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The inclusion of kinetic effects into fluid models has been a long standing problem in
magnetic reconnection and plasma physics. Generally, the pressure tensor is reduced to a
scalar which is an approximation used to aid in the modelling of large scale global systems
such as the Earth’s magnetosphere. This unfortunately omits important kinetic physics
which have been shown to play a crucial role in collisionless regimes. The multi-fluid
ten-moment model, however, retains the full symmetric pressure tensor. The ten-moment
model is constructed by taking moments of the Vlasov equation up to second order, and
includes the scalar density, the vector bulk-flow and the symmetric pressure tensor for
a total of ten separate components. Use of the multi-fluid ten-moment model requires
a closure which truncates the cascading system of equations. Here we look to leverage
data-driven methodologies to seek a closure which may improve the physical fidelity of
the ten-moment multi-fluid model in collisionless regimes. Specifically, we use the sparse
identification of nonlinear dynamics (SINDy) method for symbolic equation discovery
to seek the truncating closure from fully kinetic particle-in-cell simulation data, which
inherently retains the relevant kinetic physics. We verify our method by reproducing the
ten-moment model from the particle-in-cell (PIC) data and use the method to generate a
closure truncating the ten-moment model which is analysed through the nonlinear phase
of reconnection.

Key words: space plasma physics, plasma simulation

1. Introduction

Magnetic reconnection is the process in which a magnetic field embedded in plasma
undergoes a topological restructuring. This process, which converts the energy stored
in magnetic fields into particle kinetic and thermal energy, is ubiquitous throughout the
universe and plays an important role in such diverse events as sawtooth crashes in fusion
plasmas (Zweibel & Yamada 2009; Yamada, Kulsrud & Ji 2010), magnetic substorms in
the Earth’s magnetosphere (Hastie 1997) and solar coronal mass ejections (Masuda et al.
1994).

Magnetic reconnection was first studied using magnetohydrodynamics (MHD). In ideal
MHD, which describes a plasma as a single fluid of infinite conductivity, Ohm’s law in
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the lab frame is given by E + u× B = ηJ = 0 and implies that magnetic flux is frozen
into the plasma flows. Hence, magnetic reconnection is topologically prohibited.

In real plasmas, however, the right-hand side of Ohm’s law is not zero. In resistive
MHD, finite conductivity is introduced as the resistive term ηJ . Parker (1957) used this
model to develop the first self-consistent description of magnetic reconnection. However,
many plasmas of interest are nearly collisionless and the reconnection rates predicted
by Sweet and Parker do not match with observations. Petschek’s model (Petschek 1964)
addressed the shortcomings of the Sweet–Parker model by realizing that the geometry
of the reconnection region is crucial and that reducing the aspect ratio of that region
can explain the observed faster reconnection rates. This means that the reconnection
region does not span the global length scale but is much shorter and connected to the
global geometry by slow shocks. Petschek’s model, however, is not realized in numerical
simulations unless one triggers a shorter reconnection region by anomalous resistivity or
other modifications of the physics.

It was later realized that the one-fluid MHD description of plasmas is too limited to
incorporate all the essential reconnection physics. The next steps were Hall-MHD and
extended MHD models that take into account that electrons and ions do not move together
at the small scales of a reconnection region. From the electron momentum equation, one
can derive a generalized Ohm’s law (Vasyliunas 1975; Birn et al. 2001):

E + u× B = ηJ + J × B
n|e| −

∇ · Pe

n|e| +
me

n|e|2 ×
[
∂tJ +∇ ·

(
uJ + Ju− JJ

n|e|
)]

. (1.1)

The generalized Ohm’s law (1.1) describes the various non-ideal contributions to the
electric field in a plasma. The resistive dissipation term, sometimes denoted as the
collisional term, is given by ηJ . The second term on the right-hand side is called the Hall
term which, in and of itself, cannot support magnetic reconnection. It is, however, known
to change the geometry of the reconnection process to enable ‘fast’ reconnection, where
the time scales of the process are of the order of the Alfvenic transit times. The third term
is the divergence of the electron pressure tensor, and the last term is the electron inertial
term.

In fluid simulations, the electron pressure tensor is usually approximated by a scalar
pressure, however, it is known from fully kinetic simulations that off-diagonal terms
can support reconnection electric fields. It has generally become clear that kinetic
physics, being the first-principles description of a plasma, are important for a complete
description of magnetic reconnection, in particular, in the collisionless regime. Advances
in computing power have enabled comparatively large fully kinetic simulations using the
particle-in-cell (PIC) method, even in three dimensions, that can achieve a good separation
between the global size of the simulation, and ion and electron scales, even though
they usually require a reduced ion/electron mass ratio to keep the computational cost
manageable. These kinds of simulations are limited to local simulations of reconnection,
although their extent may be 10s or 100s of ion inertial scales (di). In contrast, many
physical systems of interest, e.g. Earth’s magnetosphere or the Sun’s corona, are many
orders of magnitude larger and will remain inaccessible to fully kinetic simulations for the
foreseeable future.

Fluid simulations are computationally significantly cheaper than kinetic simulations due
to their reduced dimensionality, making them computationally more attractive but at the
cost of a loss of kinetic information in the closure formulation.
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Data-driven multi-fluid ten-moment closure 3

An alternative fluid formulation employed in this context is the multi-fluid moment
model. This model is derived without any approximations by taking moments of the
Vlasov equation and keeps the full set of Maxwell’s equations.

1.1. Multi-fluid and ten-moment model
The multi-fluid model is constructed by taking sequentially increasing velocity space
moments of the Vlasov equation:

dtfs = ∂tfs + v · ∇rfs + q
m

(E + v × B) · ∇vfs = 0 (1.2)

for each species s. Following Wang et al. (2015), the following moments are defined:

n ≡
∫

f dv, (1.3a)

uj ≡ 1
n

∫
vjf dv, (1.3b)

Pij ≡ m
∫

vivjf dv, (1.3c)

Qijk ≡ m
∫

vivjvkf dv. (1.3d)

The evolution equations for these moments are derived by multiplying the Vlasov equation
by consecutive powers of v and integrating out velocity space. Truncating the system of
equations after the second order gives the so-called ten-moment equations (1.4), which
describe the evolution of density, the three components of momentum and each of the
six unique components of the symmetric pressure tensor. Each species is maintained as a
separate set of fluid moments, but a species index has been left out above for brevity.

∂tn+ ∂j(nuj) = 0, (1.4a)

m∂t(nui)+ ∂jPij = nq
(
Ei + εijkujBk

)
, (1.4b)

∂tPij + ∂kQijk = nqu[iEj] + q
m

ε[iklPkj]Bl. (1.4c)

The square bracket notation above indicates the minimal sum over free indices that yields a
completely symmetric tensor. The electromagnetic fields evolve according to the Maxwell
equations:

∇ × E = −∂B
∂t

, (1.5a)

∇ × B = μ0J + 1
c2

∂E
∂t

. (1.5b)

The moments in (1.3) are used for the derivation of the ten-moment model given by
(1.4). Frequently, however, working with the centeredmoments (1.6) is preferred because
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of their convenient physical interpretation as the pressure stress tensor and heat flux tensor.

Pij ≡ m
∫

(vi − ui)(vj − uj)f dv, (1.6a)

Qijk ≡ m
∫

(vi − ui)(vj − uj)(vk − uk)f dv. (1.6b)

The ten-moment model may be re-written in terms of the centeredmoments, which are
related according to

Pij = Pij + 2nmuiuj, (1.7a)

Qijk = Qijk + u[iPjk] − 2nmuiujuk. (1.7b)

Noticeably, each moment equation contains the next higher order moment. This trend
continues ad infinitum resulting in an open system of equations. While this system of
equations is exact, to be of practical use, it needs to be truncated. We truncate the
ten-moment model by seeking a closure that replaces Q with an expression containing
known quantities, such as the lower order moments. In the adiabatic case, Pij is taken
to be isotropic and Q is zeroed out, giving the five-moment model. In this work, we are
specifically interested in the pressure tensor’s impact on reconnection and hence choose
to retain its full structure.

Previous closures have been proposed such as the CGL family of closures (Chust &
Belmont 2006) and the Hammett–Perkins closure (Hammett & Perkins 1990).

In this work, we aim to use data-driven methodologies to derive a symbolic closure
relation truncating the cascading system of equations at the ten-moment model.

We build off the work of Wang et al. (2015), investigating the collisionless regime
using data from a fully kinetic Harris sheet PIC simulation. We then apply a data-driven
technique, sparse identification of nonlinear dynamics (SINDy) (Brunton, Proctor & Kutz
2016), to distill the raw particle output into a symbolic closure which is compared to the
approximate local closure:

∂mQijm ≈ vt|k0|
(
Pij − pδij

)
. (1.8)

In the above, vt is the thermal velocity, k0 is a typical scale-defining wave-number, p is
the scalar pressure attained by averaging the diagonal of the pressure stress tensor and
the moments are centred. Originally defined by Wang et al. (2015), (1.8) is referred to as
the local approximate Hammett–Perkins closure because it replaces the continuous k in the
general non-local Hammett–Perkins closure, with a single k0 value in physical space.

In the literature, various options for closures to the ten-moment model have been
investigated (Ng et al. 2017, 2020) by implementing a given proposed closure into the
multi-fluid moment model, choosing parameters like a typical wavelength of kinetic
instability k0 and running prototypical reconnection problems like the Harris sheet or
island coalescence. The time evolution and snapshots of the fields are then compared to
results of a PIC simulation.

In this work, however, we exploit the additional information available from PIC
simulations to test and derive closures. Since we do have the fully kinetic particle
information available, we can, for example, calculate the third-order heat flux moment
and compare the actual heat flux observed in the simulation to the assumptions of a given
closure. This process has the advantage that we can directly compare terms at any given
time, whereas when comparing multi-fluid and PIC simulations, the state at any given time
is an accumulation of all differences that have occurred up to this time.
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2. Background
2.1. Particle-in-cell method

The particle simulation code (PSC) (Germaschewski et al. 2016) is a modern,
load-balanced, GPU accelerated, fully kinetic PIC code. The PIC method is a numerical
method which discretizes the electromagnetic fields on a 3-D grid and advances them
using Maxwell’s equations while approximating the particle distribution function through
macroparticles which are advanced in continuous phase space.

As a fully kinetic algorithm, the PIC method solves the full Vlasov–Maxwell system of
equations. Thus, moments of the distribution function evolved by the PIC method exactly
satisfy the ten-moment model up to noise and other numerical errors. Systemic noise
inherent to the PIC method is introduced primarily through the sampling of macroparticles
to construct distribution functions.

This systemic noise was demonstrated to be a significant problem when applying the
SINDy method to PIC data by Alves & Fiuza (2022). By spatially integrating the PIC
data, they were able to reduce noise and apply SINDy to effectively recover the Vlasov
equation, recover fluid equations, and discover an adiabatic closure. In § 3, we borrow this
technique and apply it to each of the moments and fields output by the PSC before any
further operation is performed.

2.2. Sparse identification of nonlinear dynamics
SINDy is a framework for the discovery of symbolic equations. Developed by Brunton
et al. (2016), it looks to construct parsimonious solutions from a library containing
candidate terms which are calculated from raw data. It may be used to take data from either
experiment or simulation and generate symbolic governing equations which describe a
dynamical system.

This is accomplished by solving the sparsity-promoting regression problem

L = min
w
‖Θw− y‖2 + λR(w), (2.1)

where Θ is the library containing candidate terms, w is the vector of coefficients associated
with each term in the library, y is the regression target and R(w) is some regularization
function on w scaled by constant λ. Commonly, R is the L1-norm in which case the above
becomes lasso regression. For a detailed description of the framework, see Zheng et al.
(2019) and Champion et al. (2020).

Our experiments approximate (2.1) by solving the least squares problem with
thresholding. This involves iteratively solving the least squares problem y = Θw and
applying an upper and lower bounded threshold to the discovered w, thus restricting the
coefficients to a pre-specified range.

The success of SINDy discovering a parsimonious equation is dependent on selecting
upper and lower bounds which maximally encourages sparse solutions while minimally
allowing error. Solutions to problems of this sort are known as pareto-optimal if the family
of solutions cannot improve on one measure without hindering the other. Therefore, the
optimal bounds for the thresholded least squares problem are associated with the solution
that lives on the pareto-front where the number of included terms may not be further
minimized without increasing the solution error.

Thus, for each instance in which we apply SINDy, we first solve the thresholded least
squares problem with various bounds to construct the pareto curve. The optimal bounds
are then selected from the pareto-front and the problem is re-solved with those bounds.

This method was selected to symbolically model our closure because it is fully
interpretable, emulates nature by leveraging parsimony, and has previously been used
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successfully to model both kinetic and fluid plasma systems (Kaptanoglu et al. 2021; Alves
& Fiuza 2022).

3. Experiments
3.1. Harris sheet simulation

This study uses PSC to simulate a collisionless Harris sheet reconnection problem. Initially
in kinetic equilibrium, the magnetic field is initialized as B = B0 tanh( y/λB)̂x and the
densities as ne = ni = n0 sech2( y/λB)+ nb. The magnetic field is then given a small
sinusoidal perturbation which initiates the reconnection process.

The run uses a 1280× 640 grid with a mass ratio of 25 and 16× 109 particles which
resolves to 0.676�x/Debye length.

This simulation uses an abnormally high number of particles per cell for each species,
approximately 10 000. This was done to lower the level of noise inherent to PIC methods,
as demonstrated by Juno et al. (2020) (see table 1).

3.2. Method
Our method, which relies on SINDy at its core, was used for verifying the ten-moment
model, analysing the existing local approximate Hammett–Perkins closure and searching
for an improved closure.

We begin by loading the moment and field data generated by the PSC, and calculating
relevant spatial and temporal derivatives. We then spatially integrate each term and
construct a library of terms consisting of every right-hand side term from the ten-moment
model.

In verifying the ten-moment model, each order’s term library Θ is constructed by
selecting out only terms with consistent units. Specifically, the zeroth-order’s term library
Θ , contains only two terms from from the single zeroth-order equation (reducing the
method to standard regression), the first-order’s term library contains nine possible terms
from the three first-order equations, and the second-order’s term library contains 24
possible terms from the six second-order equations. Pairing terms with consistent physical
units acts as an a priori constraint on which terms may be accepted into the library.

With the constructed library, we then calculate the left-hand side of each equation in the
ten-moment model. For consistency, we consider the left-hand side to be the derivative
containing terms of the equation, with the exception of the zeroth order, where the partial
time derivative is the left-hand side and the particle divergence is the right-hand side.

The left-hand side is then used as a regression target wherein we apply the SINDy
framework on the associated term library to discover the associated symbolic equations
constituting the right-hand side. This method is summarized in Algorithm 1.

Algorithm 1 Equation Synthesis

1: E, B, f i ← Load field and moment data
2: Calculate ∂tf i, ∂xf i, ∂yf i, ∂zf i for relevant moments
3: Integrate and construct term library Θ

4: define left-hand side as regression target
5: Apply SINDy with pareto-optimal bounds
6: return symbolic equation
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Lx/di0 Ly/di0 Lz/di0 nb/n0 Ti0/Te0 λB/di0

25 1 12.5 0.3 5 0.5

TABLE 1. Harris sheet simulation numerical parameters.

3.3. Ten-moment model and method verification
As the multi-fluid moment equations (1.4) are exact, we can verify them directly from
the Harris sheet PIC data. To show this, we individually calculate the left-hand side and
right-hand side of each equation and demonstrate their equivalence.

In the following analysis, we use the antisymmetric normalized L2 error (3.1) as a
method for four separate comparisons. The first is the numerical error between the
left-hand side and right-hand side calculated directly from the PIC simulation data. This
metric is used to verify that the kinetic data satisfies the ten-moment model and gives
an indicator of the residual noise in the data after integration. The second comparison
is the numerical error between the right-hand side calculated directly from the data and
the discovered right-hand side equation applied to the data. This is an indicator for how
well our method is able to reproduce theory. The third comparison is the numerical error
between the left-hand side calculated from the data and the discovered right-hand side
equation applied to the data, which gives an indicator for how well our discovered equation
can explain the left-hand side of each moment relation.

The final comparison we make is the normalized L2 metric between the coefficients
given by the known multi-fluid equations (1.4) and those discovered using the regression
method. This is referred to as the coefficient error.

L2(x1, x2) = ‖x1 − x2‖2

‖x1‖2
. (3.1)

Using this analysis, we find that the regression method is able to reproduce
the multi-fluid equations if the L2 (left-hand side, discovered) error is equal to or
approximately equal to the L2 (left-hand side, right-hand side) error. Ultimately, we
are looking for symbolic not numeric closure approximations. With this in mind, the
coefficient error is the truest indicator for the success of the method in reproducing (1.4).

We present our findings in tables 2–4 and figures 1–3, where the data presented are from
a representative step T-17 ω−1

ci (ion cyclotron frequency), during the nonlinear phase of
reconnection. Experiments were run at various time steps throughout the nonlinear phase
and the results were shown to not differ greatly.

Systematic error is introduced into the analysis when approximating the time and
space derivatives with the centred finite-difference method. This error appears in the L2
(left-hand side, right-hand side) and the L2 (left-hand side, discovered) errors presented in
the analysis and does not indicate a violation of the conservation laws.

There is potential that this source of error could pose a problem in discovery of
derivative-containing terms. So while this would not be a problem for the method
verification of § 3.3, where the term library Θ does not contain derivative terms, it could
raise issues for closure discovery in § 3.5. To investigate whether this error was a problem,
the method verification of § 3.3 was repeated for each equation using only the partial time
derivative term as the regression target. This modification required the spatial derivative
terms be included in Θ . Results showed that noise induced by the spatial derivatives did
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(a)

(b)

(c)

FIGURE 1. The zeroth-order moment equation or the continuity equation verified from the
Harris sheet PIC data. Here, we contrast the left-hand side in panel (a) with the true right-hand
side in panel (b) and the discovered right-hand side in panel (c).

not pose a problem in right-hand side discovery. The derivative terms were found with
error of the order of the results as presented.

With semantic consistency in mind, we thus stick to the convention of the ten-moment
model and use the derivative-containing terms as the left-hand side throughout the
following sections.

3.3.1. Zeroth-order verification
The zeroth-order equation, calculated from kinetic data, is verified visually, as seen by

the close matching in figure 1 and the low L2 (left-hand side, right-hand side) error. One
might believe that the residual noise would distort the ability of SINDy to isolate the
correct dynamics. This, however, is not the case, as demonstrated by the low coefficient
error, 0.065. This demonstrates the robustness of this method to residual noise and the
derivative approximation systematic error. This is important for validating the approach
for use in closure discovery where many library terms will contain derivatives.

3.3.2. First-order verification
The inclusion of field terms in the first-order equations stabilizes the numerics

significantly. This is demonstrated by the superb left-hand side–right-hand side matching,
the low L2 (left-hand side, right-hand side) error and the low L2 (left-hand side, discovered)
error for each of the three components. Similarly, from the coefficient error, we see that
the method was able to reproduce the first-order equations with 0.01–0.03 normalized L2
coefficient error. These are strong results which validate both the use of kinetic data for
use in the ten-moment model and the use of SINDy to discover dynamics using the data.

3.3.3. Second-order verification
The second-order equations demonstrate different behaviour on-diagonal versus

off-diagonal. The L2 (left-hand side, right-hand side) numerical errors are low in both
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(a)

(b)

(c)

(d)

(e)

( f )

(g)

(h)

(i)

FIGURE 2. Top to bottom are the x-component, y-component and z-component of the first-order
(momentum) equation with the left-hand side in panels (a,d,g), the true right-hand side in panels
(b,e,h), and the discovered right-hand side in panels (c,f,i).
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(a) (b)

(c) (d )

(e) ( f )

(g) (h)

(i) ( j)

(k) (l)

(m) (n)

(o) (p)

(q) (r)

FIGURE 3. Top to bottom, left to right are the xx, yy, zz, xy, xz, yz components of the
second-order moment equation. Each contains the regression target in panels (a,b,g,h,m,n), the
true right-hand side in panels (c,d,i,j,o,p), and the discovered relation in panels (e,f,k,l,q,r).
Visually, the left-hand side, right-hand side and discovered source term of each component match
well and are consistent with theory. This is true of both the on-diagonal and off-diagonal terms,
which demonstrates the reliability of our data. While some off-diagonal discovered terms may
be missing, this is most likely due to their magnitude being small in this particular scenario.

the on-diagonal and off-diagonal terms, validating the second-order equations of the
ten-moment model. Similarly, the low L2 (right-hand side, discovered) in conjunction
with the low L2 (left-hand side, discovered) numerical error indicates that the terms
included in the discovered solution account for the major contributions to the true
right-hand side for each component. This similarly implies that the terms excluded
from the discovered right-hand side must be of small magnitude. The small magnitude
of these terms leads to discrepancies in the discovered right-hand side of the xy, xz
and yz directions, where the coefficient error is > 0.4. This high coefficient error
is due to the exclusion of terms from the discovered solutions. Any term with a
small magnitude will be eliminated by SINDy and is a constraint of the method.
Thus, this inconsistency is explainable and expected in the case of minor-contributing
terms.
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(a) (b) (c)

(d) (e) ( f )

(g) (h) (i)

( j) (k) (l)

FIGURE 4. The local approximate Hammett–Perkins closure calculated during the nonlinear
phase of reconnection. In each coordinate, panels (a–c,g–i) show the divergence of the heat flux,
while panels (d–f,j–l) represent the prediction of the approximate closure. The unknown factor
k0 for each component has been calculated by averaging ∇Qij/(vt(Pij − pδij)) across the entire
domain.

3.4. Local approximate Hammett–Perkins closure
The local closure (1.8) replaces the continuous wave-number k in the Fourier space
response with just one typical wave-number k0. Thus, omitting k0 when calculating the
closure, we would expect the left-hand side and right-hand side to differ by a constant
factor. Further, the closure is most important near the reconnection x-point where we
expect important departures from ideal behaviour. Generally, these trends seem to be
verifiable in the kinetic data seen in figure 4; there is, however, room for improvement in
several areas. One obvious discrepancy is that each direction of the heat-flux divergence
tensor scales by a different k0 from the closure. Second is the clear disparity between the
heat-flux divergence and the closure at regions of the domain distant from the x-point.

Each component presented in figure 4 is represented with k0 calculated by taking the
average ∇Qij/(vt(Pij − pδij)) across the entire domain. In all cases, this results in the
pressure terms being washed out with a lower magnitude than the heat flux divergence.
The on-diagonal terms appear to match structurally while the off-diagonal terms differ.
Here, ∇Qxy has some quadrupolar structure while the pressure terms appear to be bipolar.
The large scale structures of ∇Qxz and ∇Qyz are represented in the associated pressure
terms, but the fine-scale structures are omitted.

These discrepancies are significant and can lead to issues with physical fidelity when
put into practical use as part of the ten-moment model.

3.5. Closure discovery
Applying our methodology to the improvement or replacement of the above given closure,
we decided to restrict ourselves to the nonlinear phase of the reconnection process. This
range may be seen in figure 5. Pareto-optimal bounds are required for SINDy to discover a
parsimonious solution. Constructing a separate pareto curve for each element of ∇Qij, we
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FIGURE 5. The L-2 norm of each component of the heat flux divergence tensor, taken across
the entire simulation domain. Vertical bars represent the nonlinear phase of reconnection.

FIGURE 6. A representative pareto curve constructed by solving SINDy with various upper and
lower bounds for the yy-component of heat flux divergence. The bounds that yield the elbow are
selected for model discovery.

Algorithm 2 Equation Synthesis

1: E, B, f i ← Load field and moment data
2: Calculate ∂tf i, ∂xf i, ∂yf i, ∂zf i for relevant moments
3: Integrate and construct term library Θ

4: for i, j in {x, y, z} × {x, y, z} do
5: calculate pareto-optimal bounds
6: define ∇Qij as regression target
7: Apply SINDy
8: end forreturn symbolic equation

modified Algorithm 1 to that shown in Algorithm 2. A representative pareto curve used in
discovery of the yy-component closure is shown in figure 6.
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In Θ , we include each component of the pressure tensor scaled by the thermal velocity,
the energy transfer term j · E, the Poynting flux terms ∇ · S, each component of the tensor
(u · ∇)P and each term in the scalar product (P∇) · U . These terms were chosen for
inclusion in Θ as each describes an energy flux and thus has the same physical units
as heat flux divergence.

Table 5 summarizes our findings for a representative step (T-17 ω−1
ci ) during the

nonlinear phase and figure 7 demonstrates the temporal validity of the closure.
The analysis was repeated at various times through the nonlinear phase and the showed

that the solutions did not vary greatly. Thus, we present the predictions of the closure given
by table 5 at evenly spaced time intervals through the nonlinear phase with the associated
errors given in the headers of figure 7.

The on-diagonal closures were able to reduce the error significantly when compared
to the given closure. The off-diagonal terms demonstrated no such improvement over the
given Hammett–Perkins closure. However, our proposed closure comes with some caveats
to be discussed further in § 4.

4. Discussion and conclusion

Fully kinetic data may be used to verify the ten-moment multi-fluid model as
demonstrated up to and including second-order conservation laws. Specifically, zeroth-,
first- and second-order equations were satisfied under visual inspection and with numerical
error L2 (left-hand side, right-hand side) ≤ 0.28 implying the multi-fluid ten-moment
model may be validated with kinetic data. This is evidence that the SINDy methodology
may be applied to kinetic data, supporting the findings of Alves & Fiuza (2022).

Applying the SINDy methodology, we were able to validate SINDy as a candidate
data-driven approach up to and including the on-diagonal second-order terms, as
evidenced by the low L2 coefficient error of the discovered solutions. Difficulties were
encountered in the discovery of the off-diagonal second-order right-hand side terms
(as demonstrated by high coefficient error), where the discovered solutions narrowly
deviated from the conservation laws but found more parsimonious solutions with lower
numerical error. This is due to the excluded terms having a low order of magnitude
leading to elimination by SINDy and not evidence of violation of the conservation
laws.

Applied to heat flux divergence, this data-driven approach demonstrates strong results.
The existing local approximate Hammett–Perkins closure gives us a baseline to measure
improvement. The on-diagonal terms of the heat flux divergence were modelled with
significantly reduced numerical L2 error over the baseline. Furthermore, the discovered
closures appear to hold through a significant portion of the nonlinear phase, as
demonstrated in figure 7. The off-diagonal terms were unsuccessfully modelled and
further work is needed to understand this discrepancy.

Other shortcomings of this approach lie in perturbation phase restrictions. While the
discovered closure holds well through the nonlinear phase, there is no such guarantees
during the linear phase. The local approximate Hammett–Perkins closure was derived
using quasi-linear theory, as such, we conjecture that the discovered closure will apply
in the linear regime as well. Unfortunately, we cannot demonstrate this at this time, due to
the low signal-to-noise ratio in the linear phase.

As a data-driven method, we make no attempt to explain the physics of the discovered
closures here. Our sole claim is that the discovered closures will yield improved physical
fidelity during the nonlinear phase when compared to the local Hammett–Perkins closure.
Model validation is paramount when working with data-driven methodologies, as such
future directions in this research will involve applying the discovered closure to a
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FIGURE 7. Snapshots of the discovered closure taken at intervals of 1 w−1
ci throughout

the nonlinear phase, represented row-wise. The diagonal components of ∇Qii are presented
column-wise with the associated error in each of the headers. Of note is the consistent
performance of the closure as the nonlinear phase progresses.

multi-fluid simulation where we hope to see improvements over local Hammett–Perkins
closure. Further, we will be looking at expanding the methodology with the goal of pursing
a closure which accurately represents the off-diagonal terms.
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