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A Remark on Certain Integral Operators of
Fractional Type

Pablo Alejandro Rocha

Abstract. For m, n ∈ N, 1 < m ≤ n, we write n = n1 + ⋅ ⋅ ⋅ + nm where {n1 , . . . , nm} ⊂ N. Let
A1 , . . . , Am be n × n singular real matrices such that

m
⊕
i=1

⋂
1≤ j/=i≤m

N j = Rn ,

whereN j = {x ∶ A jx = 0}, dim(N j) = n − n j , and A1 + ⋅ ⋅ ⋅ + Am is invertible. In this paper we
study integral operators of the form

Tr f (x) = ∫
Rn
∣x − A1 y∣−n1+α1 ⋅ ⋅ ⋅ ∣x − Am y∣−nm+αm f (y) dy,

n1 + ⋅ ⋅ ⋅ + nm = n, α1
n1

= ⋅ ⋅ ⋅ = αm
nm

= r, 0 < r < 1, and the matrices A i ’s are as above. We obtain the
Hp(Rn) − Lq(Rn) boundedness of Tr for 0 < p < 1

r and
1
q = 1

p − r.

1 Introduction

For 0 ≤ α < n and m > 1, (m ∈ N), let Tα ,m be the integral operator deûned by

(1.1) Tα ,m f (x) = ∫
Rn

∣x − A1 y∣−α1 ⋅ ⋅ ⋅ ∣x − Am y∣−αm f (y) dy,

where α1 , . . . , αm are positive constants such that α1+⋅ ⋅ ⋅+αm = α−n, and A1 , . . . ,Am
are n × n invertible matrices such that A i /= A j if i /= j. We observe that for the case
α > 0,m = 1, and A1 = I, Tα ,1 is theRiesz potential Iα . _us for 0 < α < n, the operator
Tα ,m is a kind of generalization of the Riesz potential. _e case α = 0 and m > 1 was
studied under the additional assumption that A i − A j are invertible if i /= j. _e
behavior of this class of operators and their generalizations on the spaces of functions
Lp(Rn), Lp(w), Hp(Rn), and Hp

<∞(w p) was studied in [1,2,4, 5,7, 8].
If 0 < α < n and m > 1, then the operator Tα ,m has the same behavior as the Riesz

potential on Lp(Rn). Indeed

∣Tα ,m f (x)∣ ≤ C
m

∑
j=1
∫
Rn

∣A−1
j x − y∣α−n

∣ f (y)∣ dy = C
m

∑
j=1

Iα(∣ f ∣)(A−1
j x),

for all x ∈ Rn . _is pointwise inequality implies that Tα ,m is a bounded operator from
Lp(Rn) into Lq(Rn) for 1 < p < n

α and
1
q =

1
p −

α
n , and it is of type weak (1, n/n − α).

It iswell known that the Riesz potential Iα is bounded from Hp(Rn) into Hq(Rn)

for 0 < p ≤ 1 and 1
q = 1

p −
α
n (see [3, 11]). In [8], the author jointly with M. Urciuolo
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proved the Hp(Rn)−Lq(Rn) boundedness of the operator Tα ,m andwe also showed
that the Hp(R) −Hq(R) boundedness does not hold for 0 < p ≤ 1

1+α ,
1
q =

1
p − α and

Tα ,m with 0 ≤ α < 1, m = 2, A1 = 1, and A2 = −1. _is is a signiûcant diòerence with
respect to the case 0 < α < 1, n = m = 1, and A1 = 1.

In this notewewill prove that ifwe consider certain singular matrices in (1.1), then
such an operator is still bounded from Hp into Lq . More precisely, for m, n ∈ N,
1 < m ≤ n, we write n = n1 + ⋅ ⋅ ⋅ + nm , where {n1 , . . . , nm} ⊂ N. We also consider
n×n singular real matrices A1 , . . . ,Am such that⊕m

i=1⋂1≤ j/=i≤m N j = Rn ,whereN j =

{x ∶ A jx = 0}, dim(N j) = n − n j , A1 + ⋅ ⋅ ⋅ + Am is invertible. Given 0 < r < 1 and
n1 , . . . , nm such that n1 + ⋅ ⋅ ⋅ + nm = n, let α1 , . . . , αm be positive constants such that
α1
n1
= ⋅ ⋅ ⋅ = αm

nm
= r. For such parameters we deûne the integral operator Tr by

(1.2) Tr f (x) = ∫
Rn

∣x − A1 y∣−n1+α1 ⋅ ⋅ ⋅ ∣x − Am y∣−nm+αm f (y) dy,

where thematrices A i are as above.
We observe that the operator deûned in (1.2) can be written as in (1.1), taking the

matrices A i there to be singular. In fact, Tr = Tβ ,m with β i = n i − α i for each i =
1, 2, . . . ,m and β = nr.

Our main result is the following theorem.

_eorem 1.1 Let Tr be the integral operator deûned in (1.2). If 0 < r < 1, 0 < p < 1
r ,

and 1
q =

1
p − r, then Tr can be extended to an Hp(Rn) − Lq(Rn) bounded operator.

In Section 2 we state two auxiliary lemmas to get themain result in Section 3. We
conclude this note with an example in Section 4.

_roughout this paper, c will denote a positive constant, not necessarily the same
at each occurrence. _e symbol A ≲ B stands for the inequality A ≤ cB for some
constant c.

2 Preliminary Results

LetK be a kernel inRn×Rn . We formally deûne the integral operator TK by TK f (x) =
∫Rn K(x , y) f (y) dy.

We start with the following lemma.

Lemma 2.1 Let n,m ∈ N,with 1 < m ≤ n, and let n1 , . . . , nm be natural numbers such
that n1 + ⋅ ⋅ ⋅ +nm = n. For each i = 1, . . . ,m let K i be non-negative kernels inRn i ×Rn i

such that the operator TK i is bounded from Lp(Rn i ) into Lq(Rn i ) with 1 < p ≤ q <∞.
_en the operator TK1⊗⋅⋅⋅⊗Km is bounded from Lp(Rn) into Lq(Rn).

Proof Since Rn = Rn1 × ⋅ ⋅ ⋅ ×Rnm , let x = (x 1 , . . . , xm) ∈ Rn1 × ⋅ ⋅ ⋅ ×Rnm . Now the
operator TK1⊗⋅⋅⋅⊗Km is given by

TK1⊗⋅⋅⋅⊗Km f (x) = ∫Rn1×⋅⋅⋅×Rnm
K1(x 1 , y1

) ⋅ ⋅ ⋅Km(xm , ym
) f (y1 , . . . , ym

) dy1
⋅ ⋅ ⋅ dym .

Using that the kernels K i deûne bounded operators for 1 ≤ i ≤ m, the lemma follows
from an iterative argument andMinkowski’s inequality for integrals.
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Lemma 2.2 Let m, n ∈ N, with 1 < m ≤ n, and let n1 , . . . , nm be natural numbers
such that n1 + ⋅ ⋅ ⋅ + nm = n. If A1 , . . . ,Am are n × n singular real matrices such that
⊕

m
i=1⋂1≤ j/=i≤m N j = Rn ,whereN j = {x ∶ A jx = 0}, dim(N j) = n−n j , and A1+⋅ ⋅ ⋅+Am

is invertible, then there exist two n × n invertiblematrices B and C such that B−1A jC is
the canonical projection from Rn on {0} × ⋅ ⋅ ⋅ ×Rn j × ⋅ ⋅ ⋅ × {0} for each j = 1, . . . ,m.

Proof It is easy to check that
m
⊕
i=1

⋂
1≤ j/=i≤m

N j = Rn
Ô⇒ ⊕

1≤i /=k≤m
⋂

1≤ j/=i≤m
N j = Nk .

So

(2.1) Ak( ⋂
1≤ j/=k≤m

N j) = R(Ak), k = 1, . . . ,m.

Since dim(Nk) = n − nk , dim(⋂1≤ j/=k≤m N j) = dim(R(Ak)) = nk . Let {γk
1 , . . . , γ

k
nk
}

be a basis of ⋂1≤ j/=k≤m N j . _us {γ1
1 , . . . , γ1

n1
, . . . , γm

1 , . . . , γ
m
nm} is a basis for Rn . Let

C be the n × n matrix whose columns are the elements of the above basis. Since
A1 + ⋅ ⋅ ⋅ + Am is invertible, we have that B = (A1 + ⋅ ⋅ ⋅ + Am)C is invertible. So (2.1)
gives that B−1A jC is the canonical projection from Rn on {0} × ⋅ ⋅ ⋅ ×Rn j × ⋅ ⋅ ⋅ × {0}
for each j = 1, . . . ,m.

3 The Main Result

Proof of_eorem 1.1 We begin by obtaining the Lp − Lq boundedness of the oper-
ator Tr for 1 < p < 1

r and
1
q =

1
p − r, and thenwith this resultwewill prove theHp −Lq

boundedness of Tr for 0 < p ≤ 1 and 1
q =

1
p − r.

Lp − Lq boundedness. If A is an n × n invertiblematrix, we put fA(x) = f (A−1x).
Let B and C be thematrices give by Lemma 2.2. _en

[Tr( fC)]B−1(x)

= ∫
Rn

∣Bx − A1 y∣−n1+α1 ⋅ ⋅ ⋅ ∣Bx − Am y∣−nm+αm f (C−1 y) dy

= ∣det(C)∣∫
Rn

∣B(x − B−1A1Cy)∣−n1+α1 ⋅ ⋅ ⋅ ∣B(x − B−1AmCy)∣−nm+αm f (y) dy.

Since B is invertible, there exists a positive constant c such that c∣x∣ ≤ ∣Bx∣ for all
x ∈ Rn . _us

∣ [Tr( fC)]B−1(x)∣

≲ ∫
Rn

∣x − B−1A1Cy∣−n1+α1 ⋅ ⋅ ⋅ ∣x − B−1AmCy∣−nm+αm ∣ f (y)∣ dy

≲ ∫
Rn1×⋅⋅⋅×Rnm

∣x 1
− y1

∣
−n1+α1 ⋅ ⋅ ⋅ ∣xm

− ym
∣
−nm+αm ∣ f (y1 , . . . , ym

)∣ dy1 . . . dym .

_e second inequality follows from Lemma 2.2 and from that ∣x j − y j ∣ ≤ ∣x − Pj y∣,
where Pj = B−1A jC is the canonical projection fromRn on {0}× ⋅ ⋅ ⋅ ×Rn j × ⋅ ⋅ ⋅ ×{0}.
Since γ(α j)

−1∣x j − y j ∣−n j+α j , for an appropriate constant γ(α j) (see [9, p. 117]), is
the kernel of the Riesz potential on Rn j , then [9,_eorem 1] and Lemma 2.1 give the
Lp − Lq boundedness of the operator Tr for 1 < p < 1

r and
1
q =

1
p − r.

https://doi.org/10.4153/CMB-2017-043-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2017-043-6


A Remark on Certain Integral Operators of Fractional Type 373

Hp − Lq boundedness. Let 0 < p ≤ 1. We recall that a p-atom is a measurable
function a supported on a ball B ofRn satisfying ∥a∥∞ ≤ ∣B∣−1/p and ∫ yβa(y) dy = 0
for every multiindex β with ∣β∣ ≤ ⌊n(p−1 − 1)⌋, (⌊ ⋅ ⌋ denotes the integer part).

Let 0 < r < 1, 0 < p ≤ 1 < p0 < 1
r , and

1
q = 1

p − r. Given f ∈ Hp(Rn) ∩ Lp0(Rn),
from [10, _eorem 2, p.107], we have that there exists a sequence of real numbers
{λ j}

∞
j=1, a sequence of balls B j = B(z j , δ j) centered at z j with radius δ j and p-atoms

a j supported on B j satisfying

(3.1)
∞
∑
j=1

∣λ j ∣
p
≲ ∥ f ∥p

Hp ,

such that f can be decomposed as f = ∑∞
j=1 λ ja j , where the convergence is in Hp and

Lp0 (for the convergence in Lp0 , see [6,_eorem 5]). So the Hp − Lq boundedness of
Tr will be proved if we show that there exists c > 0 such that

(3.2) ∥Tra j∥Lq ≤ c,

with c independent of the p-atom a j . Indeed, since f = ∑∞
j=1 λ ja j in Lp0 and Tr is an

Lp0 − L
p0

1−r p0 bounded operator, we have that ∣Tr f (x)∣ ≤ ∑∞
j=1 ∣λ j ∣ ∣Tra j(x)∣ for almost

all x; this pointwise inequality, the inequality in (3.2), together with the inequality

(
∞
∑
j=1

∣λ j ∣
min{1,q}

)

1
min{1,q}

≤ (
∞
∑
j=1

∣λ j ∣
p
)

1
p

and (3.1) allow us to conclude that ∥Tr f ∥q ≤ c∥ f ∥Hp , for all f ∈ Hp(Rn) ∩ Lp0(Rn).
So the theorem follows from the density of Hp(Rn) ∩ Lp0(Rn) in Hp(Rn).

We will prove the estimate in (3.2). We deûne D = max1≤i≤m max∣y∣=1 ∣A i(y)∣.
Let a j be a p-atom supported on a ball B j = B(z j , δ j), and for each 1 ≤ i ≤ m let
B∗ji = B(A iz j , 4Dδ j). Since Tr is bounded from Lp0(Rn) into Lq0(Rn) for 1 < p0 < 1

r
and 1

q0
= 1

p0
− r, theHölder inequality gives

∫
⋃1≤i≤m B∗ji

∣Tra j(x)∣q dx ≤ ∑
1≤i≤m

∫
B∗ji

∣Tra j(x)∣q dx(3.3)

≤ c ∑
1≤i≤m

∣B∗ji ∣
1− q

q0 ∥Tra j∥
q
q0 ≤ cδ

n− nq
q0

j ∥a j∥
q
p0

≤ cδ
n− nq

q0
j (∫

B j
∣a j ∣

p0)

q
p0
≤ cδ

n− nq
q0

j δ
− nq

p
j δ

nq
p0
j = c.

We denote k(x , y) = ∣x − A1 y∣−n1+α1 ⋅ ⋅ ⋅ ∣x − Am y∣−nm+αm , and we put N − 1 =

⌊n(p−1 − 1)⌋. In view of themoment condition of a j we have, for x ∈ Rn ∖ (⋃
m
i=1 B

∗
ji),

that

Tra j(x) = ∫
B j

k(x , y)a j(y) dy = ∫
B j
(k(x , y) − qN , j(x , y))a j(y) dy,

where qN , j is the degreeN−1Taylorpolynomial of the function y → k(x , y) expanded
around z j . By the standard estimate of the remainder term in the Taylor expansion,
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there exists ξ between y and z j such that

∣k(x , y) − qN , j(x , y)∣ ≲ ∣y − z j ∣
N

∑
k1+⋅⋅⋅+kn=N

∣
∂N

∂yk1
1 ⋅ ⋅ ⋅ ∂ykn

n
k(x , ξ)∣

≲ ∣y − z j ∣
N(

m
∏
i=1

∣x − A i ξ∣−n i+α i)(
m

∑
l=1

∣x − A l ξ∣−1)
N
.

Now we decompose the set R j ∶= Rn ∖ (⋃
m
i=1 B

∗
ji) by R j = ⋃

m
k=1 R jk where

R jk = {x ∈ R j ∶ ∣x − Akz j ∣ ≤ ∣x − A iz j ∣ for all i /= k}.

If x ∈ R j , then ∣x − A iz j ∣ ≥ 4Dδ j , for all i = 1, 2, . . . ,m. Since ξ ∈ B j , it follows that
∣A iz j − A i ξ∣ ≤ Dδ j ≤

1
4 ∣x − A iz j ∣, so

∣x − A i ξ∣ = ∣x − A iz j + A iz j − A i ξ∣ ≥ ∣x − A iz j ∣ − ∣A iz j − A i ξ∣ ≥
3
4
∣x − A iz j ∣.

If x ∈ R j , then x ∈ R jk for some k. Since∑m
i=1(−n i + α i) = −n(1 − r), we obtain

∣k(x , y) − qN , j(x , y)∣ ≲ ∣y − z j ∣
N(

m
∏
i=1

∣x − A iz j ∣
−n i+α i)(

m

∑
l=1

∣x − A l z j ∣
−1)

N

≲ ∣y − z j ∣
N
∣x − Akz j ∣

−n(1−r)−N ,

if x ∈ R jk and y ∈ B j . _is inequality gives

(3.4) ∫
R j
∣∫
B j

k(x , y)a j(y) dy∣
q
dx

= ∫
R j
∣∫

B j

[k(x , y) − qN , j(x , y)]a j(y) dy∣
q
dx

≲
m

∑
k=1
∫

R jk
(∫

B j
∣y − z j ∣

N
∣x − Akz j ∣

−n(1−r)−N
∣a j(y)∣ dy)

q
dx

≲ (∫
B j

∣y − z j ∣
N
∣a j(y)∣ dy)

q m

∑
k=1
∫(B∗jk)c

∣x − Akz j ∣
−n(1−r)q−Nq dx

≲ δ
qN−n q

p+nq
j ∫

∞

4Dδ j
t−q(n(1−r)+N)+n−1 dt ≤ c

with c independent of the p-atom a j , since −q(n(1 − r) + N) + n < 0. Finally Rn =

⋃
m
i=1 B

∗
ji ∪ R j , so the inequality in (3.2) follows from (3.3) and (3.4).

4 An Example

For n = m = 3, n1 = n2 = n3 = 1, we consider the following 3 × 3 singular matrices

A1 =
⎛
⎜
⎝

4 4 −1
0 0 0

−4 −4 1

⎞
⎟
⎠
, A2 =

⎛
⎜
⎝

1 −1 0
−2 2 0
0 0 0

⎞
⎟
⎠
, A1 =

⎛
⎜
⎝

1 0 −1
−3 0 3
−1 0 1

⎞
⎟
⎠
.

It is clear that

A1 + A2 + A3 =
⎛
⎜
⎝

6 3 −2
−5 2 3
−5 −4 2

⎞
⎟
⎠
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is invertible. For each j = 1, 2, 3, let N j = {x ∈ R3 ∶ A jx = 0}. A computation gives
N1 = ⟨(1, 0, 4), (0, 1, 4)⟩, N2 = ⟨(1, 1, 0), (0, 0, 1)⟩, and N3 = ⟨(1, 0, 1), (0, 1, 0)⟩. One
can check that N1 ∩N2 = ⟨(1, 1, 8)⟩,N1 ∩N3 = ⟨(4,−3, 4)⟩, andN2 ∩N3 = ⟨(1, 1, 1)⟩.

We observe thatN1 ∩N2⊕N1 ∩N3⊕N2 ∩N3 = R3. As in the proof of Lemma 2.2,
we deûne thematrices C and B by

C =
⎛
⎜
⎝

1 4 1
1 −3 1
1 4 8

⎞
⎟
⎠
, B = (A1 + A2 + A3)C =

⎛
⎜
⎝

7 7 −7
0 −14 21
−7 0 7

⎞
⎟
⎠
.

Both matrices are invertible with

B−1
=

⎛
⎜
⎜
⎝

2
21

1
21 − 1

21
1
7 0 1

7
2
21

1
21

2
21

⎞
⎟
⎟
⎠

.

Now it is easy to check that

B−1A1C =
⎛
⎜
⎝

1 0 0
0 0 0
0 0 0

⎞
⎟
⎠
, B−1A2C =

⎛
⎜
⎝

0 0 0
0 1 0
0 0 0

⎞
⎟
⎠
, B−1A3C =

⎛
⎜
⎝

0 0 0
0 0 0
0 0 1

⎞
⎟
⎠
.

So, from _eorem 1.1, it follows that the operator Tr deûned by

Tr f (x) = ∫
R3

∣x − A1 y∣−1+r
∣x − A2 y∣−1+r

∣x − A3 y∣−1+r f (y) dy,

with 0 < r < 1, is a bounded operator from Hp(R3) into Lq(R3) for 0 < p < 1/r and
1
q =

1
p − r.
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