INCONGRUENT EMBEDDINGS OF A BOUQUET INTO SURFACES

JIN HWAN KIM AND YOUNG KOU PARK

Two 2-cell embeddings i, j of a graph G into surfaces S and S' are said to be congruent with respect to a subgroup Γ of $\operatorname{Aut}(G)$ if there are a homeomorphism $h: S \to S'$ and an automorphism $\gamma \in \Gamma$ such that $h \circ i = j \circ \gamma$. In this paper, we compute the total number of congruence classes of 2-cell embeddings of any bouquet of circles into surfaces with respect to a group consisting of graph automorphisms of a bouquet.

1. INTRODUCTION AND PRELIMINARIES

Let G be a connected graph with vertex set V(G) and edge set E(G), and let Aut(G) denote the automorphism group of G. Any graph G can be regarded as a topological space in the following sense: By regarding the vertices of G as 0-cells and the edges of G as 1-cells, the graph G can be identified with a finite 1-dimensional CW-complex in the Euclidean 3-space \mathbb{R}^3 . Subdivision does not change the homeomorphic type of a graph as a topological space and any graph can be simple by a subdivision. The graphs G, H are homeomorphic if and only if they have respective subdivisions G' and H' such that G' and H' are isomorphic graphs. Throughout this paper, all surfaces are compact and connected 2-dimensional manifolds is without boundary.

An embedding of a graph G into a surface S is a topological embedding $i: G \to S$. If every component of S - i(G), called a region, is homeomorphic to an open disk, then the embedding $i: G \to S$ is called a 2-cell embedding. Every embedding treated in this paper is a 2-cell embedding. Two 2-cell embeddings $i: G \to S$ and $j: G \to S'$ of a graph G into surfaces are said to be congruent with respect to a subgroup Γ of Aut(G) if there are a homeomorphism $h: S \to S'$ and an automorphism $\gamma \in \Gamma$ such that $h \circ i = j \circ \gamma$. If two surfaces S and S' are homeomorphic we identify S with S' in this note. If two embeddings are congruent with respect to Aut(G), we say that they are congruent. If the surfaces are oriented and the surface homeomorphism h preserves orientations, we call it oriented congruence. Mull, Rieper and White [2] enumerated the orientable congruence classes of a graph G into oriented surfaces with respect to the full automorphism group of G. Kwak and Lee [1] gave some algebraic characterisations and formulas for enumerating the congruence classes of 2-cell embeddings of a graph G into a surface, and the congruence classes of 2-cell embeddings of complete graphs were enumerated.

Received 4th May, 1999

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/00 \$A2.00+0.00.

In this paper, we enumerate the number of congruence classes of 2-cell embeddings of bouquets of circles into surfaces which are orientable or nonorientable. Bouquets are those of fundamental graphs in building blocks and covering constructions in topological graph theory.

Let $|\mathcal{C}_{\Omega}(H)|$ denote the number of congruence classes of 2-cell embeddings of a graph H into surfaces with respect to a subgroup Ω of Aut(H). In order to calculate the number $|\mathcal{C}_{\Omega}(H)|$ easily, we shall adopt a simple graph G homeomorphic to H and consider $|\mathcal{C}_{\Gamma}(G)|$ for an appropriate subgroup Γ of Aut(G).

From now on, all graphs G are simple graphs and we let N(v) denote the neighbourhood of a vertex $v \in V(G)$, that is, the set of all vertices adjacent to v. An embedding scheme (ρ, λ) for G consists of a rotation scheme ρ which assigns a cyclic permutation ρ_v on N(v) to each $v \in V(G)$ and a voltage map λ which assigns a value $\lambda(e)$ in $\mathbb{Z}_2 = \{1, -1\}$ to each $e \in E(G)$. Stahl [3] showed that every embedding scheme for a graph G determines a 2-cell embedding of the graph into a surface, and every 2-cell embedding of the graph G into a surface is determined by such a scheme. Kwak and Lee [1] gave the following:

LEMMA 1.1. Let (ρ, λ) and (τ, μ) be two embedding schemes for a graph G with the corresponding embeddings $i: G \to S$ and $j: G \to S$ respectively, and let Γ be a subgroup of Aut(G). Then these two embeddings i, j are congruent with respect to Γ if and only if there are $\gamma \in \Gamma$ and a function $f: V(G) \to \mathbb{Z}_2$ such that $\tau_{\gamma(v)} = \gamma \circ (\rho_v)^{f(v)} \circ \gamma^{-1}$ and $\mu(\gamma(e)) = f(u)\lambda(e)f(v)$ for all $e = uv \in E(G)$.

Now we introduce some notation. Suppose that any graph automorphism γ of a graph G is given. Then the subgroup $\langle \gamma \rangle$ of Aut(G) generated by γ acts on the vertex set V(G) by $(\gamma, v) \mapsto \gamma(v)$ and on the edge set E(G) of G by $(\gamma, e) \mapsto \gamma(e)$. Let V_{γ} be a complete set of orbit representatives under the action of $\langle \gamma \rangle$ on V(G) and E_{γ} a complete set of orbit representatives under the action of $\langle \gamma \rangle$ on E(G). Let |v| denote the cardinality of the orbit of v under the $\langle \gamma \rangle$ -action on V(G).

Let $P_{(v;\gamma)}$ denote the set of all cycle permutations σ on N(v) such that

$$\gamma^{|v|}\big|_{N(v)} \circ \sigma \circ \gamma^{-|v|}\big|_{N(v)} = \sigma$$

and $I_{(v;\gamma)}$ the set of all cycle permutations σ on N(v) such that

$$\gamma^{|v|}\big|_{N(v)} \circ \sigma \circ \gamma^{-|v|}\big|_{N(v)} = \sigma^{-1}$$

Let $j(\sigma) = (j_1, \dots, j_n)$ denote the cycle type of a permutation σ of $\{1, 2, \dots, n\}$ where j_k is the number of cycles of length k in a factorisation of σ into disjoint cycles. As usual, $\phi(n)$ represents the value of a natural number n under the Euler phi-function ϕ .

According to the cycle type of $\gamma \in \operatorname{Aut}(G)$, $|P_{(v;\gamma)}|$ and $|I_{(v;\gamma)}|$ are given as follows [1, 2], where |X| denotes the cardinality of a set X.

90

LEMMA 1.2. Let
$$\gamma \in \operatorname{Aut}(G)$$
, $v \in V(G)$ and $|N(v)| = n$. Then

$$|P_{(v;\gamma)}| = \begin{cases} \phi(d) \left(\frac{n}{d} - 1\right)! d^{n/d-1} & \text{if } j\left(\gamma^{|v|}\right|_{N(v)}\right) = (0, \cdots, 0, j_d = \frac{n}{d}, 0, \cdots, 0) \\ 0 & \text{otherwise.} \end{cases}$$

and

[3]

$$|I_{(v;\gamma)}| = \begin{cases} \left(\frac{n-1}{2}\right)! 2^{(n-1)/2} & \text{if } n \text{ is odd and } j(\gamma^{|v|}|_{N(v)}) = \left(1, \frac{n-1}{2}, 0, \cdots, 0\right), \\ \left(\frac{n}{2}\right)! 2^{n/2-1} & \text{if } n \text{ is even and } j(\gamma^{|v|}|_{N(v)}) = \left(0, \frac{n}{2}, 0, \cdots, 0\right), \\ \left(\frac{n-2}{2}\right)! 2^{n/2-1} & \text{if } n \text{ is even and } j(\gamma^{|v|}|_{N(v)}) = \left(2, \frac{n-2}{2}, 0, \cdots, 0\right), \\ 0 & \text{otherwise.} \end{cases}$$

2. Enumeration theorems for the embeddings of a bouquet

For each natural number n, let B_n denote the bouquet of n circles, which is the graph with one vertex and n self-loops. We note that bouquets are those of fundamental graphs in building blocks and covering constructions in topological graph theory. Any connected graph can be reduced to a bouquet by contracting a spanning tree to a vertex and Cayley graphs and many other regular graphs are covering graphs of bouquets.

Clearly, when n = 1, $|\mathcal{C}_{Aut(B_1)}(B_1)| = |\mathcal{C}_{\{I\}}(B_1)| = 2$ where I is the identity automorphism of B_1 ; one is the embedding of B_1 into the sphere and the other is the embedding into the projective plane. So we assume that $n \ge 2$. Now, in order to enumerate the number of congruence classes of 2-cell embeddings of B_n , we introduce a simple graph H_n which is homeomorphic to B_n . Let v_0 be the vertex of B_n and $\{c_1, c_2, ..., c_n\}$ the set of n self-loops of B_n . For each $i \in \{1, \dots, n\}$, we insert two vertices v_i and v_{-i} in the interior of c_i . The resulting graph is H_n . For $i \in \{1, \dots, n\}$, let e_i be the edge joining v_i to v_{-i} . Let T_n be the spanning tree of H_n with 2n edges joining v_0 to v_j for $j=-n,\cdots,-1,1,\cdots,n.$

Figure 1. The graphs B_3 , H_3 and T_3 .

Note that every automorphism of H_n fixes T_n . Let Λ denote the subgroup of Aut (H_n) generated by the flips of triangles in H_n , which is isomorphic to the direct sum of n copies of \mathbb{Z}_2 's and will be identified with the set of functions from $\{1, \dots, n\}$ to \mathbb{Z}_2 with pointwise multiplication.

Let S_n be the symmetric group on $\{1, \dots, n\}$. Define an S_n action on Λ by $(\sigma f)(i) = f(\sigma^{-1}(i))$ for all $\sigma \in S_n$, $f \in \Lambda$ and $i \in \{1, \dots, n\}$. The automorphism group Aut (H_n) of H_n can be regarded as the semidirect product of S_n and Λ with respect to this action where its group operation is given by $(\varsigma, g)(\sigma, f) = (\varsigma\sigma, (\sigma^{-1}g)f)$. Moreover, Aut (H_n) is regarded as a subgroup of the symmetric group S_{2n} on $\{v_{-n}, \dots, v_{-1}, v_1, \dots, v_n\}$ via

$$(\sigma, f)(v_j) = v_{(j/|j|)f(|j|)\sigma(|j|)}$$

for each $j \in \{-n, \dots, -1, 1, \dots, n\}$.

Let $\mathcal{E}_0(H_n)$ denote the set of all embedding schemes (ρ, λ) for H_n with $\lambda(e) = 1$ for all $e \in E(T_n)$.

For an embedding scheme (ρ, λ) for H_n , we construct an embedding scheme (ρ_0, λ_0) as follows: let $f(v_0) = 1$ and $f(v_j) = \lambda(v_0v_j)$ for $j = -n, \dots, -1, 1, \dots, n$ and define $\rho_0 = \rho$ and $\lambda_0(e) = f(i_e)\lambda(e)f(t_e)$, where i_e, t_e are the vertices incident to the edge $e \in H_n$. Then $(\rho_0, \lambda_0) \in \mathcal{E}_0(H_n)$.

Let the group $\Gamma \times \mathbb{Z}_2$ act on $\mathcal{E}_0(H_n)$ by

$$(\gamma, lpha)(
ho, \lambda) = ig((\gamma, lpha)
ho, (\gamma, lpha)\lambdaig)$$

for any $(\gamma, \alpha) \in \Gamma \times \mathbb{Z}_2$ and $(\rho, \lambda) \in \mathcal{E}_0(H_n)$, where

$$\begin{split} \left[(\gamma, \alpha) \rho \right]_{v} &= \gamma \circ \left(\rho_{\gamma^{-1}(v)} \right)^{\alpha} \circ \gamma^{-1}, \\ \left[(\gamma, \alpha) \lambda \right](e) &= \lambda \left(\gamma^{-1}(e) \right) \end{split}$$

for any $v \in V(H_n)$ and $e \in E(H_n)$.

Then from Lemma 1.1, we can drive the following.

LEMMA 2.1. If (ρ, λ) and (τ, μ) are two embedding scheme for G with the corresponding embeddings $i : H_n \to S$ and $j : H_n \to S$ respectively, then these two embeddings i, j are congruent with respect to a subgroup Γ of $\operatorname{Aut}(H_n)$ if and only if $(\gamma, \alpha)(\rho_0, \lambda_0) = (\tau_0, \mu_0)$ for some $(\gamma, \alpha) \in \Gamma \times \mathbb{Z}_2$.

By using this lemma and Burnside's lemma we have the following theorem.

THEOREM 2.2. Let Ω be a subgroup of Aut(G). Then

$$|\mathcal{C}_{\Omega}(B_n)| = |\mathcal{C}_{\Gamma}(H_n)| = \frac{1}{2|\Gamma|} \sum_{(\gamma,\alpha)\in\Gamma\times\mathbb{Z}_2} |F(\gamma,\alpha)|,$$

where Γ is the semidirect product of Ω and Λ under the above action and $F(\gamma, \alpha) = \{(\rho, \lambda) \in \mathcal{E}_0(H_n) \mid (\gamma, \alpha)(\rho, \lambda) = (\rho, \lambda)\}.$

Let $(\rho, \lambda) \in F(\gamma, \alpha)$. We first observe that for any natural number n, $\lambda(\gamma^n(e)) = 1 = \lambda(e)$ for $e \in E(T_n)$.

Hence λ is determined by the values of λ on $E(H_n - T_n) = \{e_1, e_2, \dots, e_n\}$. Since $\lambda(\gamma^n(e_i)) = \lambda(e_i)$ for $e_i \in E(H_n - T_n)$, $\lambda(e_i) = \lambda(e_j)$ if e_i and e_j are in the same orbit.

Hence λ is completely determined by the value $\lambda(e_k)$ on the orbit representatives e_k of the classes in $\{e_1, e_2, \dots, e_n\}/\langle \gamma \rangle$.

And now observe that ρ_{v_j} is the identity on $N(v_j)$ for $j = -n, \dots, -1, 1, \dots, n$ and $\gamma^n(v_0) = v_0$ for any natural number n and so $|v_0| = 1$. Thus

$$\rho_{v_0} = \rho_{\gamma^{|v_0|}(v_0)} = \gamma^{|v_0|} \circ (\rho_{v_0})^{\alpha^{|v_0|}} \circ \gamma^{-|v_0|}.$$

Hence ρ is determined by the value ρ_{v_0} at v_0 . Moreover, $\rho_{v_0} \in P_{(v_0;\gamma)}$ if and only if $\alpha^{|v_0|} = 1$ and $\rho_{v_0} \in I_{(v_0;\gamma)}$ if and only if $\alpha^{|v_0|} = -1$. Therefore we have the following.

THEOREM 2.3. Let $\gamma \in Aut(H_n)$. Then

$$|F(\gamma,\alpha)| = 2^{|E'_{\gamma}|} |P_{(v_0;\gamma)}| |I_{(v_0;\gamma)}|,$$

where E'_{γ} denotes the set of orbit representatives for $\langle \gamma \rangle$ acting on $E(H_n - T_n) = \{e_1, e_2, \dots, e_n\}$.

3. Enumerating incongruent embeddings of a bouquet

In this section, we compute the number of congruence classes of 2-cell embeddings of a bouquet of n circles B_n into surfaces with respect to the full automorphism group $\operatorname{Aut}(B_n)$ and the trivial group $\{I\}$.

We first observe that the flip of each self-loop in B_n gives the identity automorphism of B_n , so that the automorphism group $\operatorname{Aut}(B_n)$ is the symmetric group on the set of *n* self-loops $\{c_1, \dots, c_n\}$ of B_n , which corresponds to permuting the *n* self-loops in B_n . Furthermore, we see that $|\mathcal{C}_{\operatorname{Aut}(B_n)}(B_n)| = |\mathcal{C}_{\operatorname{Aut}(H_n)}(H_n)|$ and $|\mathcal{C}_{\{I\}}(B_n)| = |\mathcal{C}_{\Lambda}(H_n)|$.

If the cycle type of $\gamma \in \operatorname{Aut}(H_n)$ is not one of the types $(2, n - 1, 0, \dots, 0)$, $(0, \dots, 0, j_d = 2n/d, 0, \dots, 0)$, where d|2n (that is, d is a divisor of 2n), then $|F(\gamma, \alpha)| = 0$, for any $\alpha \in \mathbb{Z}_2$. Hence, in order to enumerate the congruence classes of 2-cell embeddings of a bouquet of n circles B_n into a surface, it suffices to consider the following subsets A_d of $\operatorname{Aut}(H_n)$, where d = 0 or d|2n:

$$A_0 = \left\{ \gamma \in \operatorname{Aut}(H_n) \mid \mathfrak{j}(\gamma) = (2, n-1, 0, \cdots, 0) \right\}$$

and

[5]

$$A_d = \big\{ \gamma \in \operatorname{Aut}(H_n) \mid \mathfrak{j}(\gamma) = (0, \cdots, 0, \mathfrak{j}_d = 2n/d, 0, \cdots, 0) \big\}.$$

Now, let

$$X_{0;k} = \left\{ \sigma \in S_n \mid \mathfrak{j}(\sigma) = (n-2k, k, 0, \cdots, 0) \right\}$$

for $0 \le k \le [(n-1)/2]$,

$$X_{d,k} = \{ \sigma \in S_n \mid j(\sigma) = (0, \cdots, 0, j_{d/2} = 2n/d - 2k, 0, \cdots, 0, j_d = k, 0, \cdots, 0) \}$$

[6]

for even d with d|2n and $0 \leq k \leq [n/d]$,

$$X_{d;-1} = \left\{ \sigma \in S_n \mid \mathfrak{j}(\sigma) = (0, \cdots, 0, \mathfrak{j}_d = n/d, 0, \cdots, 0) \right\}$$

for odd d with d|n. Here [a] is the largest integer which does not exceed the real number a.

Then every element in A_d can be described by an element of $X_{d;k}$, and each element σ in $X_{d;k}$ induces exactly *m* elements of A_d , where

$$m = \begin{cases} 2^k (n-2k) & \text{if } d = 0 \text{ and } 0 \leq k \leq [(n-1)/2], \\ 2^{n+k-2n/d} & \text{if } d \text{ is even with } d|2n \text{ and } 0 \leq k \leq [n/d], \\ 2^{n-n/d} & \text{if } d \text{ is odd with } d|n. \end{cases}$$

Since the number of permutations in S_n of cycle type (j_1, \dots, j_n) is

$$\frac{n!}{\prod\limits_{k=1}^{n} j_k!} k^{j_k},$$

we have

$$\begin{aligned} |A_0| &= \sum_{k=0}^{[(n-1)/2]} \frac{n!}{(n-2k)! 2^k k!} 2^k (n-2k) \\ &= \sum_{k=0}^{[(n-1)/2]} \frac{n!}{(n-2k-1)! k!}, \\ |A_d| &= \frac{n!}{(n/d)!} d^{-n/d} 2^{n-n/d} \end{aligned}$$

for odd d with d|2n, and

$$|A_d| = \sum_{k=0}^{[n/d]} \frac{n!}{(2n/d - 2k)!(d/2)^{2n/d - 2k}k!d^k} 2^{n+k-2n/d}$$
$$= \sum_{k=0}^{[n/d]} \frac{n!}{(2n/d - 2k)!k!} d^{k-2n/d} 2^{n-k}$$

for even d with d|2n.

For any $\gamma \in A_d$ with d = 0 or d|2n, the number $|E'_{\gamma}|$ is given by:

$$|E'_{\gamma}| = \begin{cases} n-k & \text{if } \gamma \text{ is induced from an element of } X_{0;k}, \\ \frac{2n}{d}-k & \text{if } \gamma \text{ is induced from an element of } X_{d;k}, \\ \frac{n}{d} & \text{if } \gamma \text{ is induced from an element of } X_{d;-1}. \end{cases}$$

Now, using the Lemmas and Theorems from Sections 1 and 2, we calculate $\sum_{\gamma \in A_d} |F(\gamma, \alpha)|$ where d = 0 or d|2n, and $\alpha = 1$ or -1.

If d = 0,

$$\sum_{\gamma \in A_0} |F(\gamma, 1)| = 0,$$

$$\sum_{\gamma \in A_0} |F(\gamma, -1)| = \sum_{k=0}^{[(n-1)/2]} \frac{n!(n-1)!}{(n-2k-1)!k!} 2^{2n-k-1}.$$

If d = 1 or $d \ge 3$, then clearly $\sum_{\gamma \in A_d} |F(\gamma, -1)| = 0$. For odd d with d|2n,

$$\sum_{\gamma \in A_d} |F(\gamma, 1)| = \frac{n!(2n/d-1)!}{(n/d)!} d^{n/d-1} \phi(d) 2^n.$$

For even d with d|2n,

$$\begin{split} \sum_{\gamma \in A_d} \left| \mathrm{F}(\gamma, 1) \right| &= n! (\frac{2n}{d} - 1)! \phi(d) 2^{2n/d + n} \sum_{k=0}^{\lfloor n/d \rfloor} \frac{d^{k-1}}{(2n/d - 2k)! k! 2^{2k}} \\ \sum_{\gamma \in A_2} \left| \mathrm{F}(\gamma, -1) \right| &= (n!)^2 2^{2n-1} \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{1}{(n-2k)! k! 2^k}. \end{split}$$

We summarise our discussions to get the following theorems.

THEOREM 3.1. The number of congruence classes of embeddings of a bouquet of n circles B_n is

$$\begin{aligned} \left| \mathcal{C}_{\operatorname{Aut}(B_{n})}(B_{n}) \right| &= \frac{1}{2} \sum_{d|n, d=odd} \frac{(2n/d-1)!}{(n/d)!} \phi(d) d^{n/d-1} \\ &+ \frac{1}{4} \sum_{d|n} \left(\sum_{k=0}^{[n/(2d)]} \frac{d^{k-1}2^{-k}}{(n/d-2k)!k!} \right) \phi(2d) (\frac{n}{d}-1)! 2^{n/d} \\ &+ n! 2^{n-2} \sum_{k=0}^{[n/2]} \frac{1}{(n-2k)!k! 2^{k}} \\ &+ (n-1)! 2^{n-2} \sum_{k=0}^{[(n-1)/2]} \frac{1}{(n-2k-1)!k! 2^{k}}. \end{aligned}$$

The subgroup Λ of Aut (H_n) generated by the flips of triangles in H_n , consists of the elements that can be induced from the identity permutation of S_n . If the cycle type of $\gamma \in \Lambda$ is not one of 3 types $(2n, 0, \dots, 0)$, $(0, n, 0, \dots, 0)$ or $(2, n - 1, 0, \dots, 0)$, then

[7]

 $|F(\gamma, \alpha)| = 0$ for any $\alpha \in \mathbb{Z}_2$. On the other hand, the numbers of elements of Λ with cycle type $(2n, 0, \dots, 0)$, $(0, n, 0, \dots, 0)$ and $(2, n-1, 0, \dots, 0)$ are 1, 1 and *n* respectively. Since $|C_{\{I\}}(B_n)| = |C_{\Lambda}(H_n)|$, the following result can be derived from the previous discussion.

THEOREM 3.2. The number of congruence classes of 2-cell embeddings of a bouquet of n circles B_n into a surface with respect to the trivial group $\{I\}$ is

$$\left|\mathcal{C}_{\{I\}}(B_n)\right| = (2n-1)! \, 2^{-1} + (n-1)! \, 2^{n-2} + n! \, 2^{n-1}.$$

The following table 1 shows the number of congruence classes of 2-cell embeddings of B_n for small numbers n, as calculated from Theorem 3.1.

n	1	2	3	4	5	6	7	•••
$ \mathcal{C}_{\operatorname{Aut}(B_n)}(B_n) $	2	6	26	173	1844	29570	628680	•••
				Table	1.			

REMARK 3.3. There exist 6 non congruent 2-cell embeddings of a bouquet of two circles with respect to $Aut(B_2)$; one embedding into the sphere, one into the torus, two into the projective plane and two into the Klein bottle, as shown in Figure 2.

Figure 2. 6 incongruent 2-cell embeddings of B_2 .

References

- J.H. Kwak and J. Lee, 'Enumeration of graph embeddings', Discrete Math. 135 (1994), 129-151.
- [2] B.P. Mull, R.G. Rieper and A.T. White, 'Enumerating 2-cell embeddings of connected graphs', Proc. Amer. Soc. 103 (1988), 321-330.
- [3] S. Stahl, 'Generalized embedding schemes', J. Graph Theory 2 (1978), 41-52.

Department of Mathematics Education	Department of Mathematics				
Yeungnam University	Yeungnam University				
Kyongsan 712-749	Kyongsan 712-749				
Korea	Korea				
e-mail: kimjh@ynucc.yeungnam.ac.kr	e-mail: ykpark@ynucc.yeungnam.ac.kr				