INCONGRUENT EMBEDDINGS OF A BOUQUET INTO SURFACES

Jin Hwan Kim and Young Kou Park

Abstract

Two 2-cell embeddings i, j of a graph G into surfaces S and \mathbb{S}^{\prime} are said to be congruent with respect to a subgroup Γ of $\operatorname{Aut}(G)$ if there are a homeomorphism $h: \mathbf{S} \rightarrow \mathbf{S}^{\prime}$ and an automorphism $\gamma \in \Gamma$ such that $h \circ i=j \circ \gamma$. In this paper, we compute the total number of congruence classes of 2 -cell embeddings of any bouquet of circles into surfaces with respect to a group consisting of graph automorphisms of a bouquet.

1. Introduction and Preliminaries

Let G be a connected graph with vertex set $V(G)$ and edge set $E(G)$, and let Aut (G) denote the automorphism group of G. Any graph G can be regarded as a topological space in the following sense: By regarding the vertices of G as 0 -cells and the edges of G as 1-cells, the graph G can be identified with a finite 1-dimensional CW-complex in the Euclidean 3 -space \mathbb{R}^{3}. Subdivision does not change the homeomorphic type of a graph as a topological space and any graph can be simple by a subdivision. The graphs G, H are homeomorphic if and only if they have respective subdivisions G^{\prime} and H^{\prime} such that G^{\prime} and H^{\prime} are isomorphic graphs. Throughout this paper, all surfaces are compact and connected 2-dimensional manifolds is without boundary.

An embedding of a graph G into a surface \mathbf{S} is a topological embedding $i: G \rightarrow \mathbf{S}$. If every component of $S-i(G)$, called a region, is homeomorphic to an open disk, then the embedding $i: G \rightarrow \mathrm{~S}$ is called a 2 -cell embedding. Every embedding treated in this paper is a 2-cell embedding. Two 2-cell embeddings $i: G \rightarrow \mathbf{S}$ and $j: G \rightarrow \mathbb{S}^{\prime}$ of a graph G into surfaces are said to be congruent with respect to a subgroup Γ of Aut (G) if there are a homeomorphism $h: \mathbb{S} \rightarrow \mathbb{S}^{\prime}$ and an automorphism $\gamma \in \Gamma$ such that $h \circ i=j \circ \gamma$. If two surfaces \mathbb{S} and \mathbb{S}^{\prime} are homeomorphic we identify \mathbf{S} with \mathbf{S}^{\prime} in this note. If two embeddings are congruent with respect to $\operatorname{Aut}(G)$, we say that they are congruent. If the surfaces are oriented and the surface homeomorphism h preserves orientations, we call it oriented congruence. Mull, Rieper and White [2] enumerated the orientable congruence classes of a graph G into oriented surfaces with respect to the full automorphism group of G. Kwak and Lee [1] gave some algebraic characterisations and formulas for enumerating the congruence classes of 2-cell embeddings of a graph G into a surface, and the congruence classes of 2 -cell embeddings of complete graphs were enumerated.

In this paper, we enumerate the number of congruence classes of 2-cell embeddings of bouquets of circles into surfaces which are orientable or nonorientable. Bouquets are those of fundamental graphs in building blocks and covering constructions in topological graph theory.

Let $\left|\mathcal{C}_{\Omega}(H)\right|$ denote the number of congruence classes of 2-cell embeddings of a graph H into surfaces with respect to a subgroup Ω of $\operatorname{Aut}(H)$. In order to calculate the number $\left|\mathcal{C}_{\Omega}(H)\right|$ easily, we shall adopt a simple graph G homeomorphic to H and consider $\left|\mathcal{C}_{\Gamma}(G)\right|$ for an appropriate subgroup Γ of $\operatorname{Aut}(G)$.

From now on, all graphs G are simple graphs and we let $N(v)$ denote the neighbourhood of a vertex $v \in V(G)$, that is, the set of all vertices adjacent to v. An embedding scheme (ρ, λ) for G consists of a rotation scheme ρ which assigns a cyclic permutation ρ_{v} on $N(v)$ to each $v \in V(G)$ and a voltage map λ which assigns a value $\lambda(e)$ in $\mathbb{Z}_{2}=\{1,-1\}$ to each $e \in E(G)$. Stahl [3] showed that every embedding scheme for a graph G determines a 2 -cell embedding of the graph into a surface, and every 2 -cell embedding of the graph G into a surface is determined by such a scheme. Kwak and Lee [1] gave the following:

Lemma 1.1. Let (ρ, λ) and (τ, μ) be two embedding schemes for a graph G with the corresponding embeddings $i: G \rightarrow \mathbf{S}$ and $j: G \rightarrow \mathbf{S}$ respectively, and let Γ be a subgroup of $\operatorname{Aut}(G)$. Then these two embeddings i, j are congruent with respect to Γ if and only if there are $\gamma \in \Gamma$ and a function $f: V(G) \rightarrow \mathbb{Z}_{2}$ such that $\tau_{\gamma(v)}=\gamma \circ\left(\rho_{v}\right)^{f(v)} \circ \gamma^{-1}$ and $\mu(\gamma(e))=f(u) \lambda(e) f(v)$ for all $e=u v \in E(G)$.

Now we introduce some notation. Suppose that any graph automorphism γ of a graph G is given. Then the subgroup $\langle\gamma\rangle$ of $\operatorname{Aut}(G)$ generated by γ acts on the vertex set $V(G)$ by $(\gamma, v) \mapsto \gamma(v)$ and on the edge set $E(G)$ of G by $(\gamma, e) \mapsto \gamma(e)$. Let V_{γ} be a complete set of orbit representatives under the action of $\langle\gamma\rangle$ on $V(G)$ and E_{γ} a complete set of orbit representatives under the action of (γ) on $E(G)$. Let $|v|$ denote the cardinality of the orbit of v under the $\langle\gamma\rangle$-action on $V(G)$.

Let $P_{(v ; \gamma)}$ denote the set of all cycle permutations σ on $N(v)$ such that

$$
\left.\left.\gamma^{|v|}\right|_{N(v)} \circ \sigma \circ \gamma^{-|v|}\right|_{N(v)}=\sigma
$$

and $I_{(v ; \gamma)}$ the set of all cycle permutations σ on $N(v)$ such that

$$
\left.\left.\gamma^{|v|}\right|_{N(v)} \circ \sigma \circ \gamma^{-|v|}\right|_{N(v)}=\sigma^{-1} .
$$

Let $\mathfrak{j}(\sigma)=\left(\mathfrak{j}_{1}, \cdots, j_{n}\right)$ denote the cycle type of a permutation σ of $\{1,2, \cdots, n\}$ where \mathfrak{j}_{k} is the number of cycles of length k in a factorisation of σ into disjoint cycles. As usual, $\phi(n)$ represents the value of a natural number n under the Euler phi-function ϕ.

According to the cycle type of $\gamma \in \operatorname{Aut}(G),\left|P_{(v ; \gamma)}\right|$ and $\left|I_{(v ; \gamma)}\right|$ are given as follows $[1,2]$, where $|X|$ denotes the cardinality of a set X.

Lemma 1.2. Let $\gamma \in \operatorname{Aut}(G), v \in V(G)$ and $|N(v)|=n$. Then

$$
\left|P_{(v ; \gamma)}\right|= \begin{cases}\phi(d)\left(\frac{n}{d}-1\right)!d^{m / d-1} & \text { if } \mathfrak{j}\left(\gamma^{|v|}| |_{N(v)}\right)=\left(0, \cdots, 0, j_{d}=\frac{n}{d}, 0, \cdots, 0\right) \\ 0 & \text { otherwise. }\end{cases}
$$

and

$$
\left|I_{(v ; \gamma)}\right|= \begin{cases}\left(\frac{n-1}{2}\right)!2^{(n-1) / 2} & \text { if } n \text { is odd and } \mathfrak{j}\left(\left.\gamma^{|v|}\right|_{N(v)}\right)=\left(1, \frac{n-1}{2}, 0, \cdots, 0\right), \\ \left(\frac{n}{2}\right)!2^{n / 2-1} & \text { if } n \text { is even and } \mathfrak{j}\left(\left.\gamma^{|v|}\right|_{N(v)}\right)=\left(0, \frac{n}{2}, 0, \cdots, 0\right), \\ \left(\frac{n-2}{2}\right)!2^{n / 2-1} & \text { if } n \text { is even and } \mathfrak{j}\left(\left.\gamma^{|v|}\right|_{N(v)}\right)=\left(2, \frac{n-2}{2}, 0, \cdots, 0\right), \\ 0 & \text { otherwise. }\end{cases}
$$

2. Enumeration theorems for the embeddings of a bouquet

For each natural number n, let B_{n} denote the bouquet of n circles, which is the graph with one vertex and n self-loops. We note that bouquets are those of fundamental graphs in building blocks and covering constructions in topological graph theory. Any connected graph can be reduced to a bouquet by contracting a spanning tree to a vertex and Cayley graphs and many other regular graphs are covering graphs of bouquets.

Clearly, when $n=1,\left|\mathcal{C}_{\operatorname{Aut}\left(B_{1}\right)}\left(B_{1}\right)\right|=\left|\mathcal{C}_{\{I\}}\left(B_{1}\right)\right|=2$ where I is the identity automorphism of B_{1}; one is the embedding of B_{1} into the sphere and the other is the embedding into the projective plane. So we assume that $n \geqslant 2$. Now, in order to enumerate the number of congruence classes of 2 -cell embeddings of B_{n}, we introduce a simple graph H_{n} which is homeomorphic to B_{n}. Let v_{0} be the vertex of B_{n} and $\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ the set of n self-loops of B_{n}. For each $i \in\{1, \cdots, n\}$, we insert two vertices v_{i} and v_{-i} in the interior of c_{i}. The resulting graph is H_{n}. For $i \in\{1, \cdots, n\}$, let e_{i} be the edge joining v_{i} to v_{-i}. Let T_{n} be the spanning tree of H_{n} with $2 n$ edges joining v_{0} to v_{j} for $j=-n, \cdots,-1,1, \cdots, n$.

B3

H_{3}

Figure 1. The graphs B_{3}, H_{3} and T_{3}.
Note that every automorphism of H_{n} fixes T_{n}. Let Λ denote the subgroup of $\operatorname{Aut}\left(H_{n}\right)$ generated by the flips of triangles in H_{n}, which is isomorphic to the direct sum of n copies of \mathbb{Z}_{2} 's and will be identified with the set of functions from $\{1, \cdots, n\}$ to \mathbb{Z}_{2} with pointwise multiplication.

Let S_{n} be the symmetric group on $\{1, \cdots, n\}$. Define an S_{n} action on Λ by $(\sigma f)(i)$ $=f\left(\sigma^{-1}(i)\right)$ for all $\sigma \in S_{n}, f \in \Lambda$ and $i \in\{1, \cdots, n\}$. The automorphism group Aut $\left(H_{n}\right)$ of H_{n} can be regarded as the semidirect product of S_{n} and Λ with respect to this action where its group operation is given by $(\varsigma, g)(\sigma, f)=\left(\varsigma \sigma,\left(\sigma^{-1} g\right) f\right)$. Moreover, Aut $\left(H_{n}\right)$ is regarded as a subgroup of the symmetric group $S_{2 n}$ on $\left\{v_{-n}, \cdots, v_{-1}, v_{1}, \cdots, v_{n}\right\}$ via

$$
(\sigma, f)\left(v_{j}\right)=v_{(j /|j|) f(|j|) \sigma(|j|)}
$$

for each $j \in\{-n, \cdots,-1,1, \cdots, n\}$.
Let $\mathcal{E}_{0}\left(H_{n}\right)$ denote the set of all embedding schemes (ρ, λ) for H_{n} with $\lambda(e)=1$ for all $e \in E\left(T_{n}\right)$.

For an embedding scheme (ρ, λ) for H_{n}, we construct an embedding scheme (ρ_{0}, λ_{0}) as follows: let $f\left(v_{0}\right)=1$ and $f\left(v_{j}\right)=\lambda\left(v_{0} v_{j}\right)$ for $j=-n, \cdots,-1,1, \cdots, n$ and define $\rho_{0}=\rho$ and $\lambda_{0}(e)=f\left(i_{e}\right) \lambda(e) f\left(t_{e}\right)$, where i_{e}, t_{e} are the vertices incident to the edge $e \in H_{n}$. Then $\left(\rho_{0}, \lambda_{0}\right) \in \mathcal{E}_{0}\left(H_{n}\right)$.

Let the group $\Gamma \times \mathbb{Z}_{2}$ act on $\mathcal{E}_{0}\left(H_{n}\right)$ by

$$
(\gamma, \alpha)(\rho, \lambda)=((\gamma, \alpha) \rho,(\gamma, \alpha) \lambda)
$$

for any $(\gamma, \alpha) \in \Gamma \times \mathbb{Z}_{2}$ and $(\rho, \lambda) \in \mathcal{E}_{0}\left(H_{n}\right)$, where

$$
\begin{aligned}
{[(\gamma, \alpha) \rho]_{v} } & =\gamma \circ\left(\rho_{\gamma^{-1}(v)}\right)^{\alpha} \circ \gamma^{-1}, \\
{[(\gamma, \alpha) \lambda](e) } & =\lambda\left(\gamma^{-1}(e)\right)
\end{aligned}
$$

for any $v \in V\left(H_{n}\right)$ and $e \in E\left(H_{n}\right)$.
Then from Lemma 1.1, we can drive the following.
Lemma 2.1. If (ρ, λ) and (τ, μ) are two embedding scheme for G with the corresponding embeddings $i: H_{n} \rightarrow \mathbf{S}$ and $j: H_{n} \rightarrow \mathbf{S}$ respectively, then these two embeddings i, j are congruent with respect to a subgroup Γ of $\operatorname{Aut}\left(H_{n}\right)$ if and only if $(\gamma, \alpha)\left(\rho_{0}, \lambda_{0}\right)=\left(\tau_{0}, \mu_{0}\right)$ for some $(\gamma, \alpha) \in \Gamma \times \mathbf{Z}_{2}$.

By using this lemma and Burnside's lemma we have the following theorem.
Theorem 2.2. Let Ω be a subgroup of $\operatorname{Aut}(G)$. Then

$$
\left|\mathcal{C}_{\Omega}\left(B_{n}\right)\right|=\left|\mathcal{C}_{\Gamma}\left(H_{n}\right)\right|=\frac{1}{2|\Gamma|} \sum_{(\gamma, \alpha) \in \Gamma \times \mathbb{Z}_{2}}|F(\gamma, \alpha)|
$$

where Γ is the semidirect product of Ω and Λ under the above action and $F(\gamma, \alpha)=$ $\left\{(\rho, \lambda) \in \mathcal{E}_{0}\left(H_{n}\right) \mid(\gamma, \alpha)(\rho, \lambda)=(\rho, \lambda)\right\}$.

Let $(\rho, \lambda) \in \mathrm{F}(\gamma, \alpha)$. We first observe that for any natural number $n, \lambda\left(\gamma^{n}(e)\right)=$ $1=\lambda(e)$ for $e \in E\left(T_{n}\right)$.

Hence λ is determined by the values of λ on $E\left(H_{n}-T_{n}\right)=\left\{e_{1}, e_{2}, \cdots, e_{n}\right\}$. Since $\lambda\left(\gamma^{n}\left(e_{i}\right)\right)=\lambda\left(e_{i}\right)$ for $e_{i} \in E\left(H_{n}-T_{n}\right), \lambda\left(e_{i}\right)=\lambda\left(e_{j}\right)$ if e_{i} and e_{j} are in the same orbit.

Hence λ is completely determined by the value $\lambda\left(e_{k}\right)$ on the orbit representatives e_{k} of the classes in $\left\{e_{1}, e_{2}, \cdots, e_{n}\right\} /\langle\gamma\rangle$.

And now observe that $\rho_{v_{j}}$ is the identity on $N\left(v_{j}\right)$ for $j=-n, \cdots,-1,1, \cdots, n$ and $\gamma^{n}\left(v_{0}\right)=v_{0}$ for any natural number n and so $\left|v_{0}\right|=1$. Thus

$$
\rho_{v_{0}}=\rho_{\gamma^{\left|v_{0}\right|}\left(v_{0}\right)}=\gamma^{\left|v_{0}\right|} \circ\left(\rho_{v_{0}}\right)^{a\left|v_{0}\right|} \circ \gamma^{-\left|v_{0}\right|}
$$

Hence ρ is determined by the value $\rho_{v_{0}}$ at v_{0}. Moreover, $\rho_{v_{0}} \in P_{\left(v_{0} ; \gamma\right)}$ if and only if $\alpha^{\left|v_{0}\right|}=1$ and $\rho_{v_{0}} \in I_{\left(v_{0} ; \gamma\right)}$ if and only if $\alpha^{\left|v_{0}\right|}=-1$. Therefore we have the following.

Theorem 2.3. Let $\gamma \in \operatorname{Aut}\left(H_{n}\right)$. Then

$$
|F(\gamma, \alpha)|=2^{\left|E_{\gamma}^{\prime}\right|}\left|P_{\left(v_{0} ; \gamma\right)}\right|\left|I_{\left(\nu_{0} ; \gamma\right)}\right|,
$$

where E_{γ}^{\prime} denotes the set of orbit representatives for (γ) acting on $E\left(H_{n}-T_{n}\right)=$ $\left\{e_{1}, e_{2}, \cdots, e_{n}\right\}$.

3. Enumerating incongruent embeddings of a bouquet

In this section, we compute the number of congruence classes of 2 -cell embeddings of a bouquet of n circles B_{n} into surfaces with respect to the full automorphism group $\operatorname{Aut}\left(B_{n}\right)$ and the trivial group $\{I\}$.

We first observe that the flip of each self-loop in B_{n} gives the identity automorphism of B_{n}, so that the automorphism group $\operatorname{Aut}\left(B_{n}\right)$ is the symmetric group on the set of n self-loops $\left\{c_{1}, \cdots, c_{n}\right\}$ of B_{n}, which corresponds to permuting the n self-loops in B_{n}. Furthermore, we see that $\left|\mathcal{C}_{\mathrm{Aut}\left(B_{n}\right)}\left(B_{n}\right)\right|=\left|\mathcal{C}_{\mathrm{Aut}\left(H_{n}\right)}\left(H_{n}\right)\right|$ and $\left|\mathcal{C}_{(I)}\left(B_{n}\right)\right|=\left|\mathcal{C}_{\Lambda}\left(H_{n}\right)\right|$.

If the cycle type of $\gamma \in \operatorname{Aut}\left(H_{n}\right)$ is not one of the types $(2, n-1,0, \cdots, 0)$, $\left(0, \cdots, 0, j_{d}=2 n / d, 0, \cdots, 0\right)$, where $d \mid 2 n$ (that is, d is a divisor of $2 n$), then $|F(\gamma, \alpha)|=0$, for any $\alpha \in \mathbb{Z}_{2}$. Hence, in order to enumerate the congruence classes of 2-cell embeddings of a bouquet of n circles B_{n} into a surface, it suffices to consider the following subsets A_{d} of $\operatorname{Aut}\left(H_{n}\right)$, where $d=0$ or $d \mid 2 n$:

$$
A_{0}=\left\{\gamma \in \operatorname{Aut}\left(H_{n}\right) \mid \mathrm{j}(\gamma)=(2, n-1,0, \cdots, 0)\right\}
$$

and

$$
A_{d}=\left\{\gamma \in \operatorname{Aut}\left(H_{n}\right) \mid \mathfrak{j}(\gamma)=\left(0, \cdots, 0, \mathfrak{j}_{d}=2 n / d, 0, \cdots, 0\right)\right\}
$$

Now, let

$$
X_{0 ; k}=\left\{\sigma \in S_{n} \mid \mathfrak{j}(\sigma)=(n-2 k, k, 0, \cdots, 0)\right\}
$$

for $0 \leqslant k \leqslant[(n-1) / 2]$,

$$
X_{d ; k}=\left\{\sigma \in S_{n} \mid \mathfrak{j}(\sigma)=\left(0, \cdots, 0, \mathfrak{j}_{d / 2}=2 n / d-2 k, 0, \cdots, 0, \mathfrak{j}_{d}=k, 0, \cdots, 0\right)\right\}
$$

for even d with $d \mid 2 n$ and $0 \leqslant k \leqslant \mid n / d]$,

$$
X_{d ;-1}=\left\{\sigma \in S_{n} \mid \mathfrak{j}(\sigma)=\left(0, \cdots, 0, \mathfrak{j}_{d}=n / d, 0, \cdots, 0\right)\right\}
$$

for odd d with $d \mid n$. Here $[a]$ is the largest integer which does not exceed the real number a.

Then every element in A_{d} can be described by an element of $X_{d ; k}$, and each element σ in $X_{d ; k}$ induces exactly m elements of A_{d}, where

$$
m= \begin{cases}2^{k}(n-2 k) & \text { if } d=0 \text { and } 0 \leqslant k \leqslant[(n-1) / 2] \\ 2^{n+k-2 n / d} & \text { if } d \text { is even with } d \mid 2 n \text { and } 0 \leqslant k \leqslant[n / d] \\ 2^{n-n / d} & \text { if } d \text { is odd with } d \mid n\end{cases}
$$

Since the number of permutations in S_{n} of cycle type $\left(j_{1}, \cdots, j_{n}\right)$ is

$$
\frac{n!}{\prod_{k=1}^{n} \mathrm{j}_{k}!} k^{\mathrm{j}_{\boldsymbol{k}}}
$$

we have

$$
\begin{aligned}
\left|A_{0}\right| & =\sum_{k=0}^{[(n-1) / 2]} \frac{n!}{(n-2 k)!2^{k} k!} 2^{k}(n-2 k) \\
& =\sum_{k=0}^{\lfloor(n-1) / 2]} \frac{n!}{(n-2 k-1)!k!} \\
\left|A_{d}\right| & =\frac{n!}{(n / d)!} d^{-n / d} 2^{n-n / d}
\end{aligned}
$$

for odd d with $d \mid 2 n$, and

$$
\begin{aligned}
\left|A_{d}\right| & =\sum_{k=0}^{[n / d]} \frac{n!}{(2 n / d-2 k)!(d / 2)^{2 n / d-2 k} k!d^{k}} 2^{n+k-2 n / d} \\
& =\sum_{k=0}^{[n / d]} \frac{n!}{(2 n / d-2 k)!k!} d^{k-2 n / d} 2^{n-k}
\end{aligned}
$$

for even d with $d \mid 2 n$.
For any $\gamma \in A_{d}$ with $d=0$ or $d \mid 2 n$, the number $\left|E_{\gamma}^{v}\right|$ is given by:

$$
\left|E_{\gamma}^{\prime}\right|= \begin{cases}n-k & \text { if } \gamma \text { is induced from an element of } X_{0 ; k} \\ \frac{2 n}{d}-k & \text { if } \gamma \text { is induced from an element of } X_{d ; k} \\ \frac{n}{d} & \text { if } \gamma \text { is induced from an element of } X_{d i-1}\end{cases}
$$

Now, using the Lemmas and Theorems from Sections 1 and 2, we calculate $\sum_{\gamma \in A_{d}}|\mathrm{~F}(\gamma, \alpha)|$ where $d=0$ or $d \mid 2 n$, and $\alpha=1$ or -1 .

If $d=0$,

$$
\begin{aligned}
\sum_{\gamma \in A_{0}}|\mathrm{~F}(\gamma, 1)| & =0 \\
\sum_{\gamma \in A_{0}}|\mathrm{~F}(\gamma,-1)| & =\sum_{k=0}^{[n-1) / 2]} \frac{n!(n-1)!}{(n-2 k-1)!k!} 2^{2 n-k-1} .
\end{aligned}
$$

If $d=1$ or $d \geqslant 3$, then clearly $\sum_{\gamma \in A_{d}}|\mathrm{~F}(\gamma,-1)|=0$.
For odd d with $d \mid 2 n$,

$$
\sum_{\gamma \in A_{d}}|F(\gamma, 1)|=\frac{n!(2 n / d-1)!}{(n / d)!} d^{n / d-1} \phi(d) 2^{n}
$$

For even d with $d \mid 2 n$,

$$
\begin{aligned}
& \sum_{\gamma \in A_{d}}|\mathrm{~F}(\gamma, 1)|=n!\left(\frac{2 n}{d}-1\right)!\phi(d) 2^{2 n / d+n} \sum_{k=0}^{[n / d]} \frac{d^{k-1}}{(2 n / d-2 k)!k!2^{2 k}}, \\
& \sum_{\gamma \in A_{2}}|\mathrm{~F}(\gamma,-1)|=(n!)^{2} 2^{2 n-1} \sum_{k=0}^{[n / 2]} \frac{1}{(n-2 k)!k!2^{k}}
\end{aligned}
$$

We summarise our discussions to get the following theorems.
Thedrem 3.1. The number of congruence classes of embeddings of a bouquet of n circles B_{n} is

$$
\begin{aligned}
\left|\mathcal{C}_{\text {Aut }\left(B_{n}\right)}\left(B_{n}\right)\right|= & \frac{1}{2} \sum_{d \mid n, ~} \frac{(2 n / d-1)!}{(n / d)!} \phi(d) d^{n / d-1} \\
& +\frac{1}{4} \sum_{d \mid n}\left(\sum_{k=0}^{[n /(2 d d)]} \frac{d^{k-1} 2^{-k}}{(n / d-2 k)!k!}\right) \phi(2 d)\left(\frac{n}{d}-1\right)!2^{n / d} \\
& +n!2^{n-2} \sum_{k=0}^{[n / 2]} \frac{1}{(n-2 k)!k!2^{k}} \\
& +(n-1)!2^{n-2} \sum_{k=0}^{[(n-1) / 2]} \frac{1}{(n-2 k-1)!k!2^{k}} .
\end{aligned}
$$

The subgroup Λ of $\operatorname{Aut}\left(H_{n}\right)$ generated by the flips of triangles in H_{n}, consists of the elements that can be induced from the identity permutation of S_{n}. If the cycle type of $\gamma \in \Lambda$ is not one of 3 types $(2 n, 0, \cdots, 0),(0, n, 0, \cdots, 0)$ or $(2, n-1,0, \cdots, 0)$, then
$|\mathrm{F}(\gamma, \alpha)|=0$ for any $\alpha \in \mathbb{Z}_{2}$. On the other hand, the numbers of elements of Λ with cycle type $(2 n, 0, \cdots, 0),(0, n, 0, \cdots, 0)$ and $(2, n-1,0, \cdots, 0)$ are 1,1 and n respectively. Since $\left|\mathcal{C}_{\{1\}}\left(B_{n}\right)\right|=\left|\mathcal{C}_{\Lambda}\left(H_{n}\right)\right|$, the following result can be derived from the previous discussion.

Theorem 3.2. The number of congruence classes of 2 -cell embeddings of a bouquet of n circles B_{n} into a surface with respect to the trivial group $\{I\}$ is

$$
\left|\mathcal{C}_{\{1\}}\left(B_{n}\right)\right|=(2 n-1)!2^{-1}+(n-1)!2^{n-2}+n!2^{n-1} .
$$

The following table 1 shows the number of congruence classes of 2-cell embeddings of B_{n} for small numbers n , as calculated from Theorem 3.1.

n	1	2	3	4	5	6	7	\cdots
$\left\|\mathcal{C}_{\mathrm{Aut}\left(B_{n}\right)}\left(B_{n}\right)\right\|$	2	6	26	173	1844	29570	628680	\cdots

Table 1.
Remark 3.3. There exist 6 non congruent 2 -cell embeddings of a bouquet of two circles with respect to $\operatorname{Aut}\left(B_{2}\right)$; one embedding into the sphere, one into the torus, two into the projective plane and two into the Klein bottle, as shown in Figure 2.

Figure 2. 6 incongruent 2-cell embeddings of B_{2}.

References

[1] J.H. Kwak and J. Lee, 'Enumeration of graph embeddings', Discrete Math. 135 (1994), 129-151.
[2] B.P. Mull, R.G. Rieper and A.T. White, 'Enumerating 2-cell embeddings of connected graphs', Proc. Amer. Soc. 103 (1988), 321-330.
[3] S. Stahl, 'Generalized embedding schemes', J. Graph Theory 2 (1978), 41-52.

Department of Mathematics Education Yeungnam University
Kyongsan 712-749
Korea
e-mail: kimjh@ynucc.yeungnam.ac.kr

Department of Mathematics Yeungnam University Kyongsan 712-749 Korea e-mail: ykpark@ynucc.yeungnam.ac.kr

