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FINITELY GENERATED SUBGROUPS OF 
HNN GROUPS 

R. G. BURNS 

1. I n t r o d u c t i o n . In this paper we give sufficient conditions for an H N N 
group to have the following two properties: 

(1) any two finitely generated subgroups intersect in a finitely generated 
subgroup; 

(2) every finitely generated subgroup containing a non-trivial subnormal 
subgroup has finite index. 

T h e following result is a particular case of the main theorem. 

1.1 T H E O R E M . The group G = (A, x\xux~l = v) where A is free and u,v Ç A, 
has property (2) if u is not a proper power and at least one of u,v does not generate 
A, and has property (I) if neither u nor v is a proper power. 

This does not include the result of Moldavanskiï [4] t ha t (y, x\xyx~l = yk) 
has proper ty (1) for all k. However we show briefly (at the end of § 3) how our 
proof modifies to include this case. T h e question of whether in general proper ty 
(1) is preserved if the restriction on v is removed, remains unanswered. 

T o permit a concise s ta tement of the main theorem we make the following 
definition. A subgroup £7 of a group A is called A MFI (for "a lmost malnormal-
finitely involved" (see [1])) if there exists a left transversal T for U in A 
containing the identi ty e, such t ha t 

(3) U(T\{e}) = (A{e} m 

for some finite subset Vi Q U; and for every coset Ha of every finitely gener
a ted subgroup H S A, 

(4) HaQ TV2(a-1Har\ U) 

for some finite subset F 2 £ U, depending on Ha (cf. [1]). 
We now s ta te the theorem. For undefined terms see [3]. 

1.2 T H E O R E M . Let G denote the H N N group (A, x\xU-\X~l = Ui). The 
following conclusions hold: 

(i) if both Ui and Z7_i are A MFI in A ;for all finitely generated subgroups H of 
G,H C\ Ui is finitely generated; and A has property (1), then G has property (1) ; 

(ii) if Ui is A MFI in A, Ui ^ A, and H is a finitely generated subgroup of G 
containing a subnormal subgroup N of G, N ^ Ui, then H has finite index in G. 
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It is unknown whether in (i) the condition that U-i be AMFI can be 
removed. 

Theorem 1.1 follows immediately from this and the result that in a free group 
a cyclic subgroup whose generator is not a proper power, is AMFI [1, Theorem 
6.1], except for one case easily dealt with separately. Since a finite subgroup is 
always AMFI, the theorem also applies when U\ is finite. This was originally 
proved by Cohen [2] and P. C. Oxley [5]. 

The proof generalizes easily to give the corresponding result for the HNN 
group {A, %i\XiU-iX~l = Ui) where i ranges over any index set, and where 
in part (i) we demand that for all i both Ut and U-t are AMFI in A, and in 
part (ii) that for at least one i, Ui 9^ A and V\ is AMFI in A. 

The proof of 1.2 uses the same basic ideas as in [1], in conjunction with 
Cohen's subgroup theorem for HNN groups [2], It is hoped that the present 
paper and [1] will together lead to some general criterion for a one-relator 
group to possess properties (1) and (2). 

I wish to thank once again A. Karrass and D. Solitar for generously provid
ing me with problems and for their interest and encouragement. 

2. Preliminary definitions and lemmas. For the detailed definition of the 
HNN group (A, x\xU-\X~l = U\) (denoted throughout by G) the reader is 
referred to [3]. We recall only that Ui and U-i are isomorphic subgroups of A 
and as implied by the notation, for all u-\ G U-i, xu-iX~1 = u^i<p for some 
given isomorphism <p : U-i —> U\. These relations, one for each generator of 
U-i, together with those of some presentation of A, give a presentation de
fining G. Let Ti, r_ i be left transversals for Ui, U-i respectively, in A. Cohen 
[2] observes that every element g of G has a unique normal form 

(5 ) g = tlXel . . . tnX
end 

where et = =b 1, tt £ Tu, a £ A, and if et-i = —et then tt (? Uei. Write 
a = tu where / £ 7\, u £ Ui. Then t and those tt such that et = 1 will be 
termed the Ti-syllables of g; if g g A} xe

na will be called the ending of g and u 
the Ui-ending of g\ hxH is the beginning of g. The elements tixei . . . ttx

€i and 
tixei . . . tiX*iti+i (i = 0, 1, . . . , n) where tn+i — t, will be called initial segments 
of g; in particular we shall call ga~l the principal initial segment and all other 
initial segments except gu~l will be said to be proper. The elements 
ttx

ei . . . tnx
e
na, xU . . . tnx

€
na will be called terminal segments. Finally the length, 

Kg) * °f g 1S defined to be n. 
The key lemma for the proof of Theorem 1.1 is the following. 

2.1 LEMMA. Suppose G = (A, x\xU-\X~l = U\) where U\ is AMFI in A. 
Let Ti be a left transversal for U\ in A satisfying (3) and (4) and let T-i be any 
left transversal for U-i in A, containing e. Let H be any finitely generated subgroup 
of G such that g U\g~l C\ H is finitely generated for all g Ç G. Then if S denotes 
the set of all elements of H with endings of the form x~ltu, t Ç 7\\{e}, u Ç Uu 
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and S denotes the set obtained from S by deleting the Ui-endings ufrom the elements 
of S, there exists a finite subset V C JJ\ such that 

(6) SQSV(HC\ Ui) 

(Clearly if the subscript 1 is replaced throughout by —1, the lemma will remain 
true.) 

For the proof of this, among other things, we shall need some of the results 
of Cohen [2] on subgroups of H N N groups. T o formulate these the concept of 
a cress is used: our definition is slightly less general than Cohen's. A cress for a 
subgroup H fk G, relative to Tu T_i, both containing e, is a pair ( G , C_i) of 
r ight transversals for H in G, satisfying the following conditions (7)-(9) : 

(7) for all g G G with normal form (5) where a = tu (t G T\, u G Ui) 
(i) if g G Ci then gu~l G Ci; 

(ii) if g G Ci U C_i, then ga'1 G Ci H C_i; 
(iii) if g G Ci U C_i with a = e then gx~e

n G Cen; 
(8) if Ri is the set of all g G Ci with u = e, then Ri is a complete double 

coset representat ive system for G modulo (H, Ui) (and similarly for R-i); 
(9) if D is the set of all g G Ci U C_i with a = e, then D is a complete 

double coset representat ive system modulo (H, A). 
T h e method of construction of a cress for any subgroup of G is given by 

Cohen [2]. In fact his construction yields a minimal cress, i.e. a cress such tha t 
for every d G D, d has smallest length in HdA. 

We now elaborate the par t of Cohen's subgroup theorem tha t we shall need. 
He chooses a part icular generating set for H ^ G in terms of a given cress 
(Ci, C_i) for H. Let <pi : G —» Ci and <p-i : G —> C_i, denote the coset repre
sentat ive functions for cosets Hg. For each k G Ci, a Ç 4 , write <r(&, a) = 
ka((ka)(f-i)~l. H k = dai where d G D, ax G A, then it is easy to check t h a t 
a(k, a) G dAd~xC\H. For each & G Ci define r(&) = kx((kx)<p_i)~1. T h e 
Kuros rewriting process for the elements of i 7 in terms of the elements <r(k, a) 
and r(k) is as follows. Suppose h G H has canonical form (5), and write 

(10) yt = (hxei . . . tt)(p-i, 8i = (hxei . . . tiXiei)<pi (i = 1, . . , « ) . 

T h e rewrit ten expression for h is obtained by replacing tt by 

(11) bi-itaf1 = cr(ôi_i, /*) (i = 1, . . . , n), 

and x€i by 

(12) T ^ S f " 1 (i = 1, . . . , » ) , 

and a by 5wa. These replacements leave & unchanged. We now show how (5) 
can be wri t ten as a product of certain of the a(k, a) and r(k). Firs t suppose 
ei = 1 and write y ^ i = dt û where d £ D,t £ Ti, Û £ Ui. Then 

y ^ ô r 1 = <r(ynpu e)~l ' 7*Pi * * * ^ - 1 = «KTÏPI» e ) - 1 ^ ûxbt~l = 

<r(yi<Pi, e)~l ' r(dt) (dtx)(f-iX~1ûxô f1
} 
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whence 

(13) ytxdr1 = <K7^i , e ) " 1 • r(dh) • (7(0,, i r 1 ) " 1 , 

where v = x_1wx G U-\. T h e case e* = —1 is deal t with similarly: the details 
are omit ted. 

I t follows t h a t H is generated by the a(k, a) and the r(k) (k G Ci). I t is easy 
to see t h a t in fact it suffices to include only those r{k) for which k G Ri. 
Wri te Qi for the set of all elements r(k) where k G Rit and write Q2 for the set 
of all d G D\{e\ s u c n tha t , if d ends in x - 1 then dAd~l C\ H ^ dUid~l, and 
if d ends in x then dAd~l C\ H % dU-\d~l. T h e following is immediate from 
[2, Lemmas 1, 2]. 

2.2 LEMMA. L ^ H S G = (^4, x |x£/_ ix - 1 = [/i). I f fl" is finitely generated 
then Q\ and Q2 are finite. If in addition gUig~1 C\ H is finitely generated for all 
g G G, then gAg~l C\ H is finitely generated for all g G G. Conversely if Qi and 
Q2 are finite and for all g G G, gAg~l C\ H is finitely generated, then H is finitely 
generated. 

Write R = {kx\k G Ri, r(k) ^ e\ and denote by P the set of all TVsyllables 
of elements of the set R\J Q2\J (R<p-i). 

2.3 COROLLARY. If H S G is finitely generated then P is finite. 

T h e next two lemmas are ra ther technical. 

2.4 L E M M A . Suppose H S G, H ^ A, and that we have a cress relative to 
jfi, T-ifor H in G, as defined above. Let h G H\A have normal form (5) and let 
yu ôi be defined as in (10). Then for all i, 1 ^ i' ^ n, such that ôt d A, the 
principal initial segment of 8t is an initial segment of some element of 
R^J Q2\J (R<p-i). It follows that if an initial segment d of h, ending in x±l, is its 
own representative (i.e. if d G D) then d is an initial segment of some element of 
R\J Q2\J (R<p-i). 

Proof. For 1 S i S n write ô* = diTiUi where dt G D, rt G Tu ut G Ui, and 
suppose t h a t for some part icular i, 1 ^ i ^ n, dt is not an initial segment of 
any element of R U Q2 W (R(p-i). Suppose first t h a t et = 1. As in (13), write 
yupi = dtu. By (7), (9),d = di-\ (where d0 is defined as e). Now if r(di-{t) ^ e, 
then di-itx G R, and therefore (di-itx)ip-i G R<P-i, and, by (7), (9), and since 
et = 1, (di-itx)<p-i = diCt,i for some a,\ G A, which contradic ts the assumption 
t h a t dt is no t an initial segment of any element of R VJ Q2 VJ (Rp^). Hence 
r(di-it) = e, whence dt = dt-itx. If et = —1 one obtains in a very similar way 
t h a t di-i = dttx, where (yiX~l)ipi = dju, t G T±, u G U\. W e have thus shown 
t h a t for those du 1 < i < n, which are not initial segments of any elements of 
R\J Q2\J (R(p_i), either dt = dt-itx (in the case et = 1) or d^i = dttx (in 
the case e* = — 1). Now since dn = e = d0, it is easy to see t h a t this can happen 
for no i. This completes the proof. 
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2.5 LEMMA. Let H rg G and choose a cress for H relative to Tu r_ i . Suppose 
that h G H\A has normal form tixei . . . tnx~la. Then a = U\p~lai, where U\ G Ui, 
p G P , and ax G A C\ H. 

Proof. We have 8n = (/iXei . . . 4^_1)<£i = (ha~l)çi. Thus since /*a_1 G HA, 
whose representative in the cress is e, it follows that bn = pu, say, where 
p G Ti and u G Z7i. Also <5wa G ̂ 4 Pi 77: call this element a,\. Then a = bn~

lai = 
u~lp~lai. The proof will be complete once it is proved that p G P. 

Suppose that p Q P. Then r(p) = e (note that p G Ri); that is (px)<p_i = 
£x, and, by (7), (9), yn = pxa2 where a2 G A. Thus px is the principal initial 
segment of yn (and K-i) and therefore, by Lemma 2.4, an initial segment of 
some element of R\J Q2\J R(p-\. Thus p G -P, a contradiction. Therefore 

Proof of Lemma 2.1. Suppose that A G i?V4 n a s the normal form / ix € i . . . tnx~la 
where a £ Ui, and that we have a cress for H in G relative to 7\, 7'_i. By 
Lemma 2.5, a = U\p~Ya\ where Wi Ç Z7i, £ G P\ ai G A C\ H. The element 
p-iai = {p~laip)p~l lies in the coset (AC\ p~1Hp)p~\ Since H and, for all 
g (z G, gUig~l C\ H are finitely generated, by Lemma 2.2 so is A C\ p~lHp. 
Thus since 7\ satisfies (4), there exists a finite subset Fp Ç Ui, depending on 
p and H only, such that 

(A r\ p-1Hp)p-1 ç T1Vp(p(p-1Hp)p-^r\ Ui) = TiVpiHn Ui). 

Thus for each a G -4\?7i such that x~la is the ending of some element of H, 
there is an element p G P and «i G Z7i such that a ^u1~

1(T1\{e})Vp(Hr\Ui). 
Now for a given 77, Vv depends only on p. Since P is finite (by Corollary 2.3), 
UpepVp = Vi say, is also finite. Hence the set X of all a G ̂ 4\£7i as above, is 
contained in U1(Tl\{e})V1(H C\ Ui). By condition (3), E/i(7\\{e})C 
(77\{e})F2 for some finite subset F2 C Ui. Write V = V2Vi. Then 
X Ç TiV(H C\ t/j), from which the desired result (6) follows. 

We need one final lemma. Suppose H S G and that we have constructed a 
cress for H in G relative to transversals 7\, T-\ both containing e. We wish to 
relate the property that a subgroup H ^ G is finitely generated, to the finite-
ness of the number of certain double cosets that are "double ended" in the 
following special senses. A double ended (77, [/«) double coset (e = ± 1 ) is one 
that contains at least one element ending in x~ea where a G A\U€ and another 
element ending in x~e. Also, an (H, A) double coset is called double ended if it 
contains at least one element ending in each of x and x~1. 

2.6 LEMMA (cf. [2, Lemma 1]). Let H ^ G = (A, xlxU-iX'1 = Z7i> and 
suppose R and Q2 are defined as above in terms of a cress for H in G. Then R\J Q2 

is finite if and only if there are only finitely many double ended (H, Ui) cosets, 
and the same is true of either the double ended (H, U-i) cosets or the double ended 
(77", A) cosets. 

Remark. It is plausible that this remains true when the second condition is 
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removed. A proof that this is so would correspondingly strengthen Theorems 
1.1 and 1.2. 

Proof of 2.6. Suppose there are only finitely many double ended (H, U\) 
double cosets. First we show that this implies that there are only finitely many 
elements of R U Q2 ending in x_1. In fact it suffices to prove this for Q2 since 
every element of R ends in x, by definition. Thus suppose d G Q2 ends in x~1. 
Then by definition of Q2} H C\ dAd~l % dUid'1; let a G A\Ui be such that 
dad-1 G H. Then HdUi is double ended since it contains da with ending x~la, 
and d with ending x~1. Hence there are only finitely many elements of R U Q2 

ending in x~l. Next suppose that g G RVJ Q2 has an initial segment of the form 
dtx, in normal form, where d G D, t G T\{e). In the first place, if there is an 
initial segment dtiX, t\ G Tu of some other element of R \J Q2, such that 
ti 9e t, then the double coset HdtUi is double ended since it contains an element 
ending in x_1, and also an element ending in x~lUiti~lt, for some U\ G Ui, 
which has the form x_1a, where a G A\Ui. In the second place, if d ends in 
x - 1 then HdtUi contains dt which ends in x~1t, t G T-\{e\, and an element 
ending in x~lu for some u G Ui, whence HdtUi is double ended. These two 
observations and the fact that only finitely many elements of R\J Q2 end in 
x_1, imply that there exists a finite subset Y of initial segments of elements of 
R\J Q2 and a finite number of (possibly infinite) chains of the form 

(14) e, t\Xy tixt2x, tixhxfax, . . . , 

where tt G T\ and every element in (14) is an initial segment of its successor, 
such that every element of R \J Q2 has the reduced form yz where y G Y and z 
belongs to one of the chains. (This is easiest seen by considering the graph 
whose vertices are the elements of R\J Q2\J {e}, where two vertices Vi, v2 

with l(vi) < l(y2) are joined by an edge if v2 = Vitxe (where t G Tt) for e = + 1 
or — 1.) Now if infinitely many of the elements of the chain (14) lie in R \J Q2, 
then none of them is in R, since none of the elements of R is in d while all their 
initial segments are in C1# If there are only finitely many double ended (H, U-\) 
cosets then analogously to the first part of the proof it can be shown that only 
finitely many elements of Q2 end in x. Alternatively, if there are only finitely 
many double ended (H, A) cosets then only finitely many of the elements of 
(14) are in Q2, since otherwise HgA would be double ended for all g in (14). 
This completes the proof of sufficiency. 

We now turn to the converse. Thus suppose R \J Q2 is finite. Let g G Ri be 
such that HgUi is double ended and write g = dt where t G T\ and d G D. 
There exist elements hiy h2 G H such that h^g ends in x~lu, where u G £/i, and 
h2g ends in x_1a where a G A\Ui. It is easy to verify that then either hi~l or 
h2~

x has as an initial segment the element dtx. Then either dtx G R or r{dt) = e 
in which case dtx G D. Thus in either case dt G Ci (by (7)) whence by Lemma 
2.4, dt is an initial segment of some element of R KJ Q2 KJ (Rcp-i). Since the 
latter is finite it follows that the number of double ended (H, Ui) cosets is 
finite. 
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In the same way, if dt G R-i(d Ç D , / Ç T_i) is such t ha t HdtU-i is double 
ended, then dtx~l is an initial segment of some element h of H. If dtx~l £ D 
then 6 t e - 1 is an initial segment of some element of RKJ Q2U (R<p-i) by 
Lemma 2.4. If dtx~l (? D, write {dtx~~l)<pi = d\t\U\, where d\ £ D, h £ 7 \ , 
^1 G f/i. If r(dih) y£ e, then di/ix G i?, and since HdihxU-i = HdtU-i and .R 
is finite there can be only finitely many such elements dt £ i?- i . On the other 
hand if r(dih) = e then (dihx)<p-i = d\t\X £ D; now 

(^i/ix)^_i = {(dihui)ui~lx)ip-i = (dtu2~
1)<p-i = d/^3 (by (8)) 

where ^ 3 G Z7_i, and therefore t = u% = e. Thus d/ = d, which by Lemma 2.4 
is an initial segment of some element of RKJ Q2\J (R<p-i. We have thus 
proved t ha t there are only finitely many double ended (H, U-i) cosets. 

Finally if HdA (d £ D) is double ended then it is again not difficult to show 
t h a t d is an initial segment of some element of H. By Lemma 2.4 d is then an 
initial segment of some element of R\J Q2\J (R<p-i), and since this set is 
finite the number of double ended (H, A ) cosets must also be finite. 

3. T h e finitely genera ted i n t e r s e c t i o n property . Theorem 1.2(i) follows 
immediately from Lemmas 2.2 and 2.6, and the following result. 

3.1 LEMMA. Let G = (A, x\xU-\X~1 = U\) satisfy the hypotheses of Theorem 
1.2 (i) and let Th T_i be left transversals for Ui, U-i respectively, in A satisfying 
(3) and (4). If H and K are finitely generated subgroups of G then for both 
e = + 1 and —1 each intersection of an (H, U€) coset with a (K, U€) coset 
contains only finitely many (H P K, Ue) cosets containing elements with endings 
of the form x~ea, a £ A\Ue. 

Proof. I t suffices to prove the assertion for e = + 1 (since the proof for 
e = —1 is entirely analogous). If HgUi P KgUi contains infinitely m a n y 
(H P K, Ui) cosets containing elements with endings of the form x~la, 
a G A\Ui, then it is not difficult to show tha t this implies t h a t 
g~l(HgUi P KgUi) ( = g~lHgU\ P g~lKgU\) has the same property, provided 
H C\ K ^ A. (The case H P K ^ A is easily dealt with.) T h u s it suffices to 
prove t h a t HUi P KUi cannot contain infinitely many (H P K, Ui) cosets 
with the specified form of ending (by renaming g~lHg and g~xKg if necessary). 
(This observation is due to Cohen [2].) T h u s suppose on the contrary t h a t 
HUi P KUi does contain infinitely many such cosets. T h e proof now con
tinues much as t ha t of [1, Lemma 4.1]. Le t {s\, 52, . . .} be a set of representa
tives of a countably infinite set of dist inct (H P K, Ui) cosets such t ha t for 
all i, Sf ends in X~1TI say, where rt £ T-\{e\. Wri te st = htUi = ktVi(i = 
1 , 2 , . . . ) where ht Ç H, kt £ K, uuvt G U\. Let TH and TK be left transversals 
in U\ for H P U\ and K P Ui respectively. Then as in [1, Lemma 4.1] we 
may assume u~x £ TH and vc1 £ TK, for all i. Then ht = stUi~l, kt = stVi~l 

where u~l £ TH and Vf1 £ TK and uf1 and vr1 are the respective t/i-endings 
of hi and kt. By Lemma 2.1 all bu t finitely many of the ut are equal and the 
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same is true of the vt. Hence there exists a pair j , /, j 9e /, such that Uj = uz 

and Vj = vt. But then SjSr1 = hjhr1 = kjkr1 £ H C\ K, which contradicts 
the choice of sjt Si as representatives of distinct (H P\ K, Ui) cosets. 

Remark. It is perhaps instructive to see how the above theory can be extended 
to include the groups (x, y\xykx~x — y) which Moldavanskiï [4] proved (in a 
simple, direct way) to have property (1). It follows from Lemma 2.6 that the 
assumption in Theorem 1.2 of the existence of a transversal T-\ for ZJ-i in A 
satisfying (3) and (4), can be replaced by the hypothesis that, for all finitely 
generated groups H, K of G, each intersection of an (H, A ) coset with a (K, A ) 
coset contain only finitely many double ended {H C\ K, A) cosets. With this 
altered hypothesis it is not difficult to show that if A is cyclic and A = U\r 

then G has property (1), i.e. that Moldavanskiï's groups have property (1). 

4. Subnormal subgroups. We now prove part (ii) of Theorem 1.2. The 
proof is split up into lemmas much as in [1, §5]. 

4.1 LEMMA (cf. [1, Lemma 5.1]). Let G = (A, x\xU-i%~1 = Ui) where 
Ui J* A, U-i 9e A, and let H be a finitely generated subgroup containing a sub
normal subgroup N of G such that for some integer i, N JÇ xiUiX~i. Then H has 
finite index in G if and only if, for all g G G, g~lHg C\ Ui has finite index in U\. 

(Note that the assumption on N implies that N % A.) We first prove the 
following lemma. 

4.2 LEMMA (cf. [1, Lemma 5.2]). Let G be as above (with JJ\, U-i 9e A) and 
choose left transversals 7\, TLi, containing e,for Ui, U-\ in A. If Nis a subnormal 
subgroup as above, then N contains: an element with beginning tx, t G Li\{e}, and 
ending x~la, a Ç A\Ui,m another with beginning x and ending x~lu, u G U\; and 
a third beginning in rx~l, r G T_ly and ending in xai, a\ Ç A. 

Proof. It clearly suffices to show that whenever N< K < G where K con
tains such a triple of elements and N f£ A, then N also contains such a triple. 
To prove this suppose that gi, g2, gs G K are, in order, elements of the kind 
described in the lemma. Let y Ç N\A. First suppose y begins in txe and ends 
in x~ea2, where e = ± l . I f e = — 1 then gi3>gi-1, g2yg2~1 and y lie in N and have 
the requisite properties, while if e = + 1 then the same is true of gigzygz~lg\~l, 
gigzygz^g'T1 and gzygf1. Suppose next that y begins in tx and ends in xaz. 
One of gi, g2 has beginning different from tx; without loss of generality suppose 
gi begins in tx where t ^ t. Then gi^ygi G N and has beginning of the form TX 
and ending of the form x~la, which was one of the cases first considered. Final
ly if y has beginning of the form rx~l and has ending of the form x~la then 
consider instead y~x which falls into the preceding case. 

Proof 0/4.1. We first show that Hg U\ is double ended if and only if g~lHg U\ 
is double ended. Thus suppose y, z (z HgUi have respective endings x~la, 
a G A\U\, and x~lu, u G Ui. If g G A, then g^y and g~lz lie in g~lHgUi and 
have the required endings. Suppose that g G A and first that g begins in tx* 
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where e = ± 1, / Ç 7\. If 3/ begins in rx~% then g~ly ends in x~lU\a, for some 
U\ G [7i, and similarly, if z begins in rx~~€ then g~lz has ending x~1u2j u2 G [7i. 
If y begins in rxe, then by Lemma 4.2 there is an element w G H beginning in 
tx~€ and ending in xea2. Then g_1î£ry G g~lHgU\ and has ending of the form 
x -1a, a G -4\C/i, and similarly if z begins in tx~% then g~xwz has ending of the 
same form as that of z. The proof of the converse is similar and is omitted. 

By Lemma 4.2 for every H ^ G such that H contains a subnormal sub
group not contained in A, HUi is double ended. By what we have just proved 
this implies that for such H ;g G, all (H, Ui) cosets are double ended. Thus if 
in addition H is finitely generated, then by Lemmas 2.2 and 2.6 there are only 
finitely many (H, U\) cosets in G. It follows that H has finite index in G if and 
only if (Ui : g~lHg C\ Ui) is finite for all g G G. 

Theorem 1.2 (ii) is immediate from Lemma 4.1 (with the observation that the 
case [7-i = A is easily dealt with on its own merits) and the following. 

4.3 LEMMA. Let G = (A, x\xU-iX~l = Ui) where Ui and A satisfy the hy
potheses of part (ii) of Theorem 1.2, let 7\ be a left transversal for U\ in A satis
fying (3) and (4) and let T_i be any left transversal for U-\ in A, containing e. 
Let H be a finitely generated subgroup containing a subnormal subgroup N of G, 
N % A. Then for all g G G, g~lHg C\ U\ has finite index in Ui. 

Proof. Suppose that for some g G G, g~lHg C\ Ui has infinite index in U\. 
We may suppose g = e by replacing H by g~xHg and N by g~xNg. Let W be 
a left transversal for H C\ U\ in U\. We shall show that every subnormal sub
group N, N JÇ A, has the property that for some finite subset 5 C [7i, infinitely 
many elements from the set SW lie in left cosets of H C\ U\ in U\ containing 
[7i-endings of elements of N which begin in elements of the form tx and have 
endings of the form x_1a, a $ U\. This is trivially true for G itself. Suppose that 

N = N0< Ni< . . .<Nt = G (/ > 0) 

is a shortest subnormal chain beginning with N and, as inductive hypothesis, 
that the above property is possessed by subnormal subgroups with shorter 
subnormal chains. Thus iVi is assumed to have the property. Suppose gi G Ni\A 
has the appropriate beginning and ending and has Ui-endmg u. By Lemma 4.2 
there is an element g2 G iV\̂ 4 beginning with rx~l and ending in xax. Then 
gi_1g2gi G N, has [7i-ending in V\U, where Vi is a fixed finite subset of Ui, 
since T± satisfies condition (3), and has the requisite beginning and ending. 
Thus N (and hence H) has the property that infinitely many elements from 
the set ViSW lie in left cosets of H C\ Ui in Ui, determined by [7i-endings of 
elements of H. This completes the inductive step since ViS is finite. However 
what we have proved contradicts (6) of Lemma 2.1. 
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