic curve and φ : E[n] ∼= µn ×Z/nZ is a symplectic isomorphism. We temporarily write Γ
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for the group of symplectic automorphisms of µn×Z/nZ. Then Γ acts on Y (n) by γ : (E, φ) 7→
(E, γ φ). This action extends to X(n), and so defines a group homomorphism

ρ : Γ→ Aut(X(n)). (3.1)

If X1 and X2 are varieties defined over K, and α : X1 → X2 is a morphism defined over K,
then for each σ ∈ Gal(K/K) we write σ(α) for the morphism X1 → X2 given on K-points by
P 7→ σ(α(σ−1P )).

Lemma 3.1. Let E/K be an elliptic curve and φ : E[n] ∼= µn × Z/nZ a symplectic,
respectively anti-symplectic, isomorphism defined over K. Then there is an isomorphism
α : XE(n)→ X(n), respectively α : X−E (n)→ X(n), defined over K, such that

σ(α)α−1 = ρ(σ(φ)φ−1)

for all σ ∈ Gal(K/K).

Proof. The points of YE(n), respectively Y −E (n), correspond to pairs (F,ψ) where F is an
elliptic curve and ψ : F [n] ∼= E[n] is a symplectic, respectively anti-symplectic, isomorphism.
For φ as in the statement of the lemma, the composite φψ : F [n] ∼= µn×Z/nZ is a symplectic
isomorphism. Let α : Y ±E (n) → Y (n) be the isomorphism defined by (F,ψ) 7→ (F, φψ). Then
σ(α) maps (F,ψ) 7→ (F, σ(φ)ψ). Therefore σ(α)α−1 maps (F,ψ′) 7→ (F, σ(φ)φ−1ψ′). In our
notation this automorphism of Y (n) is denoted ρ(σ(φ)φ−1).

Fixing a primitive nth root of unity ζn ∈ K, we identify µn × Z/nZ with (Z/nZ)2 via
(ζan, b) 7→ (a, b). Then Γ = SL2(Z/nZ), and the maps ρ defined in (2.4) and (3.1) are the same.
We now suppose, as happened in § 2 for n > 5 an odd integer, that X(n) is embedded in
Pm−1 for some m, and ρ is realised as a projective representation (also denoted ρ by abuse of
notation)

ρ : SL2(Z/nZ)→ PGLm(K).

We write ∝ for equality in PGLm(K), and use a superscript −T to indicate we take the inverse
transpose of a matrix. Let ι = (1 0

0 −1). We further suppose that

ρ(ιγι) ∝ ρ(γ)−T (3.2)

for all γ ∈ SL2(Z/nZ). Equivalently, ρ(S) and ρ(T ) are symmetric matrices, where S and T are
the generators for SL2(Z/nZ) defined in § 2.2. Our strategy for computing XE(n) and X−E (n)
as twists of X(n) is explained by the following lemma.

Lemma 3.2. Let E/K be an elliptic curve and φ : E[n] ∼= µn × Z/nZ a symplectic
isomorphism defined over K. Suppose h1, h2 ∈ GLm(K) satisfy

σ(h1)h−11 ∝ ρ(σ(φ)φ−1), σ(h2)h−12 ∝ ρ(σ(φ)φ−1)−T

for all σ ∈ Gal(K/K). ThenXE(n) ⊂ Pm−1 andX−E (n) ⊂ Pm−1 are the twists ofX(n) ⊂ Pm−1
given by XE(n) ∼= X(n); x 7→ h1x and X−E (n) ∼= X(n); x 7→ h2x, where x is a point in
projective space written as a column vector.

Proof. Let X ′ = {x ∈ Pn−1 | h1x ∈ X(n)}. Since σ(h1)h−11 is an automorphism of X(n),
we see that X ′ is defined over K. Then by Lemma 3.1 the curves XE(n) and X ′ are twists of
X(n) by the same cocycle. They are therefore isomorphic over K. The proof is the same for
X−E (n), except that we apply Lemma 3.1 to the pair (E, ιφ), and observe by (3.2) that

ρ(σ(ιφ) (ιφ)−1) = ρ(ισ(φ)φ−1ι) ∝ ρ(σ(φ)φ−1)−T .
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For the first equality we use that ι corresponds to an automorphism of µn × Z/nZ which is
defined over K.

Remark 3.3. If, as happened in § 2 for n > 5 an odd integer, the projective representation
ρ lifts to a representation

ρ : SL2(Z/nZ)→ GLm(K)

then the existence of a matrix h1 satisfying the conditions in Lemma 3.2 follows from the
generalised form of Hilbert’s Theorem 90 which states that H1(Gal(K/K),GLm(K)) = 0. We
could then take h2 = h−T1 . In the next two sections we use invariant theory for SL2(Z/nZ) to
compute suitable matrices h1 and h2.

3.2. Formulae in the case n = 7

We saw in § 2.1 that X(7) is the Klein quartic {F = 0} ⊂ P2 where

F = a3b+ b3c+ c3a.

Let G ∼= PSL2(Z/7Z) be the image of ρ : SL2(Z/7Z)→ GL3(K). It is generated by

1

g7

ζ7 − ζ
6
7 ζ27 − ζ57 ζ47 − ζ37

ζ27 − ζ57 ζ47 − ζ37 ζ7 − ζ67
ζ47 − ζ37 ζ7 − ζ67 ζ27 − ζ57

 and


ζ7 0 0

0 ζ47 0

0 0 ζ27


where g7 = 1 + 2(ζ37 + ζ57 + ζ67 ) =

√
−7.

Definition 3.4. An invariant of degree m is a homogeneous polynomial I = I(a, b, c) of
degree m such that I ◦ g = I for all g ∈ G.

Following Klein (see, for example, [7, 16, 19]) we put

H = (−1/54)×

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂2F

∂a2
∂2F

∂a∂b

∂2F

∂a∂c

∂2F

∂a∂b

∂2F

∂b2
∂2F

∂b∂c

∂2F

∂a∂c

∂2F

∂b∂c

∂2F

∂c2

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

c4 = (1/9)×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂2F

∂a2
∂2F

∂a∂b

∂2F

∂a∂c

∂H

∂a

∂2F

∂a∂b

∂2F

∂b2
∂2F

∂b∂c

∂H

∂b

∂2F

∂a∂c

∂2F

∂b∂c

∂2F

∂c2
∂H

∂c

∂H

∂a

∂H

∂b

∂H

∂c
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, c6 = (1/14)×

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂F

∂a

∂F

∂b

∂F

∂c

∂H

∂a

∂H

∂b

∂H

∂c

∂c4
∂a

∂c4
∂b

∂c4
∂c

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The ring of invariants K[a, b, c]G is generated by F,H, c4 and c6 subject to a single relation
which reduces when we set F = 0 to

c34 − c26 ≡ 1728H7 (mod F ).

Since F,H, c4 and c6 have degrees 4, 6, 14 and 21 it is clear that every invariant of odd degree
is divisible by c6.
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Lemma 3.5. The j-invariant X(7)→ P1 is given by j = c34/H
7.

Proof. Both j and j0 = c34/H
7 define maps X(7) → P1 that quotient out by the action of

G ∼= PSL2(Z/7Z). So they can differ by at most a Möbius map. We recall that j is ramified
above 0, 1728 and ∞ with ramification indices 3, 2 and 7. Since

#{F = c4 = 0} 6 4 deg(c4) = 1
3 |G|,

#{F = c6 = 0} 6 4 deg(c6) = 1
2 |G|,

#{F = H = 0} 6 4 deg(H) = 1
7 |G|,

and j0 − 1728 = c26/H
7, we see that j0 is ramified above 0, 1728 and ∞ with ramification

indices at least 3, 2 and 7. It follows that j = j0 as required.

Definition 3.6. A covariant column, respectively contravariant column, of degree m is a
column vector v = (v1, v2, v3)T of homogeneous polynomials of degree m in variables a, b, c
such that v ◦ g = gv, respectively v ◦ g = g−Tv, for all g ∈ G.

We note that x = (a, b, c)T is a covariant column of degree 1, whereas if I is an invariant of
degree m then ∇I = (∂I/∂a, ∂I/∂b, ∂I/∂c)T is a contravariant column of degree m− 1.

Lemma 3.7. Let E/K be an elliptic curve and φ : E[7] ∼= µ7 × Z/7Z a symplectic
isomorphism defined over K. Let (a : b : c) be the corresponding K-point on X(7) ⊂ P2

with co-ordinates (a, b, c) scaled so that

c4(a, b, c) = c4(E) and c6(a, b, c) = c6(E) (3.3)

where E has Weierstrass equation y2 = x3 − 27c4(E)x − 54c6(E). If j(E) 6= 0, 1728 and
h ∈ GL3(K) is a matrix whose columns are covariant columns, respectively contravariant
columns, of the same degree mod 7, evaluated at (a, b, c) then

σ(h)h−1 ∝ ρ(σ(φ)φ−1),

respectively
σ(h)h−1 ∝ ρ(σ(φ)φ−1)−T ,

for all σ ∈ Gal(K/K).

Proof. Let ξσ = σ(φ)φ−1 ∈ SL2(Z/7Z). Since ρ describes the action of SL2(Z/7Z) on X(7) ⊂
P2 we have

σ((a, b, c)T ) = λσρ(ξσ)(a, b, c)T (3.4)

for some λσ ∈ K
×

. Now ρ(ξσ) ∈ G, whereas c4 and c6 are homogeneous polynomials of degrees
14 and 21 invariant under the action of G. Therefore

σ(c4(a, b, c)) = λ14σ c4(a, b, c) and σ(c6(a, b, c)) = λ21σ c6(a, b, c)

for all σ ∈ Gal(K/K). We are given that c4(E), c6(E) ∈ K. So by (3.3), and our assumption
j(E) 6= 0, 1728, we have λ14σ = λ21σ = 1. Hence λσ is a 7th root of unity. Now suppose the
columns of h are obtained by specialising polynomials whose degrees are all congruent to r
mod 7. Then by (3.4) and Definition 3.6 we have

σ(h) = h ◦ (λσρ(ξσ)) = λrσρ(ξσ)h,

respectively
σ(h) = h ◦ (λσρ(ξσ)) = λrσρ(ξσ)−Th.

Therefore σ(h)h−1 ∝ ρ(ξσ), respectively σ(h)h−1 ∝ ρ(ξσ)−T , as required.
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We use Lemmas 3.2 and 3.7 to compute equations for XE(7) and X−E (7). First we classify
the covariant and contravariant columns. It is evident that:

– the dot product of a covariant column and a contravariant column is an invariant;
– the cross product of two covariant columns is a contravariant column;
– the cross product of two contravariant columns is a covariant column.

We also write [v1,v2,v3] = (v1 × v2) · v3 for the scalar triple product. It is straightforward
to solve for the covariant and contravariant columns of any given degree by linear algebra. As
above we put x = (a, b, c)T . Let e and f be the covariant columns of degrees 9 and 11 given by

e =
I22(∇F ×∇H)− c4(∇F ×∇c4) + 12H2(∇H ×∇c4)

14c6
,

f =
I24(∇F ×∇H)− (16F 4 − 104FH2)(∇F ×∇c4) + c4(∇H ×∇c4)

14c6

where

I22 = 448F 4H − 48F 2c4 − 2048FH3,

I24 = 128F 6 − 160F 3H2 − 236FHc4 − 336H4.

We describe the covariant and contravariant columns as modules over the ring K[F,H, c4] of
invariants of even degree.

Lemma 3.8. (i) The covariant columns of odd, respectively even, degree form a free
K[F,H, c4]-module of rank 3 generated by x, e, f , respectively∇F×∇H,∇F×∇c4,∇H×∇c4.

(ii) The contravariant columns of odd, respectively even, degree form a free K[F,H, c4]-
module of rank 3 generated by ∇F , ∇H, ∇c4, respectively x× e,x× f , e× f .

Proof. By direct calculation we have [x, e, f ] = −c6, whereas the definition of c6 may be
rewritten as [∇F,∇H,∇c4] = 14c6. Since c6 is not identically zero it follows that x, e, f are
linearly independent over K(a, b, c), and likewise for ∇F,∇H,∇c4.

Let v be a covariant column of odd degree. We write v = I1x+ I2e+ I3f where I1, I2, I3 are
rational functions in a, b, c. Taking the dot product with e× f shows that [v, e, f ] = I1[x, e, f ].
But [v, e, f ] is an invariant of odd degree and therefore divisible by c6. It follows that I1 is an
invariant, and likewise for I2 and I3.

The other cases are similar.

Theorem 3.9. Let E/K be an elliptic curve with Weierstrass equation y2 = x3−27c4x−54c6
and let ∆ = (c34 − c26)/1728. If j(E) 6= 0, 1728 then XE(7) ⊂ P2 has equation F = 0 where

F = 12x3z + 108x2y2 + 3c4x
2z2 + 72c4xy

2z − 108c4y
4 − 12c6xyz

2

+ 84c6y
3z + c24xz

3 − 15c24y
2z2 + c4c6yz

3 + 768∆z4,

and X−E (7) ⊂ P2 has equation G = 0 where

G = 3x4 + c4x
3z − 18c4x

2y2 − 3c6x
2yz + 24c6xy

3 + 3c24xy
2z

− 9c24y
4 − c4c6y3z + 168∆xz3 + 1728∆y2z2 + 5c4∆z4.

Proof. The covariant columns x, ∇F ×∇H, He have degrees 1, 8, 15, and the contravariant
columns ∇F , x× e, H2∇H have degrees 3, 10, 17. The determinants of the matrices formed
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from these columns are

det(x, (∇F ×∇H), He) = 72H4 − 4c4FH,

det(∇F, (x× e), H2∇H) = 72H5 − 4c4FH
2.

(3.5)

Therefore the matrices h1 and h2 obtained by evaluating at a point of Y (7) are non-singular.

The coefficients of the quartic F̃ (x, y, z) = F (xx+y(∇F ×∇H)+zHe) are invariants. Using
linear algebra to rewrite these invariants as polynomials in F,H, c4 and c6 we find

F̃ (x, y, z) = Fx4 + 12H3x3z + (108H3 − 6c4F )x2y2 − 8c6Fxy
3

+ 3c4H
3x2z2 + (72c4H

3 + 4128F 2H4 + 48c4F
3H − 768F 5H2)xy2z

+ (−108c4H
3 − 3c24F − 11376F 2H4 + 32c4F

3H + 3392F 5H2 − 256F 8)y4

− 12c6H
3xyz2 + (84c6H

3 − 16c6F
3H)y3z + (c24H

3 + 688FH7

+ 8c4F
2H4 − 128F 4H5)xz3 + (−15c24H

3 − 10512FH7 − 384c4F
2H4

+ 6144F 4H5 + 96c4F
5H2 − 768F 7H3)y2z2 + (c4c6H

3 − 8c6F
2H4)yz3

+ (768H10 − 36c4FH
7 − c24F 2H4 + 176F 3H8 + 16c4F

4H5 − 64F 6H6)z4.

Likewise G̃(x, y, z) = F (x∇F + y(x× e) + zH2∇H) becomes

G̃(x, y, z) = (3H2 + 28F 3)x4 + (c4H
2 + 168F 2H3)x3z + (−18c4H

2

− 816F 2H3 − 24c4F
3 + 192F 5H)x2y2 − 3c6H

2x2yz + 24c6H
2xy3

+ (222FH6 + 24F 4H4)x2z2 + (3c24H
2 + 3744FH6 − 576F 4H4)xy2z

+ (−9c24H
2 − 5184FH6 − 240c4F

2H3 − 4c24F
3 + 2240F 4H4 + 64c4F

5H

− 256F 7H2)y4 + (−c4c6H2 + 8c6F
2H3)y3z + (168H9 + 3c4FH

6

+ 24F 3H7)xz3 + (1728H9 − 78c4FH
6 + 816F 3H7 + 24c4F

4H4

− 192F 6H5)y2z2 + c6FH
6yz3 + (5c4H

9 + 35F 2H10 − 4F 5H8)z4.

Let (a : b : c) be the K-point on X(7) corresponding to (E, φ) for some choice of symplectic
isomorphism φ : E[7] ∼= µ7×Z/7Z. By Lemma 3.5 we may scale (a, b, c) to satisfy (3.3). With
this choice of scaling we also have H(a, b, c)7 = ∆. By Lemma 3.7 the matrix h1, respectively
h2, formed by evaluating the covariant, respectively contravariant, columns at (a, b, c), satisfies
the conditions of Lemma 3.2. Therefore a formula for XE(7), respectively X−E (7), is given by

specialising the coefficients of F̃ , respectively G̃, to this choice of (a, b, c). Explicitly we set
F = 0, divide through by H3, respectively H2, and replace H7 by ∆.

Remark 3.10. It is not immediately clear how the equations for XE(7) and X−E (7) found by
our method (see Theorem 3.9) are related to those already in the literature (see Theorem 1.1).
In fact writing a = −27c4 and b = −54c6 we have

F(x, y, z) = 1
4F(6c4z − 1

3y, x,−18z), G(x, y, z) = G(9c4y + z, 3x, 108y).

3.3. Formulae in the case n = 11

We saw in § 2.1 that X(11) is the singular locus of the Hessian of the cubic threefold {F = 0}
⊂ P4 where

F = a2b+ b2c+ c2d+ d2e+ e2a.
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Let G ∼= PSL2(Z/11Z) be the image of ρ : SL2(Z/11Z)→ GL5(K). It is generated by

1

g11



ζ11 − ζ−111 ζ311 − ζ−311 ζ911 − ζ−911 ζ511 − ζ−511 ζ411 − ζ−411

ζ311 − ζ−311 ζ911 − ζ−911 ζ511 − ζ−511 ζ411 − ζ−411 ζ11 − ζ−111

ζ911 − ζ−911 ζ511 − ζ−511 ζ411 − ζ−411 ζ11 − ζ−111 ζ311 − ζ−311

ζ511 − ζ−511 ζ411 − ζ−411 ζ11 − ζ−111 ζ311 − ζ−311 ζ911 − ζ−911

ζ411 − ζ−411 ζ11 − ζ−111 ζ311 − ζ−311 ζ911 − ζ−911 ζ511 − ζ−511


and Diag(ζ11, ζ

9
11, ζ

4
11, ζ

3
11, ζ

5
11), where g11 = 1 + 2(ζ11 + ζ311 + ζ911 + ζ511 + ζ411) =

√
−11.

We define the invariants, covariant columns and contravariant columns exactly as in § 3.2.
Let

∑
denote a sum over all cyclic permutations, so that for example F =

∑
a2b. Other

examples of invariants of small degree include

H = 3abcde+
∑

(a3c2 − a3de),

I7 =
∑

(a6e+ 3a5d2 − 15a4bce+ 5a3b3d+ 15a3bcd2),

I8 =
∑

(a7c− 7a4bd3 − 7a4de3 + 7a3b2c3 + 21a3c2d2e).

Writing A and B for the matrices of second partial derivatives of F and H we find

det(A+ tB) = 32H − 32I7t− 24I9t
2 − 8c4t

3 + . . .

where I9 and c4 are invariants of degrees 9 and 11. Although we will not need a complete set
of generators for the ring of invariants, we remark that such a set is given in [1], and may
also be computed using Magma. Let I be the homogeneous ideal of X(11), that is, the ideal
generated by the 4× 4 minors of the Hessian matrix of F . The degree 19 polynomial

c̃6 = a9b10 − 509b18d− 14107b14d4e+ 510b9c10 + 42326b7d12 + 20669b3d15e

− 14107b2d2e15 − 277419bc2d10e6 − 248909bcd16e− 209926bcd5e12

+ 762409bd11e7 + be18 − 1018c18e− 14107c16de2 − 586835c12d3e4

+ 197780c10d4e5 + 1019c9d10 − 787130c8d5e6 + 15634c7d11e+ 42326c7e12

+ 2007576c6d6e7 + 247382c5d12e2 − 528424c5de13 − 616653c4d7e8

+ 376744c3d13e3 + 1067732c3d2e14 − 225004c2d8e9 + 463659cd14e4

− 582142cd3e15 + 70511d9e10

is not an invariant but satisfies

c̃ 26 ≡ abcde(c34 − 1728F 11) (mod I).

Lemma 3.11. The j-invariant X(11)→ P1 is given by j = c34/F
11.

Proof. Both j and j0 = c34/F
11 define maps X(11)→ P1 that quotient out by the action of

G ∼= PSL2(Z/11Z), so they can differ by at most a Möbius map. We recall that j is ramified
above 0, 1728 and ∞ with ramification indices 3, 2 and 11. It is shown in [2, Corollary 23.28]
that X(11) ⊂ P4 has degree 20. Since

#X(11) ∩ {c4 = 0} 6 20 deg(c4) = 1
3 |G|,

#X(11) ∩ {c̃6 = 0} 6 20 deg(c̃6) < |G|,
#X(11) ∩ {F = 0} 6 20 deg(F ) = 1

11 |G|,

and j0 − 1728 = c̃ 2
6 /((abcde)F

11) it follows that j = j0 as required.
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Lemma 3.12. Let E/K be an elliptic curve and φ : E[11] ∼= µ11 × Z/11Z a symplectic
isomorphism defined over K. Let (a : b : c : d : e) be the corresponding K-point on X(11) ⊂ P4

with co-ordinates (a, b, c, d, e) scaled so that

c4(a, b, c, d, e) = c4(E) (3.6)

where E has Weierstrass equation y2 = x3−27c4(E)x−54c6(E). If j(E) 6= 0 and h ∈ GL5(K)
is a matrix whose columns are covariant columns, respectively contravariant columns, of the
same degree mod 11, evaluated at (a, b, c, d, e) then

σ(h)h−1 ∝ ρ(σ(φ)φ−1),

respectively

σ(h)h−1 ∝ ρ(σ(φ)φ−1)−T ,

for all σ ∈ Gal(K/K).

Proof. The proof is similar to that of Lemma 3.7. Recall that c4 is a homogeneous polynomial
of degree 11 and so (3.6) determines the scaling of (a, b, c, d, e) up to an 11th root of unity.

We use Lemmas 3.2 and 3.12 to compute equations for XE(11) and X−E (11). First we
compute some covariant columns. Let x1 = (a, b, c, d, e)T . If γ ∈ SL2(Z/11Z) is diagonal then
ρ(γ) cyclically permutes the co-ordinates a, b, c, d, e. A covariant column is therefore uniquely
determined by its first entry. By averaging over the group we found covariant columns x4,x5,x9

with first entries

f4 = 2a2e2 + 4ab2c− 4ac2d+ 4bce2 + d4,

f5 = −5a3ce+ 5a2b2d+ 5a2cd2 + 5abc2e− 10abde2 + b5 − 5b3cd+ 5bd3e+ 5c2e3,

f9 = −14a6bde− 8a5bd3 + 9a5c2e2 + 2a5de3 + 8a4b4e+ 5a4b2c3 + 63a4b2cde

+ 6a4c4d− 18a4c2d2e+ 8a4d3e2 + 31a3b4d2 − 21a3b3e3 + 47a3b2cd3 + 35a3bc3e2

+ 14a3bcde3 − 12a3c2d4 + 10a3d5e+ 3a2b5ce− 26a2b3c4 − 42a2b3c2de

− 75a2b3d2e2 + 3a2b2e5 + 18a2bc5d− 30a2bc3d2e− 36a2bcd3e2 + 2a2c3e4

− 9a2cde5 + a2d7 − 2ab7d− 6ab5cd2 + 50ab4ce3 − 7ab3c2d3 − 6ab3d4e

− 54ab2c4e2 − 3ab2c2de3 − 9ab2d2e4 − 29abc3d4 + 21abcd5e+ abe7 + 9ac5de2

+ 25ac3d2e3 − 7acd3e4 − 10b6c2e− 2b6de2 + 4b4c5 + 40b4c3de− 6b4cd2e2

+ 13b3ce5 − 3b3d6 − 15b2c4d2e− 54b2c2d3e2 + 31b2d4e3 − 11bc4e4 + 3bc2de5

− 2bcd7 − 7bd2e6 − c7d2 + 5c5d3e− 9c3d4e2 + 8cd5e3 − e9.

We temporarily write a1, . . . , a5 for a, b, c, d, e and let Ξ be the 5× 5 alternating matrix with
entries

Ξij =
∂F

∂ar

∂I7
∂as
− ∂F

∂as

∂I7
∂ar

where r ≡ (i− j− 2)3 + i+ 3 (mod 5) and s ≡ (j− i− 2)3 + j+ 3 (mod 5). Then x14 = Ξ∇I7
is a covariant column of degree 14.

Theorem 3.13. Let E/K be an elliptic curve with Weierstrass equation y2 = x3 − 27c4x−
54c6 and let ∆ = (c34 − c26)/1728. If j(E) 6= 0, 1728 then XE(11) ⊂ P4 is the singular locus of
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the Hessian of

F = v3 + 3v2w + c4v
2y + 3vw2 + 2c4vwy − c4∆vx2 + 48∆vxy + 9w3

+ 5c4w
2y − c24w2z + c24wy

2 − 576∆wyz + 72c4∆wz2 − 4∆2x3 − 72∆2x2z

+ 4c4∆xy2 + 2c24∆xyz − (c34∆− 1728∆2)xz2 + 64∆y3 − 72c4∆y2z + 12c24∆yz2

+ (c34∆− 3456∆2)z3,

and X−E (11) ⊂ P4 is the singular locus of the Hessian of

G = 5v3 − c4v2x− 60v2y + 28c4v
2z − 2c4∆vw2 − 48∆vwx− 240∆vwz

− 16c4vxy + 1680vy2 − 872c4vyz + 121c24vz
2 + 8∆2w3 + 44c4∆w2y

− 11c24∆w2z + c4∆wx2 + 336∆wxy − 122c4∆wxz + 25c24wy
2 − 14160∆wyz

+ 817c4∆wz2 − 20∆x3 + 5c24x
2y − 1884∆x2z − 364c4xy

2 + 160c24xyz

− 34764∆xz2 + 19840y3 − 10268c4y
2z + 1643c24yz

2 − 129220∆z3.

Proof. The covariant columns x1,x4,x5,x9,x14 have degrees 1, 4, 5, 9, 14 and the
contravariant columns ∇F,∇I7,∇I8,∇I9,∇c4 have degrees 2, 6, 7, 8, 10. The determinants of
the matrices formed from these columns satisfy

det(x1,x4,x5,x9,x14) = c34 − 1728F 11 (mod I),

det(∇F,∇I7,∇I8,∇I9,∇c4) = 55(c34 − 1728F 11) (mod I).
(3.7)

The coefficients of the cubic F̃ (v, w, x, y, z) = F (vx1+wx4+xx5+yx9+zx14) are invariants.
Using the Gröbner basis machinery in Magma to rewrite the coefficients mod I as polynomials
in c4 and F we find

F̃ = Fv3 + 3F 2v2w + c4v
2y + 3F 3vw2 + 2Fc4vwy − c4vx2 + 48F 5vxy + 9F 4w3

+ 5F 2c4w
2y − c24w2z + c24wy

2 − 576F 9wyz + 72F 7c4wz
2 − 4F 5x3 − 72F 8x2z

+ 4F 4c4xy
2 + 2F 2c24xyz − (c34 − 1728F 11)xz2 + 64F 9y3 − 72F 7c4y

2z + 12F 5c24yz
2

+ (F 3c34 − 3456F 14)z3.

Likewise G̃(v, w, x, y, z) = F (v∇F + w∇I7 + x∇I8 + y∇I9 + z∇c4) becomes

G̃ = 5F 2v3 − c4v2x− 60F 4v2y + 28Fc4v
2z − 2Fc4vw

2 − 48F 5vwx− 240F 6vwz

− 16F 2c4vxy + 1680F 6vy2 − 872F 3c4vyz + 121c24vz
2 + 8F 6w3 + 44F 3c4w

2y

− 11c24w
2z + F 3c4wx

2 + 336F 7wxy − 122F 4c4wxz + 25c24wy
2 − 14160F 8wyz

+ 817F 5c4wz
2 − 20F 7x3 + 5c24x

2y − 1884F 8x2z − 364F 4c4xy
2 + 160Fc24xyz

− 34764F 9xz2 + 19840F 8y3 − 10268F 5c4y
2z + 1643F 2c24yz

2 − 129220F 10z3.

Let (a : b : c : d : e) be the K-point on X(11) corresponding to (E, φ) for some choice of
symplectic isomorphism φ : E[11] ∼= µ11 × Z/11Z. By Lemma 3.11 we may scale (a, b, c, d, e)
to satisfy (3.6) and F (a, b, c, d, e)11 = ∆. Moreover the determinants (3.7) are non-zero by our
assumption j(E) 6= 1728. By Lemmas 3.2 and 3.12 we obtain cubic forms describing XE(11)
and X−E (11) by putting

F(v, w, x, y, z) =
1

F 4
F̃ (Fv,w, F 7x, F 2y, F 4z),

G(v, w, x, y, z) =
1

F 8
G̃(F 2v, F 8w,F 4x, y, F 3z)

(3.8)

and replacing F 11 by ∆.
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Remark 3.14. We simplify the cubic forms F and G in Theorem 3.13 by putting

F(v, w, x, y, z) =
1

23c36
F(−v′, w′,−864x,−36c4x− 108c6z, 72y),

G(v, w, x, y, z) =
1

2536(55c6)3
G(v′′,−427680y, x′′,−y′′,−z′′)

where a = −27c4, b = −54c6 and

v′ = c6v + 2c6w − 6c24x+ 3c24y − 9c4c6z,

w′ = c6v + 6c24x+ 3c24y + 9c4c6z,

v′′ = 44(2c4v − 6c6w + 33c6x+ 135c24y + 810c4c6z),

x′′ = 60(5v + 729c4y + 2187c6z),

y′′ = 11(c4v − 3c6w − 6c6x),

z′′ = 60(v + 27c4y + 81c6z).

This gives the cubic forms F and G in Theorem 1.2.

4. Modular interpretation

In § 3 we computed equations for XE(n) and X−E (n) for n = 7, 11. In this section we compute
equations for the families of curves they parametrise.

4.1. Computing the j-invariant

We give formulae for the j-maps XE(n) → P1 and X−E (n) → P1 by adapting the formulae in
Lemmas 3.5 and 3.11.

First we define the invariant Ψ(F ) of a polynomial F of the form considered in Theorems 1.1
and 1.2. For F a polynomial in variables x1, . . . , xm and M = (Mij) an m×m matrix we write
F ◦M for F (x′1, . . . , x

′
m) where x′i =

∑
jMijxj .

Definition 4.1. We split into the cases n = 7, 11.
(i) The invariant Ψ of a twisted form µ(F ◦M) of F = x3y + y3z + z3x is

Ψ(µ(F ◦M)) := µ3(detM)4.

(ii) The invariant Ψ of a twisted form µ(F ◦M) of F = v2w + w2x+ x2y + y2z + z2v is

Ψ(µ(F ◦M)) := µ5(detM)3.

Lemma 4.2. Let F be one of the twisted forms in Definition 4.1. Then:
(i) Ψ(F) is well-defined, that is, it is independent of the choice of M ∈ GLm(K);

(ii) if F has coefficients in K then Ψ(F) ∈ K.

Proof. (i) This is easy to check for M a scalar matrix. In general we appeal to the fact,
proved in [2, Lemma 20.40], that Aut(X(n)) ∼= PSL2(Z/nZ). Therefore it suffices to consider
M = ρ(γ) for γ ∈ SL2(Z/nZ). We then use that SL2(Z/nZ) has no non-trivial one-dimensional
characters.

(ii) This follows from (i) by Galois theory.
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Remark 4.3. (i) In the case n = 7 it is shown in [26, § 7.1] that Ψ(F) is an integer coefficient
polynomial in the coefficients of F . We expect this is also true in the case n = 11, but we have
not worked out the details.

(ii) By following the proofs in § 3, the twisted forms in Theorems 1.1 and 1.2 have invariants

XE(n) X−E (n)

n = 7 −4(4a3 + 27b2) 16(4a3 + 27b2)2

n = 11 −4(4a3 + 27b2)2 8(4a3 + 27b2).

We now split into the cases n = 7, 11 and give formulae for the j-map.
Case n = 7. Let X = {F = 0} ⊂ P2 be a twist of X(7). Starting with F in place of the Klein

quartic F , the formulae in § 3.2 define polynomials H(F), c4(F) and c6(F). If F = µ(F ◦M)
then Ψ(F) = µ3(detM)4 and

H(F) = µ3(detM)2(H ◦M),

c4(F) = µ8(detM)6(c4 ◦M),

c6(F) = µ12(detM)9(c6 ◦M).

(4.1)

As observed in [26, Lemma 7.2], the syzygy c34 − c26 ≡ 1728H7 (mod F ) becomes

c4(F)3 − c6(F)2 ≡ 1728 Ψ(F)H(F)7 (mod F).

In particular the j-map X → P1 is given by

j =
c4(F)3

Ψ(F)H(F)7
.

Case n = 11. Let X ⊂ P4 be a twist of X(11) given as the singular locus of the Hessian of a
cubic form F = F(v, w, x, y, z). Starting with F in place of the cubic form F = v2w + w2x+
x2y + y2z + z2v, the formulae in § 3.3 define polynomials H(F) and c4(F). If F = µ(F ◦M)
then Ψ(F) = µ5(detM)3 and

H(F) = µ5(detM)2(H ◦M),

c4(F) = µ17(detM)8(c4 ◦M).
(4.2)

By Lemma 3.11 the j-map X → P1 is given by

j =
c4(F)3

Ψ(F)8F11
.

4.2. Modular interpretation of X(n)

In § 2.1 we gave equations for X(n). In [8, Chapter 4] it is shown that (analogous to
Definition 2.2) the elliptic curve E ⊂ Pn−1 above (0 : a1 : a2 : . . . : −a2 : −a1) ∈ Y (n)
is defined by

rank(ai−jxi+j)
n−1
i,j=0 6 2.

The following theorem gives an equation for this curve in Weierstrass form. Notice that the
coefficients are homogeneous polynomials of degrees 4t and 6t for some integer t. An alternative
proof in the case n = 7 is sketched in [16, § 3].
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Theorem 4.4. We split into the cases n = 7, 11.
(i) The family of curves parameterised by X(7) = {a3b+ b3c+ c3a = 0} ⊂ P2 is

y2 = x3 − 27(abc)2c4(a, b, c)x− 54(abc)3c6(a, b, c) (4.3)

where c4, c6 ∈ K[a, b, c] are as defined in § 3.2.
(ii) The family of curves parameterised by X(11) ⊂ P4 is

y2 = x3 − 27(abcde)c4(a, b, c, d, e)x− 54(abcde)c̃6(a, b, c, d, e) (4.4)

where c4, c̃6 ∈ K[a, b, c, d, e] are as defined in § 3.3.

Proof. The modular curve Y1(n) parametrises pairs (E,P ) where E is an elliptic curve and
P ∈ E is a point of order n. If n = 7 then we choose a co-ordinate λ on X1(7) ∼= P1. If
n = 11 then X1(11) is the elliptic curve ν2 + ν = λ3 − λ2. We write λ to indicate λ in the
case n = 7, and the pair λ, ν in the case n = 11. By [32, Exercise 8.13] the elliptic curves Dλ

parameterised by Y1(7) and Y1(11) have Weierstrass equations

y2 − (λ2 − λ− 1)xy − (λ3 − λ2)y = x3 − (λ3 − λ2)x2,

y2 + (λν + 2λ− (ν + 1)2)xy − λ2ν(ν + 1)(λ− ν − 1)y = x3 − λν(ν + 1)(λ− ν − 1)x2.

On each of these curves P = (0, 0) is a point of order n. If we write the Weierstrass equation
for Dλ as y2 + a1xy + a3y = x3 + a2x

2 then by Vélu’s formulae [33] the n-isogenous elliptic
curve Cλ = Dλ/〈P 〉 has Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 − 5tx− (a21 + 4a2)t− 7w (4.5)

where t = 6s2 + (a21 + 4a2)s1 + a1a3s0, w = 10s3 + 2(a21 + 4a2)s2 + 3a1a3s1 + a23s0 and

sk =
∑(n−1)/2
j=1 x(jP )k. The Weierstrass equations (4.5) have discriminant

n = 7 ∆(Cλ) = λ(λ− 1)(λ3 − 8λ2 + 5λ+ 1)7,

n = 11 ∆(Cλ,ν) = λ(λ− 1)(λν + 2λ2 − 2λ+ 1)(ν + 1)6f(λ, ν)11,
(4.6)

where f(λ, ν) = (−3λν + 2ν − λ3 + 5λ2 − 5λ+ 1)/(λ− 1).

Let φ : Cλ → Dλ and φ̂ : Dλ → Cλ be the dual isogenies of degree n with ker φ̂ = 〈P 〉.
Then by properties of the Weil pairing kerφ is isomorphic to µn as a Galois module. Let
Q ∈ Cλ(K) with φ(Q) = P . Then σ 7→ σ(Q) − Q is a cocycle taking values in µn. By
Hilbert’s Theorem 90 there exists q ∈ K×/(K×)n such that σ(Q) − Q = σ( n

√
q)/ n
√
q for all

σ ∈ Gal(K/K). Computing q = q(λ) as described in [9, § 1.2] we find

q(λ) =

{
λ4(λ− 1) if n = 7

λν2(λ− 1)(λ− ν − 1)3 if n = 11.
(4.7)

Now X(n) is birational to {q(λ) = τn} ⊂ X1(n)×Gm. In the case n = 7 an explicit birational
map is given in [9, § 2.2]. Applying the same method for n = 11 we obtain

n = 7 (a : b : c) 7→ (λ, τ) = (−ac2/b3, ac/b2),

n = 11 (a : b : c : d : e) 7→ (λ, ν, τ) = (−abd/c2e, ab3/c3e,−ab/c2).

We checked directly that these are birational maps, and that the cusps of X(n), that is,
(1 : 0 : . . . : 0) and its translates under the action of SL2(Z/nZ), map to the cusps of X1(n),
that is, the roots of (4.6).
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Let c4(λ) and c6(λ) be the invariants of the Weierstrass equation for Cλ. Using Magma we
compute

n = 7
c4(−ac2/b2) ≡ ξ47(abc)2c4(a, b, c) mod (a3b+ b3c+ c3a),

c6(−ac2/b2) ≡ ξ67(abc)3c6(a, b, c) mod (a3b+ b3c+ c3a),

n = 11
c4(−abd/c2e, ab3/c3e) ≡ ξ411(abcde)c4(a, b, c, d, e) mod I,
c6(−abd/c2e, ab3/c3e) ≡ ξ611(abcde)c̃6(a, b, c, d, e) mod I,

where ξ7 = a/b5c and ξ11 = a3b/c6e2. Since we are free to cancel 4th powers and 6th powers
from the coefficients of a shorter Weierstrass equation, the result follows.

4.3. An alternative projective embedding

We take p > 5 a prime and let G = PSL2(Z/pZ) act on X(p) in the usual way.

Theorem 4.5 (Adler, Ramanan). The group of G-invariant divisor classes on X(p) is free
of rank 1 generated by a divisor class [Λ] of degree (p2 − 1)/24.

Proof. See [2, Theorem 24.1].

Let m = (p − 1)/2. Klein showed there are embeddings X(p) ⊂ Pm−1 and X(p) ⊂ Pm
with linear G-action. The images are called the z-curve and the A-curve respectively. The
corresponding hyperplane sections are (m − 1)Λ and mΛ, and indeed the divisor Λ in
Theorem 4.5 is constructed by taking the difference of these. It is conjectured that each of
these embeddings is via a complete linear system (the WYSIWYG Hypothesis in [2]) and this
is known for p = 7, 11. The equations for X(p) introduced in § 2.1 are for the z-curve. However
in §§ 4.4 and 4.5 we also need the A-curve.

Case p = 7. The z-curve is the Klein quartic X(7) = {x3y + y3z + z3x = 0} ⊂ P2. The
cusps of X(7) are the 24 points of inflection. We recall from [26] that the cusps are naturally
partitioned into eight sets of three {P1, P2, P3} with

P1 + 3P2 ∼ P2 + 3P3 ∼ P3 + 3P1 ∼ H

where H ∼ 2Λ is the hyperplane section. We write T0, . . . , T7 for the effective divisors of
degree 3 of the form P1+P2+P3. One of these divisors, T0 say, satisfies X(7)∩{xyz = 0} = 4T0.
As observed in [26, §11] we have 2Ti ∼ 2Tj for all 0 6 i, j 6 7. It follows by Theorem 4.5 that
2T0 ∼ 3Λ. Since 3Λ ∼ 3H − 2T0 and L(3H − 2T0) has basis x2y, y2x, z2x, xyz, the A-curve is
the image of

X(7)→ P3; (x : y : z) 7→ (t1 : t2 : t3 : t4) = (x2y : y2z : z2x : xyz)

with equations

rank

(
t1 0 t4 −t2
t2 −t3 0 t4
t3 t4 −t1 0

)
6 2.

Case p = 11. The z-curve is the singular locus of the Hessian of

{F = v2w + w2x+ x2y + y2z + z2v = 0} ⊂ P4.

We write H ∼ 4Λ for the hyperplane section. The cusps are the 60 points of intersection of
X(11) with {F = 0}. They are naturally partitioned into twelve sets of five {P1, . . . , P5} with

P1 + 6P3 + 3P4 + 10P5 ∼ H
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and likewise under all cyclic permutations of the Pi. We write T0, . . . , T11 for the effective
divisors of degree 5 of the form P1 + . . .+ P5. One of these divisors, T0 say, satisfies X(11) ∩
{vwxyz = 0} = 20T0. It may be shown that 5Ti ∼ 5Tj for all 0 6 i, j 6 11 and hence 5T0 ∼ 5Λ
by Theorem 4.5. Since 5Λ ∼ 5H − 15T0 we find by computing a basis for L(5H − 15T0) that
the A-curve is the image of the morphism X(11)→ P5 given by

(v : w : x : y : z) 7→ (t1 : . . . : t6) = (v2wxz : vw2xy : wx2yz : vxy2z : vwyz2 : vwxyz).

It is shown in [2, Theorem 51.1], and we checked using Magma, that this is the singular locus
of the quartic hypersurface

t46 − (t21t2 + t22t3 + t23t4 + t24t5 + t25t1)t6 + t21t3t5 + t22t4t1 + t23t5t2 + t24t1t3 + t25t2t4 = 0.

4.4. Formulae in the case n = 7

Theorem 4.6. Let X = {F = 0} ⊂ P2 be a twist of the Klein quartic, with hyperplane
section H. Let T = P1 + P2 + P3 where P1, P2, P3 are points of inflection on X with

P1 + 3P2 ∼ P2 + 3P3 ∼ P3 + 3P1 ∼ H.

Let d ∈ K[x, y, z] be a cubic form with {d = 0} meeting X in a divisor 2D with D ∼ 2T . Then
there is a Gal(K/K)-module M such that for every field extension L/K and rational point
P = (x : y : z) ∈ X (L) \ {d = 0}, not a point of inflection, the elliptic curve

Y 2 = X3 − 27
c4(F)(x, y, z)

d(x, y, z)2
X − 54

c6(F)(x, y, z)

d(x, y, z)3
(4.8)

has 7-torsion isomorphic to M as a Gal(L/L)-module.

Proof. If d1, d2 ∈ K[x, y, z] are cubic forms meeting X in divisors 2D1 and 2D2 withD1 ∼ D2

then d1/d2 is the square of a rational function, and hence the elliptic surfaces (4.8) with d = d1
and d = d2 are isomorphic over K. Since X is a twist of the Klein quartic it follows (by taking
D = 2T0 as defined in the last section) that the elliptic surfaces (4.3) and (4.8) are isomorphic
over K. Notice it does not matter whether we write the terms d(x, y, z) in the numerator or
in the denominator. We are done by [28, Proposition 2.1].

In Theorem 4.8 below we determine rational functions d satisfying the hypothesis of
Theorem 4.6 in the cases X = XE(7) and X = X−E (7). We also show how to scale these
functions to give the quadratic twist with M ∼= E[7].

Remark 4.7. Recall that XE(7) has a trivial K-rational point corresponding to E itself.
Following [28] one method for finding the right quadratic twist would be to specialise at this
point. However this approach fails when d vanishes at the trivial point, and also does not
generalise to X−E (7).

Theorem 4.8. Let E/K be an elliptic curve with Weierstrass equation y2 = x3−27c4x−54c6
and let ∆ = (c34− c26)/1728. If j(E) 6= 0, 1728 then the families of elliptic curves parameterised
by YE(7) and Y −E (7) are given by (4.8) with (F , d) = (F, d1) and (G, d2) where F and G are
the quartics in Theorem 3.9 and

d1(x, y, z) = −6(3x2 + c4xz − 3c4y
2 + c6yz)z,

d2(x, y, z) = 2∆(4x3 + c4x
2z − 12c4xy

2 − 2c6xyz + 8c6y
3 + c24y

2z + 200∆z3).
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Proof. We fix a symplectic isomorphism φ : E[7] ∼= µ7 × Z/7Z and let (a : b : c) be the
K-point on X(7) corresponding to (E, φ). As in the proof of Theorem 3.9 we scale (a, b, c) so
that c4(a, b, c) = c4 and c6(a, b, c) = c6. The action of SL2(Z/7Z) on both the z-curve and the
A-curve suggests we start with the forms

s1(x, y, z) = (a2c3 − 2ab3c)x2y + (a3b2 − 2abc3)y2z

+ (b3c2 − 2a3bc)z2x+ (a3c2 + a2b3 + b2c3)xyz,

s2(x, y, z) = a2bx2y + b2cy2z + c2az2x+ 2abcxyz.

We then let r1 and r2 be the unique cubic forms satisfying

ri(x, y, z)xyz ≡ si(x, y, z)2 mod (x3y + y3z + z3x) (4.9)

for i = 1, 2. The coefficients of r1 and r2 are homogeneous polynomials in a, b, c of degrees 10
and 6. Recall that in the proof of Theorem 3.9 we put

F(x, y, z) =
1

H3
F (xx + y(∇F ×∇H) + zHe),

G(x, y, z) =
1

H2
F (x∇F + y(x× e) + zH2∇H).

The cubics d1 and d2 in the statement of the theorem are likewise found by putting

d1(x, y, z) =
1

2abcH4
r1(xx + y(∇F ×∇H) + zHe),

d2(x, y, z) =
2H5

abc
r2(x∇F + y(x× e) + zH2∇H).

(4.10)

It is clear from these constructions that {d1 = 0} and {d2 = 0} meet the corresponding
twists of the Klein quartic in divisors of the form specified in Theorem 4.6. So our formulae for
the families of elliptic curves parameterised by YE(7) and Y −E (7) are correct up to quadratic
twist, say by δ ∈ K×. It remains to show that δ is a square. As noted in [16, § 7.1] it suffices to
check this in the case φ : E[7] ∼= µ7 × Z/7Z is defined over K. Then (a : b : c) is a K-rational
point on X(7). We write (a, b, c) = (λa0, λb0, λc0) with a0, b0, c0 ∈ K. By our earlier choice
of scaling for a, b, c we have λ7 ∈ K. Comparing the Weierstrass equation (4.3) for E with
that in the statement of the theorem it follows that λ7a0b0c0 ∈ (K×)2. So a7, b7, c7 ∈ K and
(abc)7 ∈ (K×)2. Using (3.5) and (4.1) we compute

ck(F)(x, y, z) = (2936)k/2ck(xx + y(∇F ×∇H) + zHe),

ck(G)(x, y, z) = (2936H7)k/2ck(x∇F + y(x× e) + zH2∇H)

for k = 4, 6. It follows by (4.10) that

ck(F)(x, y, z)

d1(x, y, z)k/2
= ξk

ck(xHx + yH(∇F ×∇H) + zH2e)

((abc)6r1(xHx + yH(∇F ×∇H) + zH2e))k/2
,

ck(G)(x, y, z)

d2(x, y, z)k/2
= ηk

ck(xH3∇F + yH3(x× e) + zH5∇H)

((abc)6H10r2(xH3∇F + yH3(x× e) + zH5∇H))k/2

for some ξ, η ∈ K×. The covariant columns Hx, H(∇F × ∇H), H2e have degrees 7, 14, 21
and the contravariant columns H3∇F , H3(x× e), H5∇H have degrees 21, 28, 35. Since each
column has degree a multiple of 7, its evaluation at (a, b, c) is K-rational. Therefore the families
of curves in the statement of the theorem are K-isomorphic to

Y 2 = X3 − 27
c4(x, y, z)

((abc)6r1(x, y, z))2
X − 54

c6(x, y, z)

((abc)6r1(x, y, z))3
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and

Y 2 = X3 − 27
c4(x, y, z)

((abc)6H10r2(x, y, z))2
X − 54

c6(x, y, z)

((abc)6H10r2(x, y, z))3
.

To identify these with (4.3) we note that the cubic forms (abc)3s1(x, y, z) and (abc)3H5s2
(x, y, z) have coefficients in K (since the degree of each coefficient is a multiple of 7) and then
use (4.9).

Making the change of co-ordinates in Remark 3.10, we can replace d1 and d2 by cubic forms
that satisfy the conditions of Theorem 4.6 for XE(7) = {F = 0} ⊂ P2 and X−E (7) = {G =
0} ⊂ P2, where F and G are the quartics in Theorem 1.1. Moreover, having found one such
form we can use the Riemann–Roch machinery in Magma to find further such forms.

In the case of XE(7) we obtain a cubic form d11 with XE(7) ∩ {d11 = 0} = 2D1 for some
divisor D1 ∼ 2T . Then L(3H −D1) has basis

d11 = −2(ax2 + 3bxz + 3y2 + 2ayz)z,

d12 = 2(ax2 + 3bxz + 3y2 + 2ayz)x,

d13 = 4(3bx2 − 2axy − 2a2xz − 3byz − 2abz2)z,

d14 = 4(a2x2 + 3bxy + 4abxz + ay2 + 3b2z2)z.

More generally there are cubic forms dij for 1 6 i, j 6 4 such that the matrix (dij) is symmetric
and each 2× 2 minor vanishes mod F . The remaining dij are computed using d11dij ≡ d1id1j
(mod F). Then XE(7) ∩ {dij = 0} = Di + Dj where D1, . . . , D4 are divisors all linearly
equivalent to 2T . The family of elliptic curves parameterised by YE(7) is now given by (4.8)
with (F , d) = (F , dii) for any 1 6 i 6 4.

The A-curve is the image of XE(7)→ P3; (x : y : z) 7→ (d11 : . . . : d14) with equations

rank

( 0 t3 −t4 2at1 + t4
t1 2at1 + t4 2bt1 + at2 + at3 2at2 + at3
t2 2bt1 + at3 −a2t1 + bt3 − at4 2bt2 − bt3 − at4

)
6 2.

Our formula for the elliptic curve corresponding to P ∈ YE(7) fails when dii(P ) = 0. However
the zeros of dii correspond to the hyperplane section {ti = 0} on the A-curve. Therefore, for
any given point P , we have dii(P ) 6= 0 for some i. So unlike the treatment in [16, Theorem 5.2],
where only the cubic form d11 was given, we have found formulae that cover all cases.

In the case of X−E (7) we likewise find cubic forms d′ij for 1 6 i, j 6 4 such that the matrix
(d′ij) is symmetric and each 2× 2 minor vanishes mod G. Explicitly,

d′11 = −7ax2y + 6x2z + 3a2y3 − 8ay2z + 3yz2,

d′12 = 2ax3 + 12bx2y − 2axyz − 3aby3 + 6by2z,

d′13 = 2a2xy2 − 10axyz + 6xz2 + 5aby3 − 12by2z,

d′14 = 2a2x2y − 3ax2z + 5abxy2 − 12bxyz − 3a2y2z + 8ayz2 − 3z3.

The remaining d′ij are computed using d′11d
′
ij ≡ d′1id

′
1j (mod G). The family of elliptic curves

parameterised by Y −E (7) is now given by (4.8) with (F , d) = (G,∆d′ii) for any 1 6 i 6 4.
Exactly as before, these formulae cover all cases.

4.5. Formulae in the case n = 11

Our approach is similar to that in the last section. As one would expect, the formulae in the
case n = 11 are more complicated than those in the case n = 7. There are however two further
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complications. One is that there is no invariant c6. The other is that the form we are looking
for is no longer uniquely determined by its image in the co-ordinate ring. Indeed in the case
n = 7 we were looking for a cubic form, and in the case n = 11 we are looking for a quintic
form. But in both cases our twist of X(n) is defined by quartics.

The action of SL2(Z/11Z) on both the z-curve and the A-curve suggests we start with the
forms

s1(v, w, x, y, z) = (a3bc3 + b4cd2 − ab2c2de− 2bc2de3)v2wxz

+ (b3cd3 + c4de2 − abc2d2e− 2a3cd2e)vw2xy

+ (c3de3 + a2d4e− abcd2e2 − 2ab3de2)wx2yz

+ (a3d3e+ ab2e4 − a2bcde2 − 2a2bc3e)vxy2z

+ (ab3e3 + a4bc2 − a2b2cde− 2ab2cd3)vwyz2

+ 2(a2b2c2e+ a2b2de2 + a2cd2e2 + ab2c2d2 + bc2d2e2)vwxyz,

s2(v, w, x, y, z) = a2bcev2wxz + ab2cdvw2xy + bc2dewx2yz + acd2evxy2z

+ abde2vwyz2 + 2abcdevwxyz.

We then solve for r1 and r2 satisfying

ri(v, w, x, y, z)(vwxyz)
3 ≡ si(v, w, x, y, z)4 (mod I, I ′) (4.11)

where I and I ′ are the homogeneous ideals for X(11) ⊂ P4 with respect to the two sets of
variables a, b, c, d, e and v, w, x, y, z. The coefficients of r1 and r2 are homogeneous polynomials
of degrees 28 and 20 in a, b, c, d, e. It is important to note that r1 and r2 are not uniquely
determined by (4.11). However by averaging over the group we were able to choose ri =
(abcde)3r̃i in such a way that the coefficients of

r̃1(vx1 + wx4 + xx5 + yx9 + zx14)

and
r̃2(v∇F + w∇I7 + x∇I8 + y∇I9 + z∇c4)

are congruent mod I to certain polynomials in F and c4. The result is a pair of quintic forms
d̃1(v, w, x, y, z) and d̃2(v, w, x, y, z) with coefficients in Q[F, c4]. We then put

d1(v, w, x, y, z) = d̃1(Fv,w, F 7x, F 2y, F 4z),

d2(v, w, x, y, z) =
1

F 4
d̃2(F 2v, F 8w,F 4x, y, F 3z),

and replace F 11 by ∆ so that d1 and d2 have coefficients in Q[c4,∆].

Remark 4.9. The polynomials r̃i and di would take several pages to print out, so we must
refer the reader to the accompanying Magma file [13] for further details. The computation of
d1 and d2 took several hours of computer time, whereas all other calculations up to this point
ran in a few seconds.

Theorem 4.10. Let E/K be an elliptic curve with Weierstrass equation y2 = x3 − 27c4x−
54c6 and let ∆ = (c34 − c26)/1728. Assume j(E) 6= 0, 1728 and let X = XE(11), respectively
X−E (11), be as given in Theorem 3.13. If (v : w : x : y : z) ∈ X(K) \ {di = 0}, not a cusp, then
the corresponding elliptic curve E′/K satisfies

c4(E′) ≡ d1(v, w, x, y, z) c4(F)(v, w, x, y, z) mod (K×)4,
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respectively
c4(E′) ≡ d2(v, w, x, y, z) c4(G)(v, w, x, y, z) mod (K×)4.

Proof. As noted in [16, § 7.1] we are free to extend our fieldK so that φ : E[11] ∼= µ11×Z/11Z
is defined over K. Let (a : b : c : d : e) be the corresponding K-point on X(11). We scale
a, b, c, d, e so that c4(a, b, c, d, e) = c4. Then a11, . . . , e11 ∈ K and by comparing the Weierstrass
equation for E in the statement of the theorem with (4.4) we deduce that (abcde)11 ∈ (K×)4.
The polynomials F and G were computed in § 3.3 as twists of F . Putting

(v′, w′, x′, y′, z′)T = vF 7x1 + wF 6x4 + xF 13x5 + yF 8x9 + zF 10x14,

(v′′, w′′, x′′, y′′, z′′)T = vF 3∇F + wF 9∇I7 + xF 5∇I8 + yF∇I9 + zF 4∇c4,

it follows by (3.7), (3.8) and (4.2) that

c4(F)(v, w, x, y, z) =
(c34 − 1728F 11)8

F 22
c4(v′, w′, x′, y′, z′),

c4(G)(v, w, x, y, z) =
(55(c34 − 1728F 11))8

F 11
c4(v′′, w′′, x′′, y′′, z′′).

By construction of d1 and d2 we have

d1(v, w, x, y, z) =
1

(abcde)3F 30
r1(v′, w′, x′, y′, z′),

d2(v, w, x, y, z) =
1

(abcde)3F 9
r2(v′′, w′′, x′′, y′′, z′′).

In view of Theorem 4.4 our aim is to show that

d1(v, w, x, y, z) c4(F)(v, w, x, y, z) ≡ v′w′x′y′z′c4(v′, w′, x′, y′, z′) mod (K×)4,

d2(v, w, x, y, z) c4(G)(v, w, x, y, z) ≡ v′′w′′x′′y′′z′′c4(v′′, w′′, x′′, y′′, z′′) mod (K×)4,

equivalently

(abcde)8F 36r1(v′, w′, x′, y′, z′) ≡ v′w′x′y′z′ mod (K×)4,

(abcde)8F 24r2(v′′, w′′, x′′, y′′, z′′) ≡ v′′w′′x′′y′′z′′ mod (K×)4.

To finish the proof we note that the quintic forms

(abcde)2F 9s1(v′, w′, x′, y′, z′) and (abcde)2F 6s2(v′′, w′′, x′′, y′′, z′′)

have coefficients in K (since the degree of each coefficient is a multiple of 11) and then
use (4.11).

We already gave a formula for the j-invariant in § 4.1. So (assuming j(E′) 6= 0) Theorem 4.10
determines E′ up to quadratic twist by −1. In the case K = Q it is easy to decide which of
the remaining two possibilities is correct by looking at traces of Frobenius.

In principle it should be possible to find alternative quintic forms to be used at points where
d1 or d2 vanishes. The quintic forms in question are those meeting the z-curve in a divisor 4D
where D is a hyperplane section for the A-curve. In the case n = 7 we managed to find the
alternative forms using the Riemann–Roch machinery in Magma. Unfortunately the analogue
of this in the case n = 11 does not appear to be practical. In the case of X−E (11) this is not
a problem, since the 25 points with d2 = 0 correspond to the elliptic curves `-isogenous to
E for ` = 2, 7, 13. We can also account for seven of the points on XE(11) with d1 = 0 as
corresponding to the elliptic curve E itself and the elliptic curves 5-isogenous to E. We are
yet to encounter an example (over K = Q) where one of the remaining points with d1 = 0 is
rational.
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5. Examples

We use the formulae in Theorems 1.1 and 1.2 to give examples of non-trivial n-congruences for
n = 7, 11 over Q and Q(T ). By ‘non-trivial’ we mean that the elliptic curves are not isogenous.
The examples over Q illustrate the value of minimising and reducing, as mentioned in the
introduction. The examples over Q(T ) were found by setting a = b = −27j/(4(j − 1728))
to obtain a surface fibred over the j-line and then intersecting with one of the co-ordinate
hyperplanes in the hope of finding a rational curve. We refer to elliptic curves over Q by their
labels in Cremona’s tables [4]. For elliptic curves beyond the current range of Cremona’s tables
we simply write the conductor followed by a ∗.

Remark 5.1. If elliptic curves E and E′ are related by an isogeny of degree d coprime to n,
then they are clearly n-congruent. Since dual isogenies are adjoints with respect to the Weil
pairing, the curves are directly n-congruent if d is a square in (Z/nZ)× and reverse n-congruent
if −d is a square in (Z/nZ)×.

Remark 5.2. Let E/Q be an elliptic curve of conductor N . As the referee points out, by
Ribet’s level raising theorem [27], there are (under suitable hypotheses) infinitely many primes
p such that there is a newform of weight 2 for Γ0(Np) with the same mod 7 (or mod 11)
representation as E. However only finitely many of these will have rational Hecke eigenvalues
and so correspond to an elliptic curve. It is nonetheless interesting to note that many of the
examples found by our methods (and likewise those in [15, 16]) can be explained by Ribet’s
theorem.

5.1. Examples in the case n = 7

Example 5.3. Let E be the elliptic curve 162c1. Let F and G be the equations for XE(7) and
X−E (7) in Theorem 1.1 with a = 3645 and b = −13122. These have invariants Ψ(F) = −211 ·318
and Ψ(G) = 222 · 336. Minimising and reducing suggests that we substitute

F (x, y, z) =
1

210314
F(36y − 9z, 1944x− 972y − 1215z, z),

G(x, y, z) =
1

212320
G(18x+ 18y + 9z, z,−486x+ 1458y + 1944z)

to give quartics

F (x, y, z) = 3x3z + 3x2y2 − 6x2yz + 3x2z2 − 3xy3 + 3xz3 + 2y4 − y3z − 9y2z2 + 4yz3 − 5z4,

G(x, y, z) = −x3y − x3z − 6x2z2 + 6xy2z − 6xyz2 + 6xz3 + 2y4 + 2y3z − 6y2z2 − 38yz3 − 8z4

with invariants Ψ(F ) = −2 · 34 and Ψ(G) = 22 · 34. We find rational points P1 = (1 : 0 : 0),
P2 = (3 : −2 : −1) on {F = 0} ⊂ P2, and rational points P3 = (1 : 0 : 0), P4 = (1 : 1 : −1),
P5 = (4 : −1 : 1) on {G = 0} ⊂ P2. The corresponding elliptic curves 7-congruent to E are

P1 162c1 y2 + xy = x3 − x2 + 3x− 1,

P2 293706x2 y2 + xy = x3 − x2 − 62930562x− 192134303740,

P3 162c2 y2 + xy = x3 − x2 − 42x− 100,

P4 17334f1 y2 + xy = x3 − x2 − 5473977x− 4956193171,

P5 624186∗ y2 + xy = x3 − x2 − 11751402282x+ 360746315347508.

Since the elliptic curves 162c1 and 162c2 are 3-isogenous, it was already clear from Remark 5.1
that they are reverse 7-congruent.

https://doi.org/10.1112/S1461157014000059 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000059


on families of 7- and 11-congruent elliptic curves 561

It is shown in [16, Proposition 6.3] that there are infinitely many 6-tuples of directly
7-congruent non-isogenous elliptic curves over Q. The following example shows that there
are infinitely many pairs of reverse 7-congruent non-isogenous elliptic curves over Q.

Example 5.4. Let E/Q(T ) be the elliptic curve y2 = x3 + ax + b where a = b =
−27j/(4(j − 1728)) and j = 27T 3(5T − 56)/(T − 1). Then X−E (7), with equation as given
in Theorem 1.1, has rational point

(x : y : z) = (0 : −4(T 2 − 12T + 8)(5T 2 + 4T + 8) : 9T 2(T + 4)(5T − 56)).

Specialising T (and taking quadratic twists by d as indicated) we obtain the following pairs of
reverse 7-congruent elliptic curves E1 and E2.

T d E1 E2

−16 −38 361a1 361a2

8 −10 700g1 2100q1

2 −2 2116b1 10580h1

16/5 −42 24255r1 24255m2

The existence of specialisations E1 and E2 that are not isogenous is enough to show that there
are infinitely many such specialisations.

5.2. Examples in the case n = 11

Example 5.5. Let E be the elliptic curve 1782b1. Let F be the cubic form describing
XE(11) ⊂ P4 in Theorem 1.2 with a = 765 and b = 15102. The invariant is Ψ(F) = −228 ·312 ·
116. Minimising and reducing suggests that we substitute

v
w

x

y

z

←


984 12900 −9093 −34056 13689
−2040 −24252 −3315 0 −16857

328 164 −435 0 −57
−352 88 −264 264 −1056
−8 −4 −13 0 25



v
w

x

y

z


so that XE(11) ⊂ P4 is the singular locus of the Hessian of

−v2w + v2x− v2y + 2v2z − vw2 + 4vwz − 4vx2 − 8vxy + 2vxz + 6vyz

+ 3vz2 + 2w3 − 3w2x− 2w2y + 8w2z + 6wx2 + 2wxy + 2wxz + 6wy2 − 6wyz

+ 9wz2 − x3 − x2z − 3xy2 − 6xyz − 9xz2 − 6y3 + 9y2z + 3yz2 − 7z3 = 0

with invariant 22 ·34 ·112. We find rational points P1 = (−1 : 5 : 1 : 2 : 1), P2 = (0 : 0 : 0 : 1 : 0)
and P3 = (1 : 1 : −1 : 0 : −4). The corresponding elliptic curves directly 11-congruent to E
are

P1 1782b1 y2 + xy = x3 − x2 + 48x+ 224,

P2 1782b2 y2 + xy = x3 − x2 − 447x− 7795,

P3 447282∗ y2 + xy = x3 − x2 − 17552171922x− 227953575178678.

Since the elliptic curves 1782b1 and 1782b2 are 3-isogenous, it was already clear from
Remark 5.1 that they are directly 11-congruent.
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Example 5.6. Let E be the elliptic curve 4466c1. Let G be the cubic form describing
X−E (11) ⊂ P4 in Theorem 1.2 with a = 85 and b = −83162. The invariant is Ψ(G) = 221 · 7 ·
112 · 292. Minimising and reducing suggests that we substitute

v
w

x

y

z

←


4096 −1408 128 −1312 45088
0 128 128 32 110
0 0 −256 −96 −103
0 0 0 −32 −11
0 0 0 0 −1



v
w

x

y

z


so that X−E (11) ⊂ P4 is the singular locus of the Hessian of

−2v2z − 4vwy + 12vxy + 4vxz + 5vy2 + 6vyz − 43vz2 − w2x+ w2y

− 4wxy − 2wxz − 3wy2 + 196wyz + 83wz2 − 11x3 − 12x2y − 9x2z

− 11xy2 + 366xyz + 125xz2 + 322y3 + 447y2z + 275yz2 + 632z3 = 0

with invariant −22 · 7 · 112 · 292. We find rational points P1 = (−7 : 11 : 3 : 1 : 1) and
P2 = (7830 : −3553 : 510 : −281 : 71). The corresponding elliptic curves reverse 11-congruent
to E are

P1 4466c2 y2 + xy + y = x3 − x2 − 1755x− 27349,

P2 1174558∗ y2 + xy + y = x3 − x2 + 117885809240x+ 16240157710556505.

Since the elliptic curves 4466c1 and 4466c2 are 2-isogenous, it was already clear from
Remark 5.1 that they are reverse 11-congruent.

A table of pairs of 11-congruent elliptic curves over Q is available from the website [13]. These
were found by searching for rational points on XE(11) and X−E (11) for all elliptic curves E/Q
in Cremona’s tables. As happened in Examples 5.5 and 5.6, the elliptic curves 11-congruent
to E that we find often have conductor beyond the current range of Cremona’s tables.

The following example shows that there are infinitely many pairs of directly 11-congruent
non-isogenous elliptic curves over Q.

Example 5.7. Let E/Q(T ) be the elliptic curve y2 = x3 + a(T )x+ b(T ) where

a(T ) = −3(T − 3)(T 4 − 5T 2 − 24T − 92)/(T 3 − T 2 + 4T + 24),

b(T ) = −2(T − 3)(T 5 − T 4 − 11T 3 − 43T 2 − 62T − 316)/(T 3 − T 2 + 4T + 24).

Then XE(11), with equations as given in Theorem 1.2, has rational point
v

w

x

y

z

 =


T 6 + T 5 + 31T 4 + 259T 3 + 520T 2 + 676T + 1248

−(T − 3)(T 5 + 4T 4 + 43T 3 + 100T 2 − 44T − 320)

−(T 2 + 3T + 14)(T 3 − T 2 + 4T + 24)
0

(T + 4)(T 3 − T 2 + 4T + 24)

 .

Specialising T (and taking quadratic twists by d as indicated) we obtain the following pairs of
directly 11-congruent elliptic curves E1 and E2.

T d E1 E2

2 −6 11a3 11a2

1 42 49a1 49a4

−3 −2 216b1 1512c1

11 −426 10082c1 70574h1
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The elliptic curve 11-congruent to E is y2 = x3 +A(T )x+B(T ) where

A(T ) = −3(T − 3)(T 2 − 8T − 17)(T 3 − T 2 + 4T + 24)(T 12 − 250T 11 + 3473T 10

− 23824T 9 + 106654T 8 − 354556T 7 + 890186T 6 − 1710568T 5

+ 2386357T 4 − 2054170T 3 + 1799781T 2 + 956680T + 3570796),

B(T ) = −2(T − 3)(T 3 − T 2 + 4T + 24)2(T 20 + 476T 19 − 27815T 18 + 556718T 17

− 6046664T 16 + 42450848T 15 − 213832636T 14 + 823702888T 13

− 2497998850T 12 + 5954643736T 11 − 10798748818T 10 + 13644339892T 9

− 7927895108T 8 − 10398245632T 7 + 25581636532T 6 − 10366268760T 5

− 60876061719T 4 + 164062110060T 3 − 98120800447T 2 + 262948421518T

+ 141270230564).

These elliptic curves have discriminants

21236(T − 5)(T − 3)2(T + 1)5(T 2 + 7)/(T 3 − T 2 + 4T + 24)3,

and

−21236(T − 5)4(T − 3)2(T + 1)3(T 2 + 7)(T 3 − T 2 + 4T + 24)3(T 3 − T 2 + 15T − 31)11.

We did not find any pairs of reverse 11-congruent non-isogenous elliptic curves over Q(T ).
We note that according to [18, Theorem 4] the modular diagonal surface in this case is of
general type.
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