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Abstract. Thurston generalized the notion of a twist deformation about a simple
closed geodesic on a hyperbolic Riemann surface to a twisting or shearing along a
much more complicated object called a measure geodesic lamination. This new
deformation is called an earthquake and it generates a flow on the tangent bundle
of Teichmiiller space.

In this paper we study the earthquake flow. We show that the flow is not smooth
and that it is not the geodesic flow for an affine connection. We also derive the
explicit form of the system of differential equations which earthquake trajectories
satisfy.

1. Introduction
Thurston generalized the notion of a twist deformation about a simple closed
geodesic on a hyperbolic Riemann surface to a twisting or shearing along a much
more complicated object called a measured geodesic lamination. This new deforma-
tion is called an earthquake, and it generates a flow on the tangent bundle to
Teichmiiller space.

In this paper we study the dynamics of the earthquake flow. We show this flow
is not smooth, and we derive the explicit form of the system of differential equations
which earthquake trajectories (paths) satisfy.

Our strategy is to exploit the analogies between the earthquake flow and the
geodesic flow on a Riemannian manifold. Along the way, we find sufficient conditions
to determine when a flow on the tangent bundle of a smooth manifold is the geodesic
flow for an affine connection. It turns out that the earthquake flow satisfies all of
the conditions except for smoothness.

Since very little about measured geodesic laminations has appeared in print, we
begin, for the readers convenience, with two short sections containing background
material on hyperbolic geometry and measured geodesic laminations.

Most of the contents of this paper appears in the latter half of my thesis. I would
like to thank my advisor, Scott Wolpert, for his consummate guidance and
encouragement.

* Partially supported by Sloan Foundation Doctoral Dissertation Fellowship.

https://doi.org/10.1017/S0143385700005198 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005198


572 H. Weiss

1.1. Preliminaries on hyperbolic geometry
Definition. A hyperbolic Riemann surface is a smooth oriented surface of genus g > 2
equipped with a metric of constant curvature — 1.

By the uniformization theorem, every hyperbolic Riemann surface R is isometric
to a surface of the form H2/Y, where H2 is the hyperbolic plane and F is a Fuchsian
group (a discrete subgroup of PSL(2, R)) acting by isometries, and isomorphic to
77-,(/?). Let Sg denote a fixed smooth, compact, oriented surface of genus g.

Definition. The Teichmiiller space of genus g, STg, is the space of discrete and faithful
representations from 7r1(Sg)^PSL(2, R) modulo conjugacy. Equivalently, 3Tg may
be defined as the space of hyperbolic metrics on 2 g with two metrics identified if
there is an isometry between them which is isotopic to the identity.

Every Mobius transformation A acting on H2 has a continuous extension to its
boundary, denoted Slo, and called the 'circle at oo'. Pairs of distinct points on S^
are in 1-1 correspondence with (oriented) geodesies in H2. Every hyperbolic Mobius
transformation A (|tr A\ > 2) has exactly two fixed points both on SL The geodesic
corresponding to the fixed points of A e F projects to the unique closed geodesic
in R contained in the free homotopy class of i(A)e TT,(2) under the isomorphism

Le t /be a homeomorphism between two Riemann surfaces Rj and R2 and let/,.
be the induced isomorphism between their uniformizing groups F, and F2. This
isomorphism gives a canonical 1-1 correspondence between elements of Fj and F2,
and hence between closed geodesies on /?, and R2. Consequently, this isomorphism
also induces a mapping between the sets of fixed points of elements of F, and F2,
which are dense in Slo.

The following theorem of Nielsen states that this mapping has a unique extension
to a homeomorphism between the circles at infinity. This homeomorphism enables
us to identify complete geodesies on the two surfaces.

THEOREM. (Nielsen, [T].) Let f:Rx^*R2 be a homeomorphism between two closed
hyperbolic Riemann surfaces. Then any lift of f to a homeomorphism f: //2-> H2 has
a unique continuous extension f to a homeomorphism of H2 U Si,, and the extension
is invariant under isotopy, depending only on the lift and on Rt and R2- The extension
is also equivariant so that the fixed points of any element Ax e F, are taken to the fixed
points of A2e F2 where /* (/ii) = A2 (/^: F) -> F2 induced by / ) .

A classical theorem of Morrey [AH] implies that / | S » is Holder continuous.
However, an elementary argument of Sullivan shows that the equivariance prevents
/ | Slo from being Lipschitz. The derivative of f\Sl

x is a totally singular measure,
hence / | S ^ is not absolutely continuous.

1.2. Measured geodesic laminations
Let R be a closed hyperbolic Riemann surface of genus g.

Definition. A geodesic lamination <& on R is a foliation of a closed subset of R by
complete, simple geodesies.
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Non-smooth geodesic flow 573

Let si denote the set whose elements are simple, smooth open arcs contained in
R which are transverse to % and have endpoints in R-/x.

Definition. A Measured geodesic lamination (MGL) is a pair (% fi), where ^ is a
geodesic lamination and /x is a transverse measure satisfying:

(1) support 0*)=».
(2) If /, is homotopic to t2 in si, then /i(f,) = /x(t2).

'Trivial Examples of an MGL. Let {% /x) be a finite disjoint union of simple closed
geodesies </>,,...,</>„ on R with counting measure /x = £JJ=i 0*5^, a* > 0.

We will follow custom and denote the MGL (% /x) by /x. The following three
theorems about MGLs are due to Thurston [see T]:

THEOREM. If /a. is a MGL on R and tesi, then t(l /x is either a discrete set or the
union of a Cantor set and a discrete set. Moreover, the isolated points of td fx are
exactly the intersections of t with simple closed leaves of /x.

THEOREM. If/X is a MGL on R, then Hyperbolic Area (fx) = O.

THEOREM. If/x is a MGL on R, then R — fi is a finite union of ideal polygons and
Riemann surfaces with geodesic boundary.

The transverse measure on a MGL /x induces a Lebesgue-Stiltjes measure on
arcs contained in si. This allows us to integrate functions along transverse arcs. For
a transverse arc t e si, let d be the angle that the leaves of fx make with t, measured
counterclockwise from / to /x. It is easy to see that 6 is a Lipschitz function along
' [W,], and therefore may be integrated with respect to d/x. We define the total
angle and total cosine of an arc tesi by:

= dd/x, cos(t,/x)=\
J i J t

dd/x, cos(t,/x)=\ cos0d/x.
J t

Similarly, we define the total angle and total cosine of a simple closed geodesic
4> by:

= Qd/x, cos(<£,^,)=
J <t> J <f>

cosdd/x.

Let ML{ = ML(R)) denote the set of MGLs on R. Thurston defined the following
topology on ML: Given a finite set of arcs {AlJUi^ si, e>0, and fie ML, a

FIGURE 1. 'Trivial MGL'.
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neighborhood basis of /x is given by:

<e k=\,2,...,n}.

The following theorem of Thurston may be thought of as a strong existence
statement for MGLs:

THEOREM. (Thurston, [T].) ML is homeomorphic to R6g~6.

Let if denote the set of simple closed geodesies on R. We can embed 3"xR+ in
ML by sending (<f>, r) to the MGL consisting of <f> with fi = r • 8$.

THEOREM. (Thurston, [T]). 5^xR+ is dense in ML.

This theorem allows one to extend notions defined for simple closed geodesies
to MGLs.

Given two Riemann surfaces R, and R2 of genus g, along with an isomorphism
between their uniformizing groups, we have seen that the mapping between their
circles at infinity may be used to transport and/or identify MGLs on the two Riemann
surfaces. The following two theorems are due to Thurston [T].
(A) If /?, and R2eSTg, then ML(RX) is homeomorphic to ML(R2).
(B) Suppose /?, and R2e 9~g, thought of as hyperbolic structures on a fixed surface

Xg. Let /itR| be a MGL on /?, and let nR, be the 'corresponding' MGL on R2.
Then the leaves of /tR| are isotopic to the corresponding leaves of /xR2 on Sg.

2. Geodesic flows with low regularity, ODEs, and affine connections
In this section we find sufficient conditions to determine when a flow on the tangent
bundle of a smooth manifold is the geodesic flow for an affine connection. In
addition, we prove a structure theorem for flows which satisfy all of the conditions
except for smoothness. We will later show that the earthquake flow is of this type.
The reader is advised to keep in mind that the results in this section are completely
independent of any metric structure on M.

Let M be a C°° manifold.

Definition. A mapping </>: U x M -* M is called a global flow on M if for all x e M ,
and s, teU, we have
(1)
(2)

We can impose regularity on the flow by requiring <f> to be Cr 0 < r < a>, Lipschitz,
Holder continuous, etc. Unless otherwise stated all flows will be assumed to be
global C° (topological) flows.

Definition. If <f> is a flow on M, and x e M, the curve

is called the trajectory of x.
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Definition. Let <f> be a flow on M such that every trajectory of <f> is a C°° curve in
M, i.e., <̂> is a C°° function in its first variable t. Then the vector field

d

dt r = 0

is called the infinitesimal generator of <f>.

We shall refer to such a flow as a flow with smooth trajectories. By definition, any
such flow <f> satisfies the first order ODE:

<t>(t,x)
1=0

on M.

Definition. <j> has the Affine Reparametrization (AR) Property if whenever c(t) is a
trajectory for (f>, c(at + b) is also a trajectory for <f>, for all a, fceR+.

Since M is a C°° manifold, its tangent bundle, TM, is also a C°° manifold, and
hence we can study flows on TM. From now on we will restrict our study to flows
on TM.

Let 4> be a global flow on TM with smooth trajectories and let <J> be its infinitesimal
generator.

4>:UxTM-*TM TM

<&:TM-*T2M M

Definition. $ has the Second Order ODE (SODE) Property if

d
) ((v<f>(t,x)) forallxeTAf, teU.

dt

SODE is the condition that each trajectory of <f>, considered as a section of IT : TM -*
M, is precisely the velocity vector field of the projection to M.

Suppose c(t) is a trajectory of <f> and let cr(t) be its projection onto M. The SODE
property implies c(t) = &{t). Since c(t) is a trajectory of </>,

This may be rewritten as
(7(f) = <D(

Hence, if (xi,...,xn) are local coordinates in some open set C/<=M, then o-(t)
satisfies a system of second order quasilinear ODEs of the following type:

ak(t) + Rk(o-(t),d(t)) = 0 k=l,2,...n.

THEOREM 2.1. Let <f>:Ux TM-* TM be a global flow with smooth trajectories having
the AR and SODE properties. Then

Rk(cr(t), &(t)) = r*(<r(t), &{t))&t(t)&j(t) * = 1,2, . . , fi,

where the {Fj} are homogeneous functions of degree 0 in &(t).
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If in addition the {Rk} (hence the {r*}) are C2 functions, then

Rk(<r(t), d(t)) = rS(«r(l))<r,(»)d)(/), k = 1,2,..., n.

Proof. We need the following lemma on homogeneous functions of degree 2.

LEMMA 2.2. Iff:W-*U is homogeneous of degree 2, i.e.

f(ax) = a2f(x), for all aeU+,xeR", then

(i) Iffe C2, then f is a quadratic form.

(ii) With no smoothness condition on f

where Q(x) is a quadratic form.

Proof of Lemma. (1) Since a2f(x) =f(ax), taking the second partial derivative with
respect to a, we obtain:

I x&j. I
Tj d(aXi) d(axj) \

The left hand side is independent of a, hence we conclude that 82f(x)/dXj dXj must j
be equal to a constant ctj for all i, j . Hence, f(c) = |Zij

(2) Using n-dimensional polar coordinates, we write

, , ) * ( . , 2 , , . i ) ) ,

r I V fc

Then/(x) =/(r- /»,(<?,,..., »„_,),..., r- M 0 , , • • •, »—i)). By hypotheses

/(*) = r2 • / (* , (»„ . . . , «„_,),..., fcn(0,,..., «„_,))

•
Proof of Theorem 2.1. Let s = at + b, a, b > 0. Since

/ x da(s)\ I , da(s)(s)a H r s )

the AR condition implies that this is equal to

d2ak 2d
2ak

Hence, the {Rk} are homogeneous of degree 2 in &(t). The result follows from
Lemma 2.2 •

It is convenient to use (q,p) coordinates on TM. Let (U,x) be a chart for M,
and define
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Then (ir~\ U), (q, p)) is a chart for TM. Any vector field X on TM may be written
locally (in this chart) as

LEMMA 2.3. Let <f>:Ux. TM-» TM be a global flow with smooth trajectories having
the AR and SODE properties, and let <J> be its infinitesimal generator. Then in local
coordinates,

* = Z pkj-+ I (-riM,p)PiPj)^--
(t = i dqk fc=i dpk

Proof. Follows immediately from Theorem 2.1 and definitions. •

COROLLARY 2.4. Suppose <f> as in previous lemma. Then

*eCr=»4>€Cr , for r>2 .

Proof. By the preceding lemma, if 3>e Cr, r>2, then the {Ty}e C. It immediately
follows from the "smooth dependence upon initial parameters" theorem from ODEs
[CL] along with Theorem 2.1, that <f>eCr. •

PROPOSITION 2.5. In Theorem 2.1, the {Ty} transform as Christoffel symbols.

Proof. The proof is by explicit calculation and is omitted. •

It is well known in differential geometry [ML, GKM], that any collection of C\
2<s<a> functions {Ty} on M which transform as Christoffel symbols, induces a
Cs affine connection on M.

THEOREM 2.6. Let <f>:Ux TM'-* TM be a global flow with smooth trajectories having
the AR and SODE properties and let <!> be the infinitesimal generator of <f>. Assume
(U,x) is a chart for M. Then

(a) The trajectories of <f> are solutions to the following systems of ODEs:

xk + Ty(x, x)XjXj = 0, k = 1,2, . . . , n.

(b) If <l>e C", r > 2 , then the trajectories are solutions to:

xk + Ty(x)xixJ = 0, k=\,...,n

and <f>eCr.

(c) In cases (a) and (b), the {Ty} transform as Christoffel symbols. In case (a), the
Christoffel symbols "live" on TM and not M as one usually encounters in Rieman-
nian geometry.

(d) In case (b), <f> induces a symmetric Cr affine connection V on M, and <f> is the
geodesic flow for V.

Example. The geodesic flow on TM for a smooth Riemannian metric induces the
Levi-Civita connection on M.

Remark. With trivial modifications, all the results in this section apply to semiflows
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on TM. A semi-flow is a mapping <f>: U+ x TM -* TM which satisfies the usual flow
conditions.

2.2. Earthquakes
In [FN], Fenchel and Nielsen define the following 'twist deformation' of a compact
Riemann surface R: Choose any simple closed geodesic tf>. Cut R open along <f> to
obtain a (possibly disconnected) Riemann surface with geodesic boundary. Now
glue the boundary components back with a left twist of distance t, obtaining a new
R,

FIGURE 2

There exists a mapping/, :/?-»/?„ which is an isometry off of <f>, and not defined
on <j>. For R, to determine a new point in STg, not just moduli space, we require a
homotopy class of maps from R to R,. This is done by requiring that any closed
curve y in R which intersects <f> be mapped to a curve in R, homotopic to the
following curve: f,(y) until it hits <f>, then run along <f> a distance / to the left, then
follow f,(y)- • •. Thus, the Riemann surface obtained by a full left twist of R is
distinct from R in 3~g.

Thurston generalized the FN deformation to a 'twisting' or 'shearing' along a MGL.
Recall, that for R, the set 5^xR+ consisting of weighted simple curved geodesies

in R is dense in ML. The twist along a MGL fi is defined by the limit in 2Tg of any
sequence of FN twist deformations along weighted simple curved geodesies which
converge to ft in ML.

Definition. ([T].) The left earthquake deformation of R at time f determined by
(i e ML is the limit in STg of the time t twist deformation of R for any sequence
(a,, r,) in y x R + converging to fj. in ML. It will be denoted E(R, fi, t).

In [K,], Kerchoff shows that the definition is valid, i.e., that the limits exist and
are independent of the approximating sequence and hence unique.

Remarks. (1) A FN twist deformation is an earthquake deformation and will be
referred to as either a simple earthquake or a twist deformation.

(2) Earthquakes may be considered in several different ways: as deformations of
Riemann surfaces, as maps from STg to itself, or as paths in STg as t varies. We will
usually view earthquake as paths in 9~g.

The following theorem of Kerckhoff tells us we can view ML(R) as a non-linear
model of {STg)R (the tangent space to R, viewed as a point of 5"g):

THEOREM [Kerckhoff, K3]. Every tangent vector to STg at a Riemann surface R is
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tangent to a unique earthquake path in 3~g emanating from R. In fact:

H^j{ ^E{R,n,t)

is a homeomorphism.

It follows immediately from Kerckhoff's theorem that earthquake deformations
give rise to a global (topological) semi-flow on TSTg. Given a tangent vector to 3~g

at R, we first identify it with its unique MGL on R, and then earthquake along the
MGL for time t. This defines a (parametrized) path in STg, and taking the velocity
vector field along the path, a path in TSTg:

¥ . E
R v < °T 1 * O V \4T < Jf\ * TT

From this description, it is clear that the flow has the SODE property.
It is also easy to see that this flow has the AR property, for suppose E(R, fi.,t)

is an earthquake path and c > 0. Then E(R, n,c-t) = E(R, c • fi, t).

THEOREM. [Kerckhoff, K2]. Earthquake trajectories are real analytic paths in STg, i.e.,
the earthquake flow E is a real analytic function of time t.

These two theorems of Kerckhoff, along with Theorem 2.1, Proposition 2.5 and
the observations above yield the following result:

THEOREM 2.7. Earthquake paths (trajectories of E) are solutions to the system of
second order quasilinear ordinary differential equations:

where the {Fj} transform as Christoffel symbols but live on T2Tg.

Let % be the infinitesimal generator of the earthquake flow.

THEOREM 2.8.

(a) % is not C2 for T3~once punctured torus.
(b) % is not C2 for T3~once holed torus.
(c) % is not C2 for TSTg.
Hence, the earthquake flow is not a C3 (smooth) flowl

The proof of Theorem 2.8 is by contradiction. To show (a), we first assume £ is
C2. In that case, Theorems 2.6(b) and 2.7 tells us that the flow is given by an afline
connection, hence the Christoffel symbols are x independent. We then explicitly
solve for the Christoffel symbols, and show that certain solutions of the resulting
ODE cannot be earthquakes, for they fail to have a requisite convexity property of
earthquake paths found by Kerckhoff. The proof of (b) is identical to (a), and (c)
follows immediately from (b).
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Proof of (a). Let 9~XA denote the Teichmuller space for the once punctured torus.
It is well known [FN] that the geodesic length functions corresponding to the free
homotopy classes of a and /3, /„ and lp, serve as local coordinates in {R e 5",,: a
is not perpendicular to p} or equivalently [WW] {Re 9'xy.lp{R)>
2coth-1(cosh(Utf)/2))}.

Assume ^ is C2. Then by Theorem 2.6(b) and 2.7, all earthquake paths are
solutions of the following system of ODSs:

To be precise, let E(t) be an earthquake path, and let

U 0 = /Q°£C), /„(*) =/*
The equations may be written as:

P P ^ p o . (2)
Notation. Let TJP denote the derivative of the geodesic length function lp with
respect to twisting (at unit speed) along (the geodesic freely homotopic to) a.

Wolpert [W2] has found the following formulas for rjp and r2
a lp:

TJ?(R)= I cos0p,
pea*/3

e'1 + e'2
r2Jp(R)= I , sin 6P sing,,

where 0p is the angle of p measured from a to /3, O<0p<7r. Given {p,q)e
(a#/3)x(a#/3), p, q divide j8 into two subarcs, /i and l2 are the lengths of these
subarcs on R.

We will evaluate (1) and (2) along earthquakes a, /3 and a/3 and solve for the
Christoffel symbols.

Twisting (earthquaking) along a, equation (1) becomes:

r2Ja + [ra
aa(rala)

2 + ra
ap(rJa)(rJp) + r;p(rJ0)

2] = O. (3)

rja = 0 since /„ is constant along the path, hence F ^ = 0.

FIGURE 3
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Twisting along /3, equation (1) becomes:
2 + ra

ap(r,la)(rplp)] = 0 (4)

lp = 0 since lp is constant along the path.
Twisting along a/3, equation (1) becomes:

r 2
0 ( , i a + [ r ° 0 (VJ 2 +r : , ( a ) (v s ) ]=o . (5)

Solving for T"Q and T ^ in (4) and (5) we obtain:

Since card(a#j8) = card(a#a/3) = card(0#a/3) = 1, Wolpert's formulas reduce
to (with the obvious notation):

"""~2(e'*-i)3111^

,2; = _£I±I

C'°+1 . 2

7~i—rr sin

T»«/fl = <
,̂  ̂

Substituting these formulas into (6) and applying simple trigonometric identities,
we obtain:

Repeating this entire procedure to equation (2), we obtain:

rf.=o,

t&n

e'» + \) af3'

rfp = | ( f g l J sec a f t a [ tan | f t a

Substituting into (1) and (2) we obtain:
For an earthquake path E(t) = (la(t), lp

^ = 5 (JUTY) [t"£.(0 (^)2-(sec^(t)[tanL(f) cos^d) (7)
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' , (dlB\2

tantpCm—£) -(sec^a(r)[tan»/3(<)cosa^a(0 (8)~j Ft

We now compute tana/,(r) in terms of la(t) and lp(t). We need a few elementary
facts:

LEMMA A. ([W2].) Let the axis of two hyperbolic Mobius transformations A, B intersect
at a point p. Let $ be the angle at p formed by the segments along the axes of A and
B to their respective attractive fixed points. Then

sgn (tr A tr B)(tr A tr B - 2 tr AB)
cos 6 = —

(tr2A-4)1/2(tr2B-4)1/2

LEMMA B. Let R be uniformized by T. For AeF, let a be the closed geodesic in R
onto which the axis of A projects. Then

, /(a) = length of a on R.

THEOREM C. ([FN, KE].) A once punctured torus is uniformized by a Fuchsian group
r = <A, B|B"1A"'BA is parabolic).

Let x = tr A, y = tr B, z - tr AB. Then
(a) the quantities x, y, z satisfy x2 + y2 + z2 = xyz and x, y, z>2. Moreover,
(b) the Teichmiiller space STXA = {x2+y2 + z2 = xyz}C\ {x,y, z>2}.

LEMMA 2.9.

1
tan2 6(t) = -

cosh2 y—) smh2 y-^-j -cosh

Proof. Solving the expression in Theorem C for z = tr AB and substituting into the
expression in Lemma A, we obtain

cos2 0 = -
( t r 2A-4)( tr 25-4) "

Applying Lemma B, we obtain

cosh2 (-A cosh2 (k j - (cosh2 (- J +cosh2 H

, l -cos 2 0
21070 t a n 6 =

cos20

sinh2 fa) sinh2 (k\ -cosh2 OA cosh2 (fj+cosh2 0*\ +cosh2 OA

cosh2 ( | ) cosh2 ( ^ ) -cosh2 ( | ) -cosh2 (

https://doi.org/10.1017/S0143385700005198 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005198


Non-smooth geodesic flow 583

After applying elementary hyperbolic trigonometric indentities, the denominator
may be written as

cosh2 (IJ2) sinh2 (/p/2)-cosh2 (fe/2),

and the numerator becomes equal to 1. •
Now consider a twist along a. Since dla/dt = 0, the differential equations (7) and

(8) for the path in STlA reduce to:

d2'/3
• =/( /„, . , where

J

(9)

\IJ2) sinh2 (MO/2) -cosh2 (MO/2)"

Remark. A simple calculation shows that / has one singularity when M 0 = ' | —
2 coth"1 [cosh (/a/2)] and / is positive for MO > lP- Curiously enough, in [WW],
the authors show that 1% is the smallest value of ip allowed on any surface with la fixed.

LEMMA 2.10. Around lp(t) = 1%,

implies //3(r)->0.

Proof. Just expand in the obvious way.

LEMMA 2.11. Ifl^(t) is a solution to equation (9), then

Proof. Rewrite equation (9) as

By the previous lemma, near lp(t) = 1%,

hence

Integrating, we obtain:

log
MO)

The results follows immediately.
Define the Lyapunov potential

equation (9), we have

•
Along a solution curve of

Since/(/„, /p)>0, we see that V(lp, /^)>0 along every solution curve.
It is clear that any constant function is a solution to (9), so by the fundamental

uniqueness theorem of ODEs [CL], no solution starting below the /^-axis (/^(0)<0)
can cross the /p-axis anywhere but at lp = 1%.
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V>0

FIGURE 4. Curves of constant potential.

We will now show that any solution with 4(0)<0, which hits 1% must do so in
infinite time. Since V{lp, 4 ) > 0 along all solution curves, this will imply that any
solution with 4(0) <0 must approach a constant solution as

PROPOSITION 2.12. Suppose lp(t) is a solution to (9). Then if jsinh (la/2)> 1, e.g.,
la>2.29, lp{t) cannot reach 1% infinite time.

Proof. From Lemma 2.10, near 4 = 1%, equation (9) may be written

Let c ( a ) = | sinh (/«/2) >1 (by hypothesis). Assuming 4 ( 0 * 0 for te(a,b), we
may divide both sides of equation (10) by 4(0- Integrating, we obtain

4(0
log

or

4(0)

4(0)

( /

4(0)-/?
Integrating again, we obtain:

It is clear that the only way lp{t)^l% is for //3(r)<0, as r/"oo.
We have just shown that any solution to (8) with 4(0) <0 must approach a

constant solution as r/'oo. This clearly contradicts the following theorem of
Kerckhoff:

THEOREM. ([Kerckhoff, K,].) The Geodesic Length Function ly of a simple closed
curve y is convex along any earthquake path E(R, /*, r). It is strictly convex ifi{

We conclude, % is not C2 on J",,.
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Part (b). We need the following theorem:

THEOREM ([FN, KE].) A one-holded torus is uniformized by a Fuchsian group

r«(A, BlB^A^BA is hyperbolic).

Let x = tr A, y = tr B, z = tr AB, k = tr {B~lA~lBA). Then

(a) the quantities x, y, z and k satisfy:

k = x2 + y2 + z2-xyz-2<-2 and x,y,z,-k>2.

Moreover,
(b) The Techmiiller space

5", 0 , = {k = x2 + y2 + z2-xyz-2}l~l{x, y, z, -k>2}.

By complete analogy with the case of the once punctured torus, we find that the
ODEs for the earthquake along a reduce to:

d2L
f = \ coth

1
: + 2)]\dt)

dt

Lcosh2 (IJ2) sinh2 (/^(0/2)-cosh2 (//3/2) + 4(fc-

This ODE has exactly the same asymptotic behavior as equation (8), hence % is
not C2 on &lfiA.

Part (c). Given a Riemann surface of genus g>2, choose coordinate curves contain-
ing a and p in a handle.

It is a fundamental fact about twist deformations [FN] that if one twists along
a, the lengths of all curves that do not intersect a remain fixed. Apply part (b) to
this handle. •

FIGURE 5. One holed torus.

FIGURE 6
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The following is an immediate consequence of this theorem:

COROLLARY 2.13. The earthquake flow is not the geodesic flow for any Riemannian
metric.

Interesting problems
(1) Find a Finsler metric whose geodesies are earthquake paths.
(2) Can the earthquake flow be reparametrized to make it a smooth flow?
(3) Is the infinitesimal generator for the earthquake flow Lipchitz?
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