A Remark on Certain Integral Operators of Fractional Type

Pablo Alejandro Rocha

Abstract. For $m, n \in \mathbb{N}, 1<m \leq n$, we write $n=n_{1}+\cdots+n_{m}$ where $\left\{n_{1}, \ldots, n_{m}\right\} \subset \mathbb{N}$. Let A_{1}, \ldots, A_{m} be $n \times n$ singular real matrices such that

$$
{\underset{i=1}{m}}_{\oplus}^{\bigcap} \bigcap_{j \neq i \leq m} \mathcal{N}_{j}=\mathbb{R}^{n}
$$

where $\mathcal{N}_{j}=\left\{x: A_{j} x=0\right\}, \operatorname{dim}\left(\mathcal{N}_{j}\right)=n-n_{j}$, and $A_{1}+\cdots+A_{m}$ is invertible. In this paper we study integral operators of the form

$$
T_{r} f(x)=\int_{\mathbb{R}^{n}}\left|x-A_{1} y\right|^{-n_{1}+\alpha_{1}} \cdots\left|x-A_{m} y\right|^{-n_{m}+\alpha_{m}} f(y) d y
$$

$n_{1}+\cdots+n_{m}=n, \frac{\alpha_{1}}{n_{1}}=\cdots=\frac{\alpha_{m}}{n_{m}}=r, 0<r<1$, and the matrices A_{i} 's are as above. We obtain the $H^{p}\left(\mathbb{R}^{n}\right)-L^{q}\left(\mathbb{R}^{n}\right)$ boundedness of T_{r} for $0<p<\frac{1}{r}$ and $\frac{1}{q}=\frac{1}{p}-r$.

1 Introduction

For $0 \leq \alpha<n$ and $m>1,(m \in \mathbb{N})$, let $T_{\alpha, m}$ be the integral operator defined by

$$
\begin{equation*}
T_{\alpha, m} f(x)=\int_{\mathbb{R}^{n}}\left|x-A_{1} y\right|^{-\alpha_{1}} \cdots\left|x-A_{m} y\right|^{-\alpha_{m}} f(y) d y \tag{1.1}
\end{equation*}
$$

where $\alpha_{1}, \ldots, \alpha_{m}$ are positive constants such that $\alpha_{1}+\cdots+\alpha_{m}=\alpha-n$, and A_{1}, \ldots, A_{m} are $n \times n$ invertible matrices such that $A_{i} \neq A_{j}$ if $i \neq j$. We observe that for the case $\alpha>0, m=1$, and $A_{1}=I, T_{\alpha, 1}$ is the Riesz potential I_{α}. Thus for $0<\alpha<n$, the operator $T_{\alpha, m}$ is a kind of generalization of the Riesz potential. The case $\alpha=0$ and $m>1$ was studied under the additional assumption that $A_{i}-A_{j}$ are invertible if $i \neq j$. The behavior of this class of operators and their generalizations on the spaces of functions $L^{p}\left(\mathbb{R}^{n}\right), L^{p}(w), H^{p}\left(\mathbb{R}^{n}\right)$, and $H_{<\infty}^{p}\left(w^{p}\right)$ was studied in $[1,2,4,5,7,8]$.

If $0<\alpha<n$ and $m>1$, then the operator $T_{\alpha, m}$ has the same behavior as the Riesz potential on $L^{p}\left(\mathbb{R}^{n}\right)$. Indeed

$$
\left|T_{\alpha, m} f(x)\right| \leq C \sum_{j=1}^{m} \int_{\mathbb{R}^{n}}\left|A_{j}^{-1} x-y\right|^{\alpha-n}|f(y)| d y=C \sum_{j=1}^{m} I_{\alpha}(|f|)\left(A_{j}^{-1} x\right),
$$

for all $x \in \mathbb{R}^{n}$. This pointwise inequality implies that $T_{\alpha, m}$ is a bounded operator from $L^{p}\left(\mathbb{R}^{n}\right)$ into $L^{q}\left(\mathbb{R}^{n}\right)$ for $1<p<\frac{n}{\alpha}$ and $\frac{1}{q}=\frac{1}{p}-\frac{\alpha}{n}$, and it is of type weak $(1, n / n-\alpha)$.

It is well known that the Riesz potential I_{α} is bounded from $H^{p}\left(\mathbb{R}^{n}\right)$ into $H^{q}\left(\mathbb{R}^{n}\right)$ for $0<p \leq 1$ and $\frac{1}{q}=\frac{1}{p}-\frac{\alpha}{n}$ (see [3,11]). In [8], the author jointly with M. Urciuolo

[^0]proved the $H^{p}\left(\mathbb{R}^{n}\right)-L^{q}\left(\mathbb{R}^{n}\right)$ boundedness of the operator $T_{\alpha, m}$ and we also showed that the $H^{p}(\mathbb{R})-H^{q}(\mathbb{R})$ boundedness does not hold for $0<p \leq \frac{1}{1+\alpha}, \frac{1}{q}=\frac{1}{p}-\alpha$ and $T_{\alpha, m}$ with $0 \leq \alpha<1, m=2, A_{1}=1$, and $A_{2}=-1$. This is a significant difference with respect to the case $0<\alpha<1, n=m=1$, and $A_{1}=1$.

In this note we will prove that if we consider certain singular matrices in (1.1), then such an operator is still bounded from H^{p} into L^{q}. More precisely, for $m, n \in \mathbb{N}$, $1<m \leq n$, we write $n=n_{1}+\cdots+n_{m}$, where $\left\{n_{1}, \ldots, n_{m}\right\} \subset \mathbb{N}$. We also consider $n \times n$ singular real matrices A_{1}, \ldots, A_{m} such that $\bigoplus_{i=1}^{m} \bigcap_{1 \leq j \neq i \leq m} \mathcal{N}_{j}=\mathbb{R}^{n}$, where $\mathcal{N}_{j}=$ $\left\{x: A_{j} x=0\right\}, \operatorname{dim}\left(\mathcal{N}_{j}\right)=n-n_{j}, A_{1}+\cdots+A_{m}$ is invertible. Given $0<r<1$ and n_{1}, \ldots, n_{m} such that $n_{1}+\cdots+n_{m}=n$, let $\alpha_{1}, \ldots, \alpha_{m}$ be positive constants such that $\frac{\alpha_{1}}{n_{1}}=\cdots=\frac{\alpha_{m}}{n_{m}}=r$. For such parameters we define the integral operator T_{r} by

$$
\begin{equation*}
T_{r} f(x)=\int_{\mathbb{R}^{n}}\left|x-A_{1} y\right|^{-n_{1}+\alpha_{1}} \cdots\left|x-A_{m} y\right|^{-n_{m}+\alpha_{m}} f(y) d y \tag{1.2}
\end{equation*}
$$

where the matrices A_{i} are as above.
We observe that the operator defined in (1.2) can be written as in (1.1), taking the matrices A_{i} there to be singular. In fact, $T_{r}=T_{\beta, m}$ with $\beta_{i}=n_{i}-\alpha_{i}$ for each $i=$ $1,2, \ldots, m$ and $\beta=n r$.

Our main result is the following theorem.
Theorem 1.1 Let T_{r} be the integral operator defined in (1.2). If $0<r<1,0<p<\frac{1}{r}$, and $\frac{1}{q}=\frac{1}{p}-r$, then T_{r} can be extended to an $H^{p}\left(\mathbb{R}^{n}\right)-L^{q}\left(\mathbb{R}^{n}\right)$ bounded operator.

In Section 2 we state two auxiliary lemmas to get the main result in Section 3. We conclude this note with an example in Section 4.

Throughout this paper, c will denote a positive constant, not necessarily the same at each occurrence. The symbol $A \lesssim B$ stands for the inequality $A \leq c B$ for some constant c.

2 Preliminary Results

Let K be a kernel in $\mathbb{R}^{n} \times \mathbb{R}^{n}$. We formally define the integral operator T_{K} by $T_{K} f(x)=$ $\int_{\mathbb{R}^{n}} K(x, y) f(y) d y$.

We start with the following lemma.
Lemma 2.1 Let $n, m \in \mathbb{N}$, with $1<m \leq n$, and let n_{1}, \ldots, n_{m} be natural numbers such that $n_{1}+\cdots+n_{m}=n$. For each $i=1, \ldots$, m let K_{i} be non-negative kernels in $\mathbb{R}^{n_{i}} \times \mathbb{R}^{n_{i}}$ such that the operator $T_{K_{i}}$ is bounded from $L^{p}\left(\mathbb{R}^{n_{i}}\right)$ into $L^{q}\left(\mathbb{R}^{n_{i}}\right)$ with $1<p \leq q<\infty$. Then the operator $T_{K_{1} \otimes \cdots \otimes K_{m}}$ is bounded from $L^{p}\left(\mathbb{R}^{n}\right)$ into $L^{q}\left(\mathbb{R}^{n}\right)$.

Proof Since $\mathbb{R}^{n}=\mathbb{R}^{n_{1}} \times \cdots \times \mathbb{R}^{n_{m}}$, let $x=\left(x^{1}, \ldots, x^{m}\right) \in \mathbb{R}^{n_{1}} \times \cdots \times \mathbb{R}^{n_{m}}$. Now the operator $T_{K_{1} \otimes \cdots \otimes K_{m}}$ is given by

$$
T_{K_{1} \otimes \cdots \otimes K_{m}} f(x)=\int_{\mathbb{R}^{n_{1} \times \cdots \times \mathbb{R}^{n_{m}}}} K_{1}\left(x^{1}, y^{1}\right) \cdots K_{m}\left(x^{m}, y^{m}\right) f\left(y^{1}, \ldots, y^{m}\right) d y^{1} \cdots d y^{m}
$$

Using that the kernels K_{i} define bounded operators for $1 \leq i \leq m$, the lemma follows from an iterative argument and Minkowski's inequality for integrals.

Lemma 2.2 Let $m, n \in \mathbb{N}$, with $1<m \leq n$, and let n_{1}, \ldots, n_{m} be natural numbers such that $n_{1}+\cdots+n_{m}=n$. If A_{1}, \ldots, A_{m} are $n \times n$ singular real matrices such that $\oplus_{i=1}^{m} \cap_{1 \leq j \neq i \leq m} \mathcal{N}_{j}=\mathbb{R}^{n}$, where $\mathcal{N}_{j}=\left\{x: A_{j} x=0\right\}, \operatorname{dim}\left(\mathcal{N}_{j}\right)=n-n_{j}$, and $A_{1}+\cdots+A_{m}$ is invertible, then there exist two $n \times n$ invertible matrices B and C such that $B^{-1} A_{j} C$ is the canonical projection from \mathbb{R}^{n} on $\{0\} \times \cdots \times \mathbb{R}^{n_{j}} \times \cdots \times\{0\}$ for each $j=1, \ldots, m$.

Proof It is easy to check that

$$
\bigoplus_{i=1}^{m} \bigcap_{1 \leq j \neq i \leq m} \mathcal{N}_{j}=\mathbb{R}^{n} \Longrightarrow \underset{1 \leq i \neq k \leq m}{\bigoplus} \bigcap_{1 \leq j \neq i \leq m} \mathcal{N}_{j}=\mathcal{N}_{k}
$$

So

$$
\begin{equation*}
A_{k}\left(\bigcap_{1 \leq j \neq k \leq m} \mathcal{N}_{j}\right)=\mathcal{R}\left(A_{k}\right), \quad k=1, \ldots, m \tag{2.1}
\end{equation*}
$$

Since $\operatorname{dim}\left(\mathcal{N}_{k}\right)=n-n_{k}, \operatorname{dim}\left(\bigcap_{1 \leq j \neq k \leq m} \mathcal{N}_{j}\right)=\operatorname{dim}\left(\mathcal{R}\left(A_{k}\right)\right)=n_{k}$. Let $\left\{\gamma_{1}^{k}, \ldots, \gamma_{n_{k}}^{k}\right\}$ be a basis of $\bigcap_{1 \leq j \neq k \leq m} \mathcal{N}_{j}$. Thus $\left\{\gamma_{1}^{1}, \ldots, \gamma_{n_{1}}^{1}, \ldots, \gamma_{1}^{m}, \ldots, \gamma_{n_{m}}^{m}\right\}$ is a basis for \mathbb{R}^{n}. Let C be the $n \times n$ matrix whose columns are the elements of the above basis. Since $A_{1}+\cdots+A_{m}$ is invertible, we have that $B=\left(A_{1}+\cdots+A_{m}\right) C$ is invertible. So (2.1) gives that $B^{-1} A_{j} C$ is the canonical projection from \mathbb{R}^{n} on $\{0\} \times \cdots \times \mathbb{R}^{n_{j}} \times \cdots \times\{0\}$ for each $j=1, \ldots, m$.

3 The Main Result

Proof of Theorem 1.1 We begin by obtaining the $L^{p}-L^{q}$ boundedness of the operator T_{r} for $1<p<\frac{1}{r}$ and $\frac{1}{q}=\frac{1}{p}-r$, and then with this result we will prove the $H^{p}-L^{q}$ boundedness of T_{r} for $0<p \leq 1$ and $\frac{1}{q}=\frac{1}{p}-r$.
$L^{p}-L^{q}$ boundedness. If A is an $n \times n$ invertible matrix, we put $f_{A}(x)=f\left(A^{-1} x\right)$. Let B and C be the matrices give by Lemma 2.2. Then

$$
\begin{aligned}
& {\left[T_{r}\left(f_{C}\right)\right]_{B^{-1}}(x)} \\
& \quad=\int_{\mathbb{R}^{n}}\left|B x-A_{1} y\right|^{-n_{1}+\alpha_{1}} \cdots\left|B x-A_{m} y\right|^{-n_{m}+\alpha_{m}} f\left(C^{-1} y\right) d y \\
& \quad=|\operatorname{det}(C)| \int_{\mathbb{R}^{n}}\left|B\left(x-B^{-1} A_{1} C y\right)\right|^{-n_{1}+\alpha_{1}} \cdots\left|B\left(x-B^{-1} A_{m} C y\right)\right|^{-n_{m}+\alpha_{m}} f(y) d y
\end{aligned}
$$

Since B is invertible, there exists a positive constant c such that $c|x| \leq|B x|$ for all $x \in \mathbb{R}^{n}$. Thus

$$
\begin{aligned}
& \left|\left[T_{r}\left(f_{C}\right)\right]_{B^{-1}}(x)\right| \\
& \quad \lesssim \int_{\mathbb{R}^{n}}\left|x-B^{-1} A_{1} C y\right|^{-n_{1}+\alpha_{1}} \cdots\left|x-B^{-1} A_{m} C y\right|^{-n_{m}+\alpha_{m}}|f(y)| d y \\
& \quad \lesssim \int_{\mathbb{R}^{n_{1} \times \cdots \times \mathbb{R}^{n_{m}}}}\left|x^{1}-y^{1}\right|^{-n_{1}+\alpha_{1}} \cdots\left|x^{m}-y^{m}\right|^{-n_{m}+\alpha_{m}}\left|f\left(y^{1}, \ldots, y^{m}\right)\right| d y^{1} \ldots d y^{m} .
\end{aligned}
$$

The second inequality follows from Lemma 2.2 and from that $\left|x^{j}-y^{j}\right| \leq\left|x-P_{j} y\right|$, where $P_{j}=B^{-1} A_{j} C$ is the canonical projection from \mathbb{R}^{n} on $\{0\} \times \cdots \times \mathbb{R}^{n_{j}} \times \cdots \times\{0\}$. Since $\gamma\left(\alpha_{j}\right)^{-1}\left|x^{j}-y^{j}\right|^{-n_{j}+\alpha_{j}}$, for an appropriate constant $\gamma\left(\alpha_{j}\right)$ (see [9, p. 117]), is the kernel of the Riesz potential on $\mathbb{R}^{n_{j}}$, then [9, Theorem 1] and Lemma 2.1 give the $L^{p}-L^{q}$ boundedness of the operator T_{r} for $1<p<\frac{1}{r}$ and $\frac{1}{q}=\frac{1}{p}-r$.
$H^{p}-L^{q}$ boundedness. Let $0<p \leq 1$. We recall that a p-atom is a measurable function a supported on a ball B of \mathbb{R}^{n} satisfying $\|a\|_{\infty} \leq|B|^{-1 / p}$ and $\int y^{\beta} a(y) d y=0$ for every multiindex β with $|\beta| \leq\left\lfloor n\left(p^{-1}-1\right)\right\rfloor$, $\lfloor\cdot\rfloor$ denotes the integer part).

Let $0<r<1,0<p \leq 1<p_{0}<\frac{1}{r}$, and $\frac{1}{q}=\frac{1}{p}-r$. Given $f \in H^{p}\left(\mathbb{R}^{n}\right) \cap L^{p_{0}}\left(\mathbb{R}^{n}\right)$, from [10, Theorem 2, p.107], we have that there exists a sequence of real numbers $\left\{\lambda_{j}\right\}_{j=1}^{\infty}$, a sequence of balls $B_{j}=B\left(z_{j}, \delta_{j}\right)$ centered at z_{j} with radius δ_{j} and p-atoms a_{j} supported on B_{j} satisfying

$$
\begin{equation*}
\sum_{j=1}^{\infty}\left|\lambda_{j}\right|^{p} \lesssim\|f\|_{H^{p}}^{p} \tag{3.1}
\end{equation*}
$$

such that f can be decomposed as $f=\sum_{j=1}^{\infty} \lambda_{j} a_{j}$, where the convergence is in H^{p} and $L^{p_{0}}$ (for the convergence in $L^{p_{0}}$, see [6, Theorem 5]). So the $H^{p}-L^{q}$ boundedness of T_{r} will be proved if we show that there exists $c>0$ such that

$$
\begin{equation*}
\left\|T_{r} a_{j}\right\|_{L^{q}} \leq c \tag{3.2}
\end{equation*}
$$

with c independent of the p-atom a_{j}. Indeed, since $f=\sum_{j=1}^{\infty} \lambda_{j} a_{j}$ in $L^{p_{0}}$ and T_{r} is an $L^{p_{0}}-L^{\frac{p_{0}}{1-r p_{0}}}$ bounded operator, we have that $\left|T_{r} f(x)\right| \leq \sum_{j=1}^{\infty}\left|\lambda_{j}\right|\left|T_{r} a_{j}(x)\right|$ for almost all x; this pointwise inequality, the inequality in (3.2), together with the inequality

$$
\left(\sum_{j=1}^{\infty}\left|\lambda_{j}\right|^{\min \{1, q\}}\right)^{\frac{1}{\min \{1, q\}}} \leq\left(\sum_{j=1}^{\infty}\left|\lambda_{j}\right|^{p}\right)^{\frac{1}{p}}
$$

and (3.1) allow us to conclude that $\left\|T_{r} f\right\|_{q} \leq c\|f\|_{H^{p}}$, for all $f \in H^{p}\left(\mathbb{R}^{n}\right) \cap L^{p_{0}}\left(\mathbb{R}^{n}\right)$. So the theorem follows from the density of $H^{p}\left(\mathbb{R}^{n}\right) \cap L^{p_{0}}\left(\mathbb{R}^{n}\right)$ in $H^{p}\left(\mathbb{R}^{n}\right)$.

We will prove the estimate in (3.2). We define $D=\max _{1 \leq i \leq m} \max _{|y|=1}\left|A_{i}(y)\right|$. Let a_{j} be a p-atom supported on a ball $B_{j}=B\left(z_{j}, \delta_{j}\right)$, and for each $1 \leq i \leq m$ let $B_{j i}^{*}=B\left(A_{i} z_{j}, 4 D \delta_{j}\right)$. Since T_{r} is bounded from $L^{p_{0}}\left(\mathbb{R}^{n}\right)$ into $L^{q_{0}}\left(\mathbb{R}^{n}\right)$ for $1<p_{0}<\frac{1}{r}$ and $\frac{1}{q_{0}}=\frac{1}{p_{0}}-r$, the Hölder inequality gives

$$
\begin{align*}
\int_{\cup_{1 \leq i \leq m} B_{j i}^{*}}\left|T_{r} a_{j}(x)\right|^{q} d x & \leq \sum_{1 \leq i \leq m} \int_{B_{j i}^{*}}\left|T_{r} a_{j}(x)\right|^{q} d x \tag{3.3}\\
& \leq c \sum_{1 \leq i \leq m}\left|B_{j i}^{*}\right|^{1-\frac{q}{q_{0}}}\left\|T_{r} a_{j}\right\|_{q_{0}}^{q} \leq c \delta_{j}^{n-\frac{n q}{q_{0}}}\left\|a_{j}\right\|_{p_{0}}^{q} \\
& \leq c \delta_{j}^{n-\frac{n q}{q_{0}}}\left(\int_{B_{j}}\left|a_{j}\right|^{p_{0}}\right)^{\frac{q}{p_{0}}} \leq c \delta_{j}^{n-\frac{n q}{q_{0}}} \delta_{j}^{-\frac{n q}{p}} \delta_{j}^{\frac{n q}{p_{0}}}=c .
\end{align*}
$$

We denote $k(x, y)=\left|x-A_{1} y\right|^{-n_{1}+\alpha_{1}} \cdots\left|x-A_{m} y\right|^{-n_{m}+\alpha_{m}}$, and we put $N-1=$ $\left\lfloor n\left(p^{-1}-1\right)\right\rfloor$. In view of the moment condition of a_{j} we have, for $x \in \mathbb{R}^{n} \backslash\left(\cup_{i=1}^{m} B_{j i}^{*}\right)$, that

$$
T_{r} a_{j}(x)=\int_{B_{j}} k(x, y) a_{j}(y) d y=\int_{B_{j}}\left(k(x, y)-q_{N, j}(x, y)\right) a_{j}(y) d y
$$

where $q_{N, j}$ is the degree $N-1$ Taylor polynomial of the function $y \rightarrow k(x, y)$ expanded around z_{j}. By the standard estimate of the remainder term in the Taylor expansion,
there exists ξ between y and z_{j} such that

$$
\begin{aligned}
\left|k(x, y)-q_{N, j}(x, y)\right| & \lesssim\left|y-z_{j}\right|^{N} \sum_{k_{1}+\cdots+k_{n}=N}\left|\frac{\partial^{N}}{\partial y_{1}^{k_{1}} \cdots \partial y_{n}^{k_{n}}} k(x, \xi)\right| \\
& \lesssim\left|y-z_{j}\right|^{N}\left(\prod_{i=1}^{m}\left|x-A_{i} \xi\right|^{-n_{i}+\alpha_{i}}\right)\left(\sum_{l=1}^{m}\left|x-A_{l} \xi\right|^{-1}\right)^{N} .
\end{aligned}
$$

Now we decompose the set $R_{j}:=\mathbb{R}^{n} \backslash\left(\bigcup_{i=1}^{m} B_{j i}^{*}\right)$ by $R_{j}=\bigcup_{k=1}^{m} R_{j k}$ where

$$
R_{j k}=\left\{x \in R_{j}:\left|x-A_{k} z_{j}\right| \leq\left|x-A_{i} z_{j}\right| \text { for all } i \neq k\right\}
$$

If $x \in R_{j}$, then $\left|x-A_{i} z_{j}\right| \geq 4 D \delta_{j}$, for all $i=1,2, \ldots, m$. Since $\xi \in B_{j}$, it follows that $\left|A_{i} z_{j}-A_{i} \xi\right| \leq D \delta_{j} \leq \frac{1}{4}\left|x-A_{i} z_{j}\right|$, so

$$
\left|x-A_{i} \xi\right|=\left|x-A_{i} z_{j}+A_{i} z_{j}-A_{i} \xi\right| \geq\left|x-A_{i} z_{j}\right|-\left|A_{i} z_{j}-A_{i} \xi\right| \geq \frac{3}{4}\left|x-A_{i} z_{j}\right|
$$

If $x \in R_{j}$, then $x \in R_{j k}$ for some k. Since $\sum_{i=1}^{m}\left(-n_{i}+\alpha_{i}\right)=-n(1-r)$, we obtain

$$
\begin{aligned}
\left|k(x, y)-q_{N, j}(x, y)\right| & \lesssim\left|y-z_{j}\right|^{N}\left(\prod_{i=1}^{m}\left|x-A_{i} z_{j}\right|^{-n_{i}+\alpha_{i}}\right)\left(\sum_{l=1}^{m}\left|x-A_{l} z_{j}\right|^{-1}\right)^{N} \\
& \lesssim\left|y-z_{j}\right|^{N}\left|x-A_{k} z_{j}\right|^{-n(1-r)-N},
\end{aligned}
$$

if $x \in R_{j k}$ and $y \in B_{j}$. This inequality gives

$$
\begin{array}{rl}
\int_{R_{j}} \mid \int_{B_{j}} & \left.k(x, y) a_{j}(y) d y\right|^{q} d x \tag{3.4}\\
& =\int_{R_{j}}\left|\int_{B_{j}}\left[k(x, y)-q_{N, j}(x, y)\right] a_{j}(y) d y\right|^{q} d x \\
& \lesssim \sum_{k=1}^{m} \int_{R_{j k}}\left(\int_{B_{j}}\left|y-z_{j}\right|^{N}\left|x-A_{k} z_{j}\right|^{-n(1-r)-N}\left|a_{j}(y)\right| d y\right)^{q} d x \\
& \lesssim\left(\int_{B_{j}}\left|y-z_{j}\right|^{N}\left|a_{j}(y)\right| d y\right)^{q} \sum_{k=1}^{m} \int_{\left(B_{j k}^{*}\right)^{c}}\left|x-A_{k} z_{j}\right|^{-n(1-r) q-N q} d x \\
& \lesssim \delta_{j}^{q N-n \frac{q}{p}+n q} \int_{4 D \delta_{j}}^{\infty} t^{-q(n(1-r)+N)+n-1} d t \leq c
\end{array}
$$

with c independent of the p-atom a_{j}, since $-q(n(1-r)+N)+n<0$. Finally $\mathbb{R}^{n}=$ $\bigcup_{i=1}^{m} B_{j i}^{*} \cup R_{j}$, so the inequality in (3.2) follows from (3.3) and (3.4).

4 An Example

For $n=m=3, n_{1}=n_{2}=n_{3}=1$, we consider the following 3×3 singular matrices

$$
A_{1}=\left(\begin{array}{rrr}
4 & 4 & -1 \\
0 & 0 & 0 \\
-4 & -4 & 1
\end{array}\right), \quad A_{2}=\left(\begin{array}{rrr}
1 & -1 & 0 \\
-2 & 2 & 0 \\
0 & 0 & 0
\end{array}\right), \quad A_{1}=\left(\begin{array}{rrr}
1 & 0 & -1 \\
-3 & 0 & 3 \\
-1 & 0 & 1
\end{array}\right) .
$$

It is clear that

$$
A_{1}+A_{2}+A_{3}=\left(\begin{array}{rrr}
6 & 3 & -2 \\
-5 & 2 & 3 \\
-5 & -4 & 2
\end{array}\right)
$$

is invertible. For each $j=1,2,3$, let $\mathcal{N}_{j}=\left\{x \in \mathbb{R}^{3}: A_{j} x=0\right\}$. A computation gives $\mathcal{N}_{1}=\langle(1,0,4),(0,1,4)\rangle, \mathcal{N}_{2}=\langle(1,1,0),(0,0,1)\rangle$, and $\mathcal{N}_{3}=\langle(1,0,1),(0,1,0)\rangle$. One can check that $\mathcal{N}_{1} \cap \mathcal{N}_{2}=\langle(1,1,8)\rangle, \mathcal{N}_{1} \cap \mathcal{N}_{3}=\langle(4,-3,4)\rangle$, and $\mathcal{N}_{2} \cap \mathcal{N}_{3}=\langle(1,1,1)\rangle$.

We observe that $\mathcal{N}_{1} \cap \mathcal{N}_{2} \oplus \mathcal{N}_{1} \cap \mathcal{N}_{3} \oplus \mathcal{N}_{2} \cap \mathcal{N}_{3}=\mathbb{R}^{3}$. As in the proof of Lemma 2.2, we define the matrices C and B by

$$
C=\left(\begin{array}{rrr}
1 & 4 & 1 \\
1 & -3 & 1 \\
1 & 4 & 8
\end{array}\right), \quad B=\left(A_{1}+A_{2}+A_{3}\right) C=\left(\begin{array}{rrr}
7 & 7 & -7 \\
0 & -14 & 21 \\
-7 & 0 & 7
\end{array}\right) .
$$

Both matrices are invertible with

$$
B^{-1}=\left(\begin{array}{rrr}
\frac{2}{21} & \frac{1}{21} & -\frac{1}{21} \\
\frac{1}{7} & 0 & \frac{1}{7} \\
\frac{2}{21} & \frac{1}{21} & \frac{2}{21}
\end{array}\right) .
$$

Now it is easy to check that

$$
B^{-1} A_{1} C=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad B^{-1} A_{2} C=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right), \quad B^{-1} A_{3} C=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

So, from Theorem 1.1, it follows that the operator T_{r} defined by

$$
T_{r} f(x)=\int_{\mathbb{R}^{3}}\left|x-A_{1} y\right|^{-1+r}\left|x-A_{2} y\right|^{-1+r}\left|x-A_{3} y\right|^{-1+r} f(y) d y
$$

with $0<r<1$, is a bounded operator from $H^{p}\left(\mathbb{R}^{3}\right)$ into $L^{q}\left(\mathbb{R}^{3}\right)$ for $0<p<1 / r$ and $\frac{1}{q}=\frac{1}{p}-r$.

References

[1] T. Godoy and M. Urciuolo, About the L L^{p} boundedness of some integral operators. Rev. Un. Mat. Argentina 38(1993), 192-195.
[2] \longrightarrow, On certain integral operators of fractional type. Acta Math. Hungar. 82(1999), 99-105. http://dx.doi.org/10.1023/A:1026437621978
[3] S. Krantz, Fractional integration on Hardy spaces. Studia Math. 73(1982), no. 2, 87-94.
[4] M. S. Riveros and M. Urciuolo, Weighted inequalities for integral operators with some homogeneous kernels. Czechoslovak Math. J. 55(2005), 423-432. http://dx.doi.org/10.1007/s10587-005-0032-y
[5] _, Weighted $H^{p}-L^{q}$ boundedness of integral operators with rough kernels. Preprint. https://www.researchgate.net/publication/319511626
[6] P. Rocha, A note on Hardy spaces and bounded linear operators. To appear in Georgian Math. J.
[7] P. Rocha and M. Urciuolo, On the $H^{p}-L^{p}$ boundedness of some integral operators. Georgian Math. J. 18(2011) no. 4, 801-808. http://dx.doi.org/10.1515/GMJ.2011.0043
[8] \longrightarrow, On the $H^{p}-L^{q}$ boundedness of some fractional integral operators. Czechoslovak Math. J. 62(2012), 625-635. http://dx.doi.org/10.1007/s10587-012-0054-1
[9] E. Stein, Singular integrals and differentiability properties of functions. Princeton Mathematical Series, 30. Princeton University Press, Princeton, NJ, 1970.
[10] , Harmonic analysis, real variable methods, orthogonality and oscillatory integrals. Princeton Mathematical Series, 43. Princeton University Press, Princeton, NJ, 1993.
[11] M. H. Taibleson and G. Weiss, The molecular characterization of certain Hardy spaces. Astérisque, 77. Soc. Math. France, Paris, 1980, pp. 67-149.

Universidad Nacional del Sur, Departamento de Matemática, INMABB (Conicet), (8000) Bahía Blanca, Buenos Aires, Argentina
e-mail: alinorocha@gmail.com

[^0]: Received by the editors March 9, 2017; revised June 20, 2017.
 Published electronically September 8, 2017.
 Partially supported by UNS.
 AMS subject classification: 42B20, 42B30.
 Keywords: integral operator, Hardy space.

