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The Lagrangian formulation of mechanics

In most introductory texts on quantum mechanics you will find ‘Hamiltonian’ in the

index (see our equation (3.8)) but you are less likely to find ‘Lagrangian’. However,

quantum field theories are most conveniently described in a Lagrangian formalism,

to which this chapter is an introduction.

3.1 Hamilton’s principle

The classical dynamics of a mechanical (non-dissipative) system is most elegantly

derived from Hamilton’s principle. A closed mechanical system is completely char-

acterised by its Lagrangian L(q, q̇); the variables q(t), which are functions of time,

are a set of coordinates q1(t),q2(t), ..., qs(t) which determine the configuration of

the system at time t. In particular, the qi might be the Cartesian coordinates of a set

of interacting particles. We restrict our discussion to the case where all the qi (t) are

independent. In non-relativistic mechanics we take L = T − V , where T (q, q̇) is

the kinetic energy of the system and V(q) is its potential energy.

Given L, the action S is defined by

S =
∫ t2

t1

L(q, q̇) dt. (3.1)

The value of S depends on the path of integration in q-space. The end-points of

the path are fixed at times t1 and t2, but the path is otherwise unrestricted. S is

said to be a functional of q(t). Hamilton’s principle states that S is stationary for

that particular path in q-space determined by the equations of motion, so that if we

consider a variation to an arbitrary neighbouring path (Fig. 3.1), δS = 0, where

δS = δ

∫ t2

t1

L(q, q̇) dt

=
∫ t2

t1

∑
i

[
∂L

∂qi
δqi + ∂L

∂q̇
δq̇i

]
dt .
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28 The Lagrangian formulation of mechanics

Figure 3.1 A schematic representation of the path in q-space determined by the
equations of motion (full line) and a neighbouring path (dashed line).

Since δq̇ = d(δq)/dt , we can integrate the second term in this integral by parts, to

give

δS =
∫ t2

t1

∑
i

[
∂L

∂qi
− d

dt

(
∂L

∂q̇i

)]
δqi dt . (3.2)

The ‘end-point’ contributions from the integration by parts are zero, since δq(t1) =
δq(t2) = 0.

The variations δqi (t) are arbitrary. It follows from (3.2) that the condition δS = 0

requires

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0, i = 1, ..., s. (3.3)

These are the Euler–Lagrange equations of motion. In classical non-relativistic

mechanics they are equivalent to Newton’s equations of motion. As a simple exam-

ple, consider a particle of mass m moving in one dimension in a potential V(x). Then

L = T − V = (mẋ2/2) − V (x). From (3.3) we have immediately mẍ = −∂V/∂x ,

which is Newton’s equation of motion for the particle.

An external, and possibly time-dependent, field can be included in the Lagrangian

formalism through a time-dependent potential. In our one-dimensional example

above, V(x) may be replaced by V(x,t). Making the Lagrangian L depend explicitly

on t does not affect the derivation of the field equations.
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3.2 Conservation of energy 29

It is important to note that the Lagrangian of a given system is not unique: we

can add to L any function of the form df (q,t)/dt where f(q,t) is an arbitrary function

of q and t. Such a term gives a contribution [ f (q2, t2) − f (q1, t1)] to S, independent

of the path, and hence leaves the equations of motion unchanged.

3.2 Conservation of energy

In the case of a closed system of particles, interacting only among themselves, the

equations of motion of the system do not depend explicitly on the time t, since the

physics of a closed system does not depend on our choice of the origin of time.

There is no reason to doubt that the laws of physics at the time of Archimedes, or

the time of Newton, were the same as they are for us. Hence for a closed system

we must be able to construct a Lagrangian L(q, q̇) that does not depend explicitly

on t. For such a Lagrangian,

dL

dt
=

∑
i

[
∂L

∂qi
q̇i + ∂L

∂q̇i
q̈i

]
.

Taking the qi(t) to obey the equations of motion and substituting for ∂L/dqi from

(3.3) we obtain

dL

dt
=

∑
i

[(
d

dt

∂L

∂q̇i

)
q̇i + ∂L

∂q̇i
q̈i

]
=

∑
i

d

dt

(
∂L

∂q̇i
q̇i

)

or

d

dt

[∑
i

∂L

∂q̇i
q̇i − L

]
= 0. (3.4)

Thus

E =
[∑

i

∂L

∂q̇i
q̇i − L

]
(3.5)

remains constant during the motion, and is called the energy of the system. This

result exemplifies Noether’s theorem (Section 1.2): we have here a conservation

law stemming from the symmetry of the Lagrangian under a translation in time.

For a closed system of non-relativistic particles, with a potential function

V (qi ), ∂L/∂ q̇i = ∂T/∂ q̇i . Since the kinetic energy T is a quadratic function of

the q̇i (Problem 3.1), (∂T/∂ q̇i )q̇i = 2T . Hence

E = 2T − (T − V ) = T + V .

We recover the result of elementary mechanics.
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30 The Lagrangian formulation of mechanics

The generalised momenta, pi , are defined by

pi = ∂L

∂q̇i
. (3.6)

The Hamiltonian of a system is defined by

H (p, q) =
∑

i

pi q̇i − L. (3.7)

In terms of p and q, the energy equation (3.5) for a closed system becomes

H (p, q) = E . (3.8)

This equation, which is a consequence of the homogeneity of time, is a foundation

stone for making the transition from classical to quantum mechanics.

3.3 Continuous systems

To see how Hamilton’s principle may be extended to continuous systems, we con-

sider a flexible string, of mass ρ per unit length, stretched under tension F between

two fixed points at x = 0 and x = l, say, but subject to small transverse displace-

ments in a plane. Gravity is neglected. If φ(x, t) is the transverse displacement from

equilibrium of an element dx of the string at x, at time t, then the length of the string

is ∫ l

0

(dx2 + dφ2)1/2 =
∫ l

0

[1 + (∂φ/∂x)2]1/2dx .

To leading order in ∂φ/∂x , which we take to be small for small displacements,

the extension of the string is
∫ l

0
1
2
(∂φ/∂x)2dx , and the potential energy of stretch-

ing under the tension F is
∫ 1

0
1
2

F(∂φ/∂x)2dx . The kinetic energy of the string is∫ 1

0
1
2
ρ(∂φ/∂t)2dx . Hence

L = T − V =
∫ 1

0

L dx, (3.9)

where

L = 1

2
ρ

(
∂φ

∂t

)2

− 1

2
F

(
∂φ

∂x

)2

(3.10)

is called the Lagrangian density.
The corresponding action is

S =
∫ 1

0

dx
∫ t2

t1

dtL(φ̇, φ′),

writing ∂φ/∂t = φ̇ and ∂φ/∂x = φ′.
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3.3 Continuous systems 31

Figure 3.2 The actual motion of the string between an initial displacement φ(x, t1)
and a final displacement φ(x, t2) generates a surface in space-time.

Hamilton’s principle states that the action is stationary for that surface that

describes the actual motion of the string between its initial displacement φ(x, t1)

and its final displacement φ(x, t2) (Fig. 3.2). We have

δS =
∫ 1

0

dx
∫ t2

t1

dt

[
∂L

∂φ̇
δ(φ̇) + ∂L

∂φ′ δ(φ′)
]
.

Using δ(φ̇) = ∂(δφ)/∂t and δ(φ′) = ∂(δφ)/dx we integrate each term by parts.

Again, the boundary contributions are zero since

δφ(x, t1) = δφ(x, t2) = 0 for all x,

δφ(0, t) = δφ(l, t) = 0 for all t.

We are left with

δS = −
∫ 1

0

dx
∫ t2

t1

dt

[
∂

∂t

(
∂L

∂φ̇

)
+ ∂

∂x

(
∂L

∂φ′

)]
δφ. (3.11)

Since δφ(x, t) is arbitrary, the condition δS = 0 gives

∂

∂t

(
∂L

∂φ̇

)
+ ∂

∂x

(
∂L

∂φ′

)
= 0. (3.12)
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32 The Lagrangian formulation of mechanics

Inserting the Lagrangian density (3.10), we obtain the familiar wave equation

for small amplitude waves on a string:

ρ
∂2φ

∂t2
− F

∂2φ

∂x2
= 0.

Thus continuous systems can be described in a Lagrangian formalism by a suitable

choice of Lagrangian density, and clearly the method can be extended to waves

in any number of dimensions. By analogy with (3.6) and (3.7), we can define the

momentum density

�(φ̇) = ∂L

∂φ̇

and the Hamiltonian density

H = �φ̇ − L. (3.13)

Since the Lagrangian density (3.10) does not depend explicitly on t, it follows that

E =
∫

H dx =
∫ (

∂L

∂φ̇
φ̇ − L

)
dx (3.14)

remains constant during the motion (Problem 3.2). This result is the analogue of

(3.5).

3.4 A Lorentz covariant field theory

In three spatial dimensions, the action is of the form

S =
∫

L dx dy dz dt =
∫

L dx0dx1dx2dx3. (3.15)

The ‘volume element’ dx0dx1dx2dx3 = d4x is a Lorentz invariant (Section 2.4).

Hence S is a Lorentz invariant if the Lagrangian density L transforms like a scalar

field. The covariance of the field equations is then assured. Other symmetries

required of a theory may be built into L.

Consider a Lorentz invariant Lagrangian density of the form

L = L(φ, ∂μφ), (3.16)

where φ(x) = φ(x0, x) is a scalar field. At any point x in space-time, such a

Lagrangian density depends only on the field and its first derivatives at that point.

The field theory is said to be local: there is no ‘action at a distance’. This will be an

important feature of the Standard Model. The field equation is easily derived from

the condition δS = 0, together with the condition that the field vanishes at large
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3.5 The Klein–Gordon equation 33

distances, and we find

∂L

∂φ
− ∂μ

(
∂L

∂(∂μφ)

)
= 0. (3.17)

3.5 The Klein–Gordon equation

The Lorentz invariant Lagrangian density

L = 1

2
[gμν∂μφ∂νφ − m2φ2] = 1

2
[∂μφ∂μφ − m2φ2], (3.18)

where φ(x) is a real scalar field, is a particular case of (3.16). The field equation

(3.17) becomes

−∂μ∂μφ − m2φ = 0,

or (
− ∂2

∂t2
+ ∇2 − m2

)
φ = 0. (3.19)

This equation is known as the Klein–Gordon equation.
The equation has wave-like solutions

φ(r, t) = a cos(k · r − ωkt + θk)

where the frequency ωk is related to the wave vector k by the dispersion relation

ω2
k = k2 + m2, (3.20)

and θk is an arbitrary phase angle.

For mathematical simplicity we shall take the solutions φ(r, t) to lie in a large

cube of side l, volume V = l3, and apply periodic boundary conditions, so that

k = (2πn1/ l, 2πn2/ l, 2πn3/ l) where n1, n2, n3 are any integers 0, ±1, ±2, . . .

The general solution of (3.19) is a superposition of such plane waves:

φ(r, t) = 1√
V

∑
k

(
ak√
2ωk

ei(k·r−ωt) + a∗
k√

2ωk
e−i(k·r−ωt)

)
. (3.21)

The factors
√

2ωk are introduced for later convenience, and the phase factors have

been absorbed into the complex wave amplitudes ak. The sum is over all allowed

values of k.

With the de Broglie identifications of E = ωk, p = k (recall h = 1, c = 1) the

dispersion relation for ωk is equivalent to the Einstein equation for a free particle,

E2 = p2 + m2.
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34 The Lagrangian formulation of mechanics

We may conjecture that the Klein–Gordon equation for φ describes a scalar

particle of mass m. There is no vector associated with a one-component scalar field,

and the intrinsic angular momentum associated with such a particle is zero.

We shall see a Lagrangian density of the form (3.18) arising in the Standard Model

to describe the Higgs particle. At a less fundamental level, the overall motion of

the π0 meson, which is an uncharged composite particle, is described by a similar

Lagrangian density.

3.6 The energy–momentum tensor

The equations expressing both conservation of energy and conservation of linear

momentum are obtained by considering the change in L corresponding to a uniform

infinitesimal space-time displacement

xμ → xμ + δaμ, (3.22)

where δaμ does not depend on x. The corresponding change in φ is

δφ = (∂νφ)δaν. (3.23)

Since L does not depend explicitly on the xμ,

δL = ∂L

∂φ
δφ + ∂L

∂(∂μφ)
δ(∂μφ).

Using the field equation (3.17) for ∂L/∂φ, and the fact that δ(∂μφ) = ∂μ(δφ), we

can rewrite this as

δL = ∂μ

[(
∂L

∂(∂μφ)

)
δφ

]
,

and then, from (3.23),

δL = ∂μ

[
∂L

∂(∂μφ)
∂νφ

]
δaν.

We have also

δL = ∂L

∂xμ
δaμ = δμ

ν

∂L

∂xμ
δaν,

where, as in (2.14),

δμ
ν =

{
1, μ = ν

0, μ �= ν.
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3.6 The energy–momentum tensor 35

Since the δaν are arbitrary, it follows on comparing these expressions for δL that

∂μ

[
∂L

∂(∂μφ)
∂νφ − δμ

ν L

]
= 0, (3.24)

or

∂μT μ
ν = 0, where T μ

ν =
[

∂L

∂(∂μφ)
∂νφ − δμ

ν L

]
. (3.25)

T μ
ν is the energy–momentum tensor. The component

T 0
0 = ∂L

∂φ̇
φ̇ − L

corresponds to the Hamiltonian density defined in equation (3.13), and is inter-

preted as the energy density of the field; in a relativistic theory, the energy density

transforms like a component of a tensor. The ν = 0 component of (3.25) may be

written

∂

∂t
(T 0

0 ) + ∇ · T0 = 0, (3.26)

and expresses local conservation of energy, with T0 = (T 1
0 , T 2

0 , T 3
0 ) interpreted as

the energy flux. Integrating (3.26) over all space and using the divergence theorem

yields

∂

∂t

∫
T 0

0 d3x = 0, (3.27)

provided the field vanishes at large distances. This equation expresses the overall

conservation of energy.

Similarly the ν = 1, 2, 3 components of (3.24) correspond to local conservation

of momentum, with the overall total momentum of the field given by

Pi =
∫

T 0
i d3x. (3.28)

As with the energy, the total momentum of the field is conserved if the field vanishes

at large distances.

In the case of the Klein–Gordon Lagrangian density (3.19),

∂L

∂φ̇
= φ̇,

and the energy density of the field is

T 0
0 = 1

2
[φ̇2 + (∇φ)2 + m2φ2]. (3.29)
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36 The Lagrangian formulation of mechanics

Expressing φ in terms of the field amplitudes ak and a∗
k, and integrating over all

space, gives the total field energy

H =
∫

T 0
0 d3x =

∑
k

a∗
kakωk. (3.30)

In obtaining this expression we have used the orthogonality of the plane waves

1

V

∫
ei(k−k′)·rd3x = δkk′ .

Similarly from (3.28) the total momentum of the field can be shown to be

P =
∑

k

a∗
kakk. (3.31)

3.7 Complex scalar fields

It is instructive to consider also complex scalar fields� = (φ1 + iφ2) /
√

2 satisfying

the Klein–Gordon equation. We shall see in Section 7.6 that if the field � carries

charge q, then the field �∗ carries charge −q. The Klein–Gordon equation for a

complex field � is obtained from the (real) Lagrangian density

L = ∂μ�∗∂μ� − m2�∗�. (3.32)

We introduce here a device that we shall often find useful. Instead of varying the

real and imaginary parts of � to obtain the field equations, we may vary � and

its complex conjugate �∗ independently. These procedures are equivalent. Varying

�∗ in the action constructed from (3.32) yields, easily,

−∂μ∂μ� − m2� = 0. (3.33)

(Varying � gives the complex conjugate of this equation.)

Note that the Lagrangian density (3.32) is the sum of contributions from the

scalar fields φ1 and φ2:

L = ∂μ�∗∂μ� − m2�∗� = 1

2

[
∂μφ1∂

μφ1 − m2φ2
1

]
(3.34)

+ 1

2

[
∂μφ2∂

μφ2 − m2φ2
2

]
.

The general solution of (3.33) is a superposition of plane waves of the form

� = 1√
V

∑
k

(
ak√
2ωk

ei(k·r−ωt) + b∗
k√

2ωk
e−i(k·r−ωt)

)
(3.35)

where ak and bk are now independent complex numbers. The field energy becomes

H =
∑

k

(
a∗

kak + b∗
kbk

)
ωk. (3.36)
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We shall see that we can interpret this expression as being made up of the distinct

contributions of positively and negatively charged fields. (The π+ and π− mesons

are composite particles whose overall motion is described by complex scalar fields.)

Problems

3.1 Show that the kinetic energy of a system of particles, whose positions are determined

by q(t), is a quadratic function of the q̇i .

3.2 Show that dE/dt = 0, where E is given by equation (3.14).

3.3 For the stretched string of Section 3.3, show that the Hamiltonian density is

H = 1

2
ρ

(
∂φ

∂t

)2

+ 1

2
F

(
∂φ

∂x

)2

.

The nth normal mode of oscillation, with wave amplitude An , is given by

φn(x, t) = An sin(knx) sin(ωnt)

where kn = nπ/ l, ωn = (F/ρ)1/2kn . Show that the total energy is An
2ωn

2ρl/4 and

oscillates harmonically between potential energy and kinetic energy.

3.4 Verify the expressions (3.30) and (3.31) for the energy and momentum of the scalar

field given by equation (3.21).

3.5 Show that the Schrödinger equation for the wave function ψ(r, t) of a particle of mass

m moving in a potential V (r) may be obtained from the Lagrangian density

L = −(1/2i)

(
ψ∗ ∂ψ

∂t
− ∂ψ∗

∂t
ψ

)
− (1/2m)∇ψ∗ · ∇ψ − ψ∗V ψ.

(Note that L is real, but not Lorentz invariant.)
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