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Abstract

By blending techniques from set theory and algebraic topology we investigate the order of any homeo-
morphism of the nth power of the long ray or long line L having finite order, finding all possible orders
when n = 1, 2, 3 or 4 in the first case and when n = 1 or 2 in the second. We also show that all finite
powers of L are acyclic with respect to Alexander-Spanier cohomology.
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1. Introduction

Topologists have adapted two powerful tools from other branches of mathematics to
assist them in solving topological problems: algebra and set theory. Each has made
major contributions but in distinct areas of topology. Algebraic topology has been
very effective in the context of compact spaces, essentially requiring finiteness. Set
theory has been effective in dealing with the large infinite. In the context of topological
manifolds, algebraic topology has been invaluable in the study of compact manifolds
while set theory has been of most use in the study of non-metrisable manifolds.
Unfortunately it has been unusual for the two to be combined. In this paper we
discuss one way in which these techniques can work together and as a result solve a
problem in the theory of non-metrisable manifolds.
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312 Satya Deo and David Gauld [2]

We denote by cot the set of countable ordinals and by L the long line, which is
obtained by inserting an open interval between each countable ordinal and its successor
to obtain the closed long ray L+ and then joining two copies of L+ (which we denote
by L+ and L_) by identifying the ordinals 0 e L+ and 0 € L_. We denote the open
long ray, which is L+ with 0 removed, by Lo.

The primary goal of this paper is to determine the torsion of the group of home-
omorphisms of low powers of the long line and long ray. Our main result shows
that the only torsion in these groups is torsion corresponding to permutation of the
coordinates and 2-torsion. The computation involves a blend of notions of the set
theory of the countable ordinals and algebraic topology, particularly the P. A. Smith
theorems. Details appear in Section 3.

In order to apply the P. A. Smith theorems we find it necessary to calculate the
Alexander-Spanier cohomology of powers of the long line. Of course it is trivial to
show that in singular cohomology theory all powers of the long line are acyclic. We
find in Section 3 that in Alexander-Spanier cohomology theory the powers are also
acyclic. Although we will work with coefficients in an fl-module G, we will suppress
this in the notation.

We refer the reader to [6, Section 6.4] for a discussion of the Alexander-Spanier
cohomology groups Hq(X).

Proofs of the following results may be found in many books on set theory, for
example [5, page 78 and 80].

PROPOSITION 1.1. The intersection of a countable collection of closed, unbounded

subsets ofcx)\ is again closed and unbounded.

PROPOSITION 1.2 (Pressing Down Lemma). Let S C u>\ be a stationary set and
f : S —> a>\ be a regressive function. Then there is a € u)\ so that /"'(<*) is
stationary.

A function / : A —> co\ is regressive if for each a 6 A\{0] C CO] we have
/ (a) < a. A set 5 C a>i is stationary provided that it meets every closed, unbounded
subset of co\.

2. The cohomology of powers of the long line

Whenever x is a point in the finite product of sets we denote by xt the tth coordinate
of x. If a € D. let a = (a,..., a) e lm. For / € R' and r > 0 set

C[t; r] = {s e R* | Y/ = 1 , . . . , /, /) - r < Sj < tj + r].
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Forx,y € Lm set

D[x, y] = [z € Lm | V; = 1 m, min{*,, y,} < Zj < maxfx,, y,}} .

LEMMA 2.1. Let l,m > 0 be integers and let ^ be a collection of open subsets of
W x I™ w h i c h c o v e r s [ 0 , 1 ] ' x L™. 77ien / / i e r e a r e a € Q_+ a n J a c o v e r [ J i , . . . , J p ]
o / [ 0 , 1] £ y o p e n i n t e r v a l s s u c h t h a t f o r e a c h s , t e [ 0 , 1 ] ' a n d e a c h x , y € L™ / / / o r
each j — 1 , . . . , / f n e r e is i, w i t h Sj, tj € Jtj a n d Xj , y j > a f o r e a c h j = 1 , . . . , m
t h e n there i s U e & w i t h ( s , x ) , (t, y ) € U.

PROOF. For each t € [0, 1]' and each limit ordinal X e 1+ we have (t, X) e
(Pvl^ x. Lm

v&Q there is (/ ^ . ^ >KUk(v^k\e^X^u&tbft^^^a!xv«£j(g3Lw.> Q ^ « t
an ordinal / (A.) < X. so that C[r, 1/n] x D [ / (X), X] c U.

By the Pressing Down Lemma there is an ordinal a, such that / " ' (a,) is uncount-
able, hence there are an unbounded set S, c / ~\oe,) and an integer n, > 0 such that
for each X 6 5, there is U e <% with C[t; 1/n,] x D[a,, X] c U.

By compactness finitely many interiors of the hypercubes {C[t; 1/n,] | t € [0, 1]'}
cover [0, 1]'; say {C[f(0; 1/n,] | i = 1 , . . .q), where we abbreviate n,in to n,; we
similarly abbreviate or/(O and 5,(/|. Let a = maxfa, | i = l , . . . , o ) . From the
hypercubes {C[tw; 1/n,] | i = 1 , . . . q] we may construct open intervals { J i , . . . , Jp}
covering [0, 1] such that each of the sets Y\j=i Jij ^es m some C[t(i); 1/n,].

Suppose that s, t 6 [0, 1]' and x, y e L™ are such that for each j = 1 , . . . , / there
is ij with s,, f, € 7^ and x ; , v; > a for eachy = 1 , . . . , m. Then s, t e C[r(l); 1/n,]
for some i. Choose any X € 5, such that Xj ,yj < X for each j ; then A:, y € D[ah X].
Choose U e W such that C[tU); 1/n,] x D[5,-, X] c U. Then (s, x), (t, y) € U. D

PROPOSITION 2.2. H"(l+) = Ofor each q > 0.

PROOF. Since L+ is a connected space, by [6, Corollary 6.4.7] it follows that
H°(L+) is trivial, so we will assume that q > 1.

Let [<p] 6 H9(L+) = Hq(L+) be an arbitrary cohomology class, where <p :
0-++1 -»• G is a a-cocycle. Then 5^ is locally zero on L+ so there is an open covering
*% of 1+ such that whenever x0,..., xq+l € U 6 % then <fy(;co,..., xq+x) = 0.
By Lemma 2.1 there is a € L+ such that for any /8 € (a, aiO the interval [or, y3] is
contained in some member of W. Given any x0, • • •, Xq+i € [a, a>\) we can choose fi
so that x0,..., xq+i < fi; s o x 0 , . . . , * 9 + i 6 ( / e f a n d h e n c e 8(p(x0 xq+1) = 0 .

Thus by [6, Lemma 6.4.1] there is V € C 9 ~ 1 (L + ) such that on [a, <wi)*+1 we have

8\j/ = (p. It follows that [<p] | (or, o)\) = 0 .

Let V = [0, a + 1) and W = ( o r , ^ ) . As V U W = L + and V and V fl

W are contractible, restriction induces an isomorphism Hq(L+) % H 9 (W0 by the

Mayer-Vietoris sequence for reduced Alexander-Spanier cohomology for the triple

(0.+; V, W). Since [<p] \ W = 0 we have [<p] = 0. Hence 1+ is acyclic. HI
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COROLLARY 2.3. The Alexander-Spanier cohomology of the long line is given by:

j
| 0 if q > 0.

PROOF. Apply a Mayer-Vietoris argument to (L; 0_+, L_). •

PROPOSITION 2.4. For each n > 1 anrf eac/i q >0 the reduced Alexander-Spanier
cohomology groups Hq(L"+) are all trivial.

PROOF. We use induction on n, the case n = 1 having been shown in Proposi-
tion 2.2. Assume the result true for powers less than n.

Let [<p] e Hq(L"+), where <p is a cocycle. Then there is an open cover fy of L"+

such that 8(p is locally zero on W+2. Hence by Lemma 2.1 there is a < co\ such
that 8<p is identically zero on ([a, coi)")q+2. Hence by [6, Lemma 6.4.1] there is
f e O - ' f l a , a),)") such that Sf = <p | [a, &>,)". Thus [cp] \ [a, w,)" = 0.

We now prove by induction on m that [<p] | [0, u)\)m x [a, co\)n~m = 0, having al-
ready begun the induction at m = 0 . Suppose that [<p] | [0, a)x)

m~x x [a, &>i)"~m+l = 0 .
Note that

[Cw,)"1 x [a, to,)"""

= [0, «,)" ' - ' x ([0, a ] U [or, «,)) x [a, a>,)"~m

= ([0, to{)""1 x [0, a ] x [a, cotf"") U ([0, w,)"1"1 x [a, w 0 " - m + l ) .

Thus we have expressed [0, coi)m x [a, a>x)
n~m as a union of two closed subsets. By

inductive hypotheses with respect to n, [<p] \ [0, a>\)m~x x [0, a ] x [a,a>l)
n~m = 0

because the compact interval [0, a] is contractible, and by inductive hypothesis with
respect to in we have [<p] | [0, a>\)m~x x [a , a>\)n~m+x = 0 . Furthermore the intersection
of these two closed subsets is [0, coi)

m~[ x {a} x [a, oo\)"~m, which is homeomorphic
to [0, wi)"'-' x [a, a)\)n~m so again by inductive hypothesis is acyclic. Thus by the
reduced Mayer-Vietoris sequence for these two closed sets we may conclude that
[<p] | [0,<u,r x [a,^)"-™ =0.

Taking m = n in the statement above, we conclude that [<p] = 0. Thus Hq(f+) = 0.
•

THEOREM 2.5. The Alexander-Spanier cohomology of powers of the long line is
given by:

Hq(l")=\G lf q = °>
0 if q > 0.
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PROOF. The product L° x L" is acyclic for all n by Proposition 2.4. Inductive use of
the Mayer-Vietoris sequence applied to the triples (Lm x V~m\ I"1"1 x l_"~m+x, ln~l x
L_ x L"+--m) now gives the result. •

3. Torsion of the group of homeomorphisms of powers of the long line

In this section we study the group of homeomorphisms, Jif(Ln), of the space L",
where L is either L or L+. For each a e u>\ we denote by Sa = {x e I" \ \x\ < a}
the 'square' of sides 2a.

Let

|x| = max{|x,| | i = 1 , . . .«} ,

i = { i € { l , . . . I n } | | j c , | = |jc|},

x = [\,... ,n) — x

and

||JC|| =max{|jc,| | i ex] (with ||x|| = 0 i f i = {1 «}).

Although Theorem 3.2 and Theorem 3.3 are subsumed in later results of this section
we present them independently because the proofs which we present here show a strong
interplay between algebraic topology and set theory. In order to apply Smith theory
for locally compact spaces, we need to show that the space is of finite cohomological
dimension [1]. However, that follows very quickly from the next proposition.

PROPOSITION 3.1. The cohomological dimension of the long line, dimj(L) is 1.

PROOF. AS a 1-manifold, L is locally compact. The cohomological dimension of a
locally compact space is determined locally and, as the local cohomological dimension
of IL is 1, so is the (global) cohomological dimension. •

THEOREM 3.2. Let L denote either H.+ or (Lo- Then the group Jf(L) has no torsion.

PROOF. It is enough to show that JF(L) has no elements of prime order. Suppose
to the contrary that there is a homeomorphism h : L -> L of prime order p. Let
G = [h] be the cyclic group of order p generated by h, and Lh = {x e L \ h(x) = x)
be the fixed point set of h. Evidently Lh = LG, the fixed point set of the group G.

The space L is a locally compact Hausdorff space which, by Proposition 2.2, is
acyclic (mod p) with respect to Alexander-Spanier cohomology, and G is a group of
order p . Hence by the Smith theorem, [3], the fixed point set La must also be acyclic
(mod p). Hence LG must be connected by [6, Corollary 6.4.7]. We also know from
the proof of [4, Lemma 2] that Lh must contain an unbounded subset of a)\. It follows
that Lh = LG = L, that is, that h is the identity, a contradiction. •
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THEOREM 3.3. The group Jf(L) has only 2-torsion, that is, any nontrivial element
of finite order must be of order 2.

PROOF. Let/z € Jif(l) be a nontrivial homeomorphism of finite prime power order,
say hpk = e, the identity. It suffices to show that p* = 2, that is, that p = 2 and k = 1.

We remark that the Smith theorems are also valid for prime-power order groups, for
any prime p. It follows from Corollary 2.3 that the fixed point set Lh is a connected
closed subset of L. Since connected subsets of L are intervals, it follows that Lh is
either a point or a nontrivial interval.

If (L'' is a nontrivial interval then h maps X = L\Lh to itself. Note that X is either
connected or has two components.

If X is connected then h\ X e Jt°(X) ss Jf(l+), which, by Theorem 3.2, has no
torsion. Thus h \ X is the identity, so that h = e, a contradiction.

If X is disconnected then X has two components, say A and B, each of which is
homeomorphic to O.+. Continuity of h at the end points of L'1 ensures that h(A) = A
and h(B) = B, and, as in the previous paragraph, we conclude that h = e, a contra-
diction.

It follows that Lh is a single point. Hence h(A) = B and h{B) = A, where A
and B are the two components of L\LA. Thus h2(A) = A, and, as above, we conclude
that h2 = e. D

LEMMA 3.4. Let h: I" - • L" be a homeomorphism. Set D = {aecol | h(Sa) = Sa).

Then D is closed and unbounded.

PROOF. D is closed. Suppose that («„) is a sequence in D converging upwards to
a. If y e Sa, then there is n € co such that y e San so h(y) e h(SaJ = San C Sa. This
shows that h(Sa) C Sa so that h(Sa) C Sa. On the other hand, if h(y) € Sa then there
is n € a) such that /z(.y) e 5On = h(SaJ so y e SOn C Sa and as before 5a C h(Sa).
Thus /i(5a) = Sa and hence a € D.

D is unbounded. Suppose that /3 € a>\ and set a0 = ft. Suppose that an has been
constructed. Because h(SaJ U h~l (SaJ is compact, we may choose an+1 > an so that
h(Saa) U h-'iSaJ C 5On+1. Suppose that «„ /* a.

We claim that a € D. Suppose that y € Sa. As an / a it follows that there is n
so that j € £„„. Then / r ' ( j ) 6 5a,+, C Sa so y 6 /i(5a), that is, 5a c h(Sa) and
hence 5a C h(Sa). Similarly Sa C fc~'(So), that is, h(Sa) C 5a. Thus Sa = h(Sa) so
a e D. •

We define the ope« ra_y /« L" through x to be

R(x) = I y € L" — < — = — for each i, j ex and y, = JC, for each i e i [
1 1 * 1 *,• * > J
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R(x)

\

z

Define an equivalence relation ~ on L" \ {0) by setting x ~ y if and only if x and
y belong to the same open ray in L" \ {0}. Let Ra be the quotient space (Ln \ Sa)/ ~
and denote the quotient map by na : L" \ Sa —>• Ra. Then Ra consists of the ends of
all the open rays. For each a, ft e a>i with a < P let p& : Rp ->• Ra be the bijection
induced by the inclusion L" \ Sp C Ln \ Sa. Thenp^ is continuous (but (pf)"1 is not
unless P = a). Thus <pf : Rfi -+ Ra) is an inverse system.

DEFINITION 3.5. The ray space, R(L"), of L" is the limit of the inverse system

We have the following facts about R(Ln):

(1) There is a natural continuous bijection, which we denote by pa : R(L") - • Ra;
(2) #(£") has a natural stratification /?(L") = U"^1 R>, where each /?, is a finite

disjoint union of subsets each of which is homeomorphic to V when L = L and V+

when L = Q_+;
(3) R{L") is a compact Hausdorff space.

R(V) may be thought of as the boundary of a hypercube in which each open face of
dimension i has been replaced by a copy of V. Furthermore, the closure of a face of
dimension i is homeomorphic to the ith power of the 2-point compactification of L.
For /?(L+) the situation is similar except that the faces are replaced by copies of L'+.
One may carry out a similar construction in R" and so get an ordinary hypercube in
which each face is the 2-point compactification of OS. The following lemma shows that
there is a major difference between the situations in K" and L": the analogue of this
lemma in R" is false. As a result there is a major difference between the behaviours
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of homeomorphisms of L", as exhibited by Corollary 3.10, and K".

LEMMA 3.6. Ife : co, —*• L" is an embedding then there is a unique point r e R(L")
such that for each a e co, the set e~[(7t~[pa(r)) is a closed unbounded subset ofco,.

PROOF. Clearly for each r e R{L") and each a e co\ we have that e ' {n^pa(r)) is
closed so we need only show that there is a unique r for which this set is unbounded.
If we can show that there is at least one such r then it must be unique as any two closed
unbounded subsets of co, have non-empty intersection by Proposition 1.2. Thus we
need only show the existence of such a point r e R(Ln).

Because cox, and hence e(a>i), is not Lindelof whereas every bounded subset of L"
is Lindelof, it follows that at least 1 coordinate of e(u>\) is unbounded; let us suppose
that exactly k coordinates of e(co,) are unbounded, and for ease of notation we will
suppose that the first k coordinates are unbounded. Thus

(1) for each a € 0.+ there is aa e co, such that for each i < & we have |e,(afl)| > a;
(2) there is b e L+ such that for each a e co, and each i > k we have | ^ ( a ) | < b.

Firstly we show that E = [a € co, | |<?,(a)| — \ej(a)\ for all i,j < k] is closed and
unbounded. E is clearly closed, so we need only show that E is unbounded. Suppose
that p0 e u>,. Given fin e co{ choose an e L+ so that ^([0, /?„]) C [-an,an]

k x
[—b, b]"~k. By assumption there is pn+i € co, such that |e,(/5n+i)| > an for each i < k.
Let an / a and /?„ / p. Then \e,(P)\ = a, so 0 e E.

Now we show that there is a ray r e R(L") as described. For each)' e L""* consider
I* x {y} c L ' x L"-k = I". It suffices to show that e~'(L* x {y}) is unbounded
for some y e [—b, b]"~k, for then this set will form a closed, unbounded subset of
co\, and this must intersect the closed, unbounded set E of the previous paragraph in
a closed, unbounded set. Suppose instead that this is not the case. Then for each
y e [-b, b]"~k there is ay € a>[ such that e~\Lk x {y}) c [0, or,,). By continuity
of e it follows that e~l(Lk x {rj}) c [0, ory) for each r\ in some neighbourhood
of y in [—ft, b]"~k. Then by compactness of [—b, b]"~k we conclude that there is
a e (Oi such that e~'(L* x {>>}) C [0, a ] for each )> G [—b, b]"'k, which contradicts
assumption (1). •

LEMMA 3.7. Suppose that X is a compact first countable space and e : co, x X —>•
L" is an embedding. Then the induced map e : X —> R(L"), where e(t) is that point
of R(L") given by Lemma 3.6 applied to e,, is also an embedding.

PROOF. TO show that e is continuous we must show that for each a € co, the
composition ea : X — >̂ R(L") -?—>• Ra is continuous. Suppose that / € X. Then
x~' ea (t) will consist of a homeomorph of the open long ray in which some coordinates
are fixed and up to sign the remaining coordinates are equal and range through (a, co,):
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without loss of generality we will assume that the first k coordinates are equal and range
through (a, u>\) and the remaining coordinates are all non-negative, so that n~xea(t)
is of the form {(*, x,. ..,x,bx,..., bn-k) | JC > or). Then a basic neighbourhood
of ea(t) may be taken in the form na(N), where N = (or, a)\)k x {"["", (b~, fe,+) and
b~ <bt< b+.

Suppose that e~xna(N) is not a neighbourhood of t. Then there is a sequence (f,)
of points of X\e~xna(N) converging to t. Thus there are closed, unbounded subsets
(C) and C such that e(Ct x {tt}) n N = 0 while e(C x {t}) c N. As the countably
many sets [C] U [Q \ i e co] are all closed and unbounded, by Proposition 1.2 so is
their intersection; choose /3 € C n (f]iea Q). Then ((£, //)> converges to (fi, t) but
(e(P, ?,)) does not converge to e(fi, t), contradicting continuity of e.

Now e must be an injection, for if not then there will be two points s, t e X so
that e(s) — e(t). Hence there are closed, unbounded subsets Cs, C, C a>i so that
es{Cs) and e,(C,) are mapped to the same ray. Then we can find two distinct points
0', s), (/', I) e a), x X so that e(s', s) = e(t', t), contrary to e being an embedding.
As a continuous injection from a compact space to a Hausdorff space, e is then an
embedding. •

LEMMA 3.8. / / / : / - > R(L") is a path, then f (I) C Rt for some stratum /?,-.

PROOF. AS noted, each component of the ith stratum of R(Ln) is homeomorphic
to L1 or L+, and the closure of this component is homeomorphic to the ith power of
the 2- or 1-point compactification. The compactification has 3 or 2 path components,
viz L or Q_+ and each of the extra points. Hence the closure of the component consists
of 3' or 2' path components, one of which is the component itself. Thus / (/) must
lie in one of these path components, which is a subset of some stratum. •

COROLLARY 3.9. Iff.X^- R(L") is continuous and X is path connected, then
f(X) c Rj for some stratum /?,.

COROLLARY 3.10. Any homeomorphism h : L" —> L" induces a homeomorphism
I h : R(Ln) -> R(Ln). Moreover, h(Rj) = Rt for each stratum /?,.

PROOF. Given r e R(L") we apply Lemma 3.6 to n~lpa(r), which contains a
subset order equivalent to o>\, to find the natural candidate for h(r). By Corollary 3.9
h takes each component of a stratum to a stratum and by Lemma 3.7 it embeds each
such stratum; hence no stratum is taken by h to a stratum of lower dimension. Applying
the same reasoning to h~l we conclude that h carries a stratum of dimension i to one
of the same dimension. Continuity of h and its inverse is similar to the proof of
continuity in Lemma 3.7. •
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Let <£„ be the group of symmetries of the hypercube [—1, 1]" and &+,„ be the
group of symmetries of the hypercube [0, 1]" which send any point with at least
one coordinate equal to 0 to another such point and any point with no coordinate
equal to 0 to another such point. Let fi : &n -* Jt?(ln) and /z+ : Sf+,n -»• Jt?(L"+)
be the natural monomorphisms. By Corollary 3.10 there are homomorphisms q> :

") -+ Jtr(R(l")) and <p+ : Jf(l"+) -»• Jt?(R(l"+)). The compositions <pfi :
Jf?(R(l")) and <p+[i+ : &+,„ - • Jf{R{V+)) are also monomorphisms.

THEOREM 3.11. Suppose that h e Jif(L"+) is an element of finite order q.

(1) Ifn = 1, thenq - 1.
(2) Ifn = 2, then q = \ or 2.
(3) Ifn = 3, then q = 1,2 or 3.
(4) Ifn = 4, then q = 1, 2, 3, 4 or 6.

PROOF. For any a e a>i set

Va = {(JCI, . . . , xn) e Ln
+ | x,: = 0 for exactly one coordinate / and

x, = a for all others}.

By Proposition 1.1, Lemma 3.4 and Corollary 3.10 there is a closed unbounded subset
A C <u, so that for each a 6 A we have /i(5o n ln

+) - SaC\ln
+ and /i( Vo) = Va. Fix

a € A: it suffices to show that the qth power of h | 5a n L"+ is the identity, where q is
as in the theorem.

Case 1: h fixes Va. If necessary replace /z by a power of h so that q is a power of
some prime p.

Consider h | 3(§a n 3L^) when n > 3: because 3(§a D 3IL^) % §"-2 a n d n

fixes n points therein, it follows from the P. A. Smith theorem [2, Theorem III.5.1]
that the fixed point set of h | d(Sa n 3L^_) is a mod p homology r-sphere, where
n — 2 — r is even if p is odd and h is an orientation-reversing involution if p = 2.
If n = 3, then 3(§a D 9L;) % §' so that h must fix all of d(Sa D dln

+). If n = 4,
then 3(§a n 30.^.) % §2 and h has at least 4 fixed points on this set. Furthermore if
p is odd, then the only way for n — 2 — r to be even is for r = 0 or 2. Now it is
not possible to have r = 0 by the P. A. Smith theorem [2, Theorem III.5.2] because

there are more than 2 fixed points. On the other hand, r — 2 means that h fixes all of
d(§a ndl"+). Thus when n < 3, h fixes 3(§« n dln

+) and even when n = 4, h either
fixes d(Sa n 30.^) or is an involution there, that is, h2 fixes 3(§o ("1 dV+).

Firstly consider the case where h fixes 3 ( § a n 9 L^) (n > 2). Consider/i | § o n3L^ .
As§on3Q_^ « B"~' and/i fixes the boundary ofthis set it follows from the P. A. Smith
theorem [2, Theorem III.5.2] that h fixes all of §„ D dln

+. Similarly h fixes all of
3 (§ a n lL^ ) \3L ; . Thus h fixes all of d(Sa n L;) , and this also holds if n = 1.
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Applying [2, Theorem III.5.2] once again, it follows that h fixes all of Sa, that is, is
the identity there as claimed.

Secondly consider the case where h is an involution and apply the argument to h2

to conclude that h2 is the identity.

General Case. As h( Va) = V ,̂ it follows that some power of h fixes Va, and this
power must be 1 when n = 1, it must be 1 or 2 when n = 2, it must be 1, 2 or 3
when n = 3 and it must be 1, 2, 3 or 4 when n = 4; call it q. Thus we may
apply Case 1 to hq to conclude that either hq or h2q is the identity. However when
n — 4 the involution subcase does not arise when q = 2 or 4 as then hq is already
orientation-preserving. •

THEOREM 3.12. For n = 1, 2 and for any element ofJf(X") of finite order there is
an element of£n having the same order.

PROOF. Suppose that h : L" —> L" is a homeomorphism of finite order. Then the
corresponding homeomorphism h from Corollary 3.10 must map the strata of /?(L")
to themselves. Furthermore if two points r, s e Ro are such that n~l(s) is obtained
from n~\r) by changing the signs on each coordinate (so they are on opposite ends
of a diagonal when n — 2) then the same applies to their images. It follows that there
is an element y € &n such that <p[i(y) \ Ro = h | Ro.

Suppose that y has order /. We claim that h also has order /. By Lemma 3.4,
Lemma 3.6, Corollary 3.10 and Proposition 1.1 there is a closed, unbounded subset of
co\ such that for each a in this set we have h{Sa) = Sa and hno~

lpo(Ri) C no~
[po(Ri)

for each stratum /?,-. It suffices to show that hl \ Sa is the identity. We firstly show
that /i' | dSa is the identity.

The set dSa D 7ro~'po(^o) consists of isolated points, the ends of the interval or the
vertices of the square, so by choice of y, it follows that h' fixes these points. Thus hl

is the identity on dSa for the case n = 1. For the case n = 2, because hl sends dSa

to itself, fixes the corners and is of finite order, again it follows that h' is the identity
on dSa.

Now consider hl | Sa. Because it is the identity on the boundary and has finite
order, and Sa is homeomorphic to the unit ball in R", it follows from [2, Theorem III
5.2] that h' | Sa is the identity. •

EXAMPLE 3.13. It is not the case that the only homeomorphisms of L2 of finite
order are the eight which possibly interchange the coordinates and possibly reverse
the direction of one or both.

For example let # : L+ x A. —> L . x L be a homeomorphism which sends (x, y)
to (— x, y) on all except a non-empty open set contained in Q_o x L. Let h : i.2 —*• i.2

be g on L+ x L and g~l on L_ x L. Then h has order 2.
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QUESTION 3.14. Can we somehow be more specific concerning the homeomor-
phisms of finite order?

For example are they all isotopic to a homeomorphism which permutes and possibly
reverses coordinates?

QUESTION 3.15. Do Theorem 3.11 and Theorem 3.12 holdforall n?

We should be more specific with respect to Theorem 3.11: the intention of the
question is that the torsion in JJ?(Ln

+) should be the same as that of #+,„. As the
statement of Theorem 3.11 part 4 does not satisfy this condition, the question includes
the case where « = 4.

Certainly large parts of the proofs are valid for the general case. The generalisation
of the proof of Theorem 3.12 breaks down at the point where we show that h' \ dSa

is the identity because we cannot be sure that h sends each /-face of dSa to an /-face
except for / = 0. We have been able to show that for a in some closed, unbounded
set there is a subset of each /-face which has non-empty interior in the face and which
is mapped by h to an /-face but this does not appear to be sufficient to complete the
proof.
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