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Locomotion with a wavy cylindrical filament in a
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A yield stress is added to Taylor’s (1952, Proc. Royal Soc. A, 211, 225-239) model of
a microscopic organism with a wavy cylindrical tail swimming through a viscous fluid.
Viscoplastic slender-body theory is employed for the task, generalising existing results
for Bingham fluid to the Herschel–Bulkley constitutive model. Numerical solutions are
provided over a range of the two key parameters of the problem: the wave amplitude
relative to the wavelength, and a Bingham number which describes the strength of the
yield stress. Numerical solutions are supplemented with discussions of various limits of
the problem in which analytical progress is possible. If the wave amplitude is sufficiently
small, the yield stress of the material inevitably dominates the flow; the resulting ‘plastic
locomotion’ results in swimming speeds that depend strongly on the swimming gait, and
can, in some cases, even be negative. Conversely, when the yield stress is large, swimming
becomes possible at the wave speed, with the swimmer sliding or burrowing along its
centreline with a relatively high efficiency.

Key words: propulsion, plastic materials

1. Introduction

The fluid mechanics of locomotion through viscous fluids was pioneered by Taylor and
Lighthill over half a century ago. Taylor’s (1952) model of locomotion driven by the
waving of a cylindrical filament, in particular, lay the foundation for biofluid mechanics
of flagellar motion. Taylor’s theory applied for low-amplitude motions, such that the
swimming stroke constituted a small perturbation of the boundary corresponding to the
swimmer’s surface. Later developments by Hancock (1953) and Lighthill (1975) exploited
the machinery of Stokes flow theory to advance beyond this regime. Lauga & Powers
(2009) provide a review of later developments.
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More recently, it has become popular to consider locomotion through complex fluids,
motivated mostly by the settings of many problems in physiology and the environment.
Viscoelastic fluid models have been the most popular idealisation used in theoretical and
experimental explorations to date. However, locomotion through or above viscoplastic
fluids (Denny 1980, 1981; Chan, Balmforth & Hosoi 2005; Pegler & Balmforth 2013;
Hewitt & Balmforth 2017, 2018; Supekar, Hewitt & Balmforth 2020) and both wet and dry
granular media (Maladen, Ding & Goldman 2009; Juarez et al. 2010; Jung 2010; Dorgan,
Law & Rouse 2013; Hosoi & Goldman 2015; Kudrolli & Ramirez 2019) have also been of
interest.

For waving cylindrical filaments in viscous fluid, an awkward drawback in theoretical
explorations is that long-range effects characteristic of Stokes flow plague analytical
advances even when the filament is relatively thin (Cox 1970; Lighthill 1975; Keller &
Rubinow 1976; Lauga & Powers 2009). In particular, Lighthill’s resistive force theory, the
simplest theory based on the slenderness of the filament, converges only logarithmically
in terms of aspect ratio. By contrast, the localisation of flow around the filament by a
yield stress ensures that the viscoplastic analogue of this theory is more accurate than
its Newtonian cousin, as also noted in the context of granular media (Zhang & Goldman
2014; Hosoi & Goldman 2015). We exploited this feature in a previous article (Hewitt
& Balmforth 2018) to develop viscoplastic slender-body theory. We further applied the
theory to models of swimming driven by the motion of a helical filament (a model also
popularised by Taylor and Hancock).

In the present study, we use this viscoplastic slender-body theory to attack Taylor’s
problem of locomotion generated by the (planar) waving of a cylindrical filament. The
slender-body theory presented by Hewitt & Balmforth (2018) used a simple Bingham
rheology, in which the plastic viscosity beyond the yield point is constant, to describe
the viscoplastic material. Most real materials, however, possess a nonlinear (often
shear-thinning) viscosity, leading us to generalise our previous slender-body results here
to allow the ambient fluid to be described by the Herschel–Bulkley model (although in fact
the behaviour of real viscoplastic materials is invariably richer than even this idealisation;
Balmforth, Frigaard & Ovarlez 2014). Discussions of the effect of a nonlinear rheology on
locomotion have appeared previously (e.g. Vélez-Cordero & Lauga 2013; Li & Ardekani
2015; Riley & Lauga 2017), although these studies have mostly focussed on generalised
Newtonian fluids such as the power-law fluid, whereas our main thrust is to understand the
impact of a yield stress. The impact on flow solutions of including a yield stress is typically
dramatic, leading to a qualitative change in the dynamics and allowing one to access the
‘plastic limit’ where the medium behaves like a perfectly plastic, cohesive solid (Prager &
Hodge 1951).

A notable detail of the current problem is that one might expect that the localisation of
flow by the yield stress should continue all the way to the plastic limit, thereby restricting
motion to narrow boundary layers around the swimmer (Balmforth et al. 2017). However,
it turns out that this only becomes true when the filament can translate nearly along its
length. Otherwise, regions of plastic deformation persist over distances comparable to the
cylinder’s radius, driven by transverse motion. The transverse and axial forces acting on
the filament are then of similar size, unless the motion is very closely aligned with its
axis. In this paper, we explore how this phenomenon can lead to a style of locomotion in
which the swimmer is able to ‘burrow’ through the fluid, moving purely in the direction
of its centreline. Such a style of motion is, in fact, often observed for real organisms
(Gidmark et al. 2011; Dorgan et al. 2013; Kudrolli & Ramirez 2019), as we briefly discuss
in § 4.
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Cylindrical yield-stress locomotion

2. Formulation

Consider a cylindrical filament of radius R moving without inertia through a viscoplastic
fluid. The fluid has yield stress τY , below which any deformation is neglected and above
which there is viscous flow. We adopt the Herschel–Bulkley constitutive relationship to
relate the deviatoric stress τij of the fluid to the strain rates:

τij =
(

Kγ̇ n−1 + τY

γ̇

)
γ̇ ij for τ > τY , (2.1)

with γ̇ij = 0 otherwise, where

{γ̇ ij} = ∂ui

∂xj
+ ∂uj

∂xi
, γ̇ =

√√√√1
2

∑
ij

γijγij and τ =
√√√√1

2

∑
ij

τijτij, (2.2a–c)

the fluid velocity is u, and the remaining parameters denote the consistency K and
power-law index n. The motion of the fluid is governed by mass conservation and force
balance,

∇ · u = 0, ∇ · τ = ∇p, (2.3a,b)

where p is the fluid pressure, which are given in Appendix A.1 in coordinates suitable for
the slender-body analysis.

The cylindrical filament is propelled by waves generated along its length, with wave
speed c and wavelength λ. A sketch of the geometry is shown in figure 1: the waves
are assumed to deform the filament in the (X, Z)-plane, with the Z-axis pointing in the
expected direction of motion (opposite to the direction of the waves). The instantaneous
centreline of the filament is given by the curve X = λX (ζ ), where X (ζ ) denotes a
dimensionless waveform that we assume is inextensible and ζ = (Z + ct)/λ is a phase
variable moving with the wave. As a canonical example, we follow Taylor and consider
the sinusoidal waveform,

X = λX (ζ ) = aλ sin
[

2π(Z + ct)
λ

]
, (2.4)

with (dimensionless) peak amplitude a. In fact, we also open up the possibility of
locomotion driven by more general waveforms, although we restrict attention to cases that
are symmetric with X (ζ ) = −X (−ζ ) and X (ζ ) = X (1

4 − ζ ) for 0 < ζ < 1
2 , such that

the waveform has the extrema X (±1
4 ) = ±a and zeros X (0) = X (±1

2 ) = 0.

2.1. Viscoplastic slender-body theory
When variations along the axis of the filament are much smaller than the radius (R �
λ) the localisation of motion by the yield stress implies that the flow becomes locally
equivalent to that around a straight translating cylinder. As such, the locomotion problem
at hand here breaks down into an exercise in suitably combining these local solutions
along the body of the swimming filament. The key building block for this task comes from
calculation of the flow around and the force on a cylinder moving at a given angle to its
axis. This calculation was performed by Hewitt & Balmforth (2018) for a Bingham fluid
(n = 1), and here we extend those results to motion through a Herschel–Bulkley fluid.

To describe the flow around a translating cylinder, we use a local Cartesian coordinate
system attached to the centreline: the z-direction is aligned with the cylindrical axis and
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Figure 1. Sketches of (a) the swimmer geometry, and (b) the local coordinates (x, z) aligned with a segment
of the cylindrical body that lies at an angle Φ(Z) to the Z axis. The segment moves with speed U at a direction
δ to its axis; the associated force F is directed at an angle δf to its axis.

the x direction lies normal to the cylinder in the plane of translation (see figure 1b). If the
cylinder moves with speed U at an angle δ to the axis, a drag force F is experienced, acting
at an angle δf (figure 1b). As summarised in Appendix A.1, this force can be computed to
be

F = KUn

Rn−1 [x̂Fx(δ, n,Bi)+ ẑFz(δ, n,Bi)], (2.5)

where x̂ and ẑ denote transverse and axial unit vectors, Fx and Fz denote corresponding
dimensionless force components, and the relative importance of the yield stress is gauged
by a local Bingham number,

Bi = τYRn

KUn , (2.6)

Note that, unlike for a Newtonian fluid, there is no simple separation of the dependence
of the force components (Fx,Fz) on the parameters δ, n and Bi, owing to the nonlinearity
of the constitutive law. This leads us to construct those components numerically for given
parameter settings, although some analytical progress in possible in certain asymptotic
limits, as discussed in the appendices.

Figures 2(a) and 2(b) show how the force direction relative to the cylinder axis,

δf = tan−1(Fz/Fx), and magnitude, F ≡
√

F2
x + F2

z , vary with δ and Bi for three values
of n. The main variation of the force magnitude is with Bi; to extract this dominant
dependence, the plots show F/〈F〉, where 〈F〉 denotes the average over 0 ≤ δ ≤ 1

2π. The
angular averages themselves are also plotted against Bi in figure 2(c). These data are
provided in tabulated form in the online supplementary material available at https://doi.
org/10.1017/jfm.2022.48.

2.1.1. The low Bi limit
For low Bingham number, Bi � 1, one might expect that the force components converge to
those for a power-law fluid. However, for the Newtonian case, the Stokes paradox ensures
that the low deformation rates in the far field always impact the result. This leads to a
persistent, logarithmic dependence on Bi that reflects how the yield stress must inevitably
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Figure 2. Slender-body theory results for motion of a cylinder in a Herschel–Bulkley fluid with index n. Colour
maps of (a) force direction δf and (b) F/〈F〉, for n = 0.5 (left), n = 1 (centre) and n = 2 (right), where F =√

F2
x + F2

z and 〈F〉 = (2π)−1 ∮
F dδ is the angular average. The dashed lines show the predicted width of the

reorientation window discussed in § 2.1.2, δ = (β/αn)Bi−2/(1+n), where αn is defined in (2.10). The angular
average 〈F〉 is plotted against Bi in (c) for the same three values of n; the dashed line shows (2.7). The scaled
force components |Fx|/ sin δ and |Fz|/ cos δ are plotted in (d), for n = 1

2 and Bi = 4−j with j = 2, 3, 4, 5 (as
indicated by the blue dots in (c), with colours from red at Bi = 4−2 to blue at Bi = 4−5); the star shows the
analytical result in (2.8), and the triangle indicates an approximate solution from Tanner (1993) (Fx ≈ 12.1).

bring the fluid to rest far from the cylinder and resolve the paradox. Explicitly, we find that

(Fx,Fz) ∼ − 2π

log Bi−1 (2 sin δ, cos δ), (2.7)

for Bi � 1 when n = 1 (Hewitt & Balmforth 2018). On the other hand, the Stokes paradox
is avoided for a shear-thinning fluid (n < 1), as pointed out by Tanner (1993), leading
to a finite drag force for Bi → 0, as illustrated in figure 2(c). While there is no general
analytical solution for arbitrary δ in this limit, an exact solution can be computed for pure
axial motion,

Fz(
1
2π, n, 0) = 2π(n−1 − 1)n, (2.8)
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if n < 1. The convergence of the drag components to their power-law limits for n = 1
2 and

Bi � 1 is illustrated further in figure 2(d), which shows plots of |Fx| / sin δ and |Fz| / cos δ.
This scaling, motivated by the form of the Newtonian limit (2.7), takes care of most of the
δ-dependence of Fz, but works less well for Fx. Thus, an empirical collapse of the form
suggested by Chhabra, Rami & Uhlherr (2001) for Carreau fluids (and which was exploited
for locomotion problems by Riley & Lauga 2017), which implies Fx(δ, n, 0)/Fz(δ, n, 0) =
Fx(δ, 1, 0)/Fz(δ, 1, 0) = 2 tan δ, does not apply accurately in this power-law limit.

For n > 1, the Stokes paradox persists and the drag again vanishes in the limit Bi → 0.
In this case, the far-field solution for the streamfunction in the cross-sectional plane is
expected to contain terms of the form ψ ∼ Cr2−1/n sin θ (see Tanner 1993). Demanding
that such terms balance the term stemming from sideways translation ψ ∝ r sin θ for r =
O(Bi−1) suggests that C = O(Bi1−1/n) which provides the scaling of the drag force for
Bi � 1 (see Hewitt & Balmforth (2018); illustrated for n = 2 in figure 2c).

2.1.2. The large Bi limit
For higher yield stress Bi � 1 and except over a narrow window of angles of motion with
δ � 1, the force components converge to n-independent values with (Fx,Fz) ∝ Bi (see
figure 2c). These values correspond to the perfectly plastic limit of the problem wherein
the yield stress dominates the stress tensor almost everywhere, with τij ≈ τY γ̇ij/γ̇ .

The viscous stresses operate only in thin viscoplastic boundary layers (Balmforth et al.
2017) to adjust the solution and ensure that the no slip condition is satisfied, without
consequence on the net drag. The perfectly plastic deformation outside these boundary
layers span distances of the order of the radius of the cylinder. Importantly, in this plastic
limit the two force components Fx and Fz remain comparable unless δ � 1. Further details
of the corresponding plastic solutions can be found in Appendix A.3.

However, as the cylinder approaches axial motion (δ → 0) there is a narrow window of
angles δ � 1 across which the transverse force Fx drops to zero, as it must on symmetry
grounds (Fx(δ = 0, n,Bi) = 0). The abrupt decrease in Fx arises without change in the
axial force Fz, leading to the force angle δf falling from O(1) values to zero across
this window of motion angles (see figure 2a). The width of this ‘reorientation’ window
decreases with an increase in Bi or reduction of n, as illustrated in figure 2(a). In
Appendix A.2, we show that the narrow window of force reorientation is given by
δ = O(Bi−2/(n+1)), with

Fx ∼ −αnπBi(n+3)/(n+1)δ & Fz ∼ −2πBi, (2.9a,b)

where

αn = (2n + 1)2(3n + 1)
[n2(n + 1)3n+1]1/(n+1) . (2.10)

The chief consequence of the narrow reorientation window for large Bi is that the force
direction (δf ) is highly sensitive to the direction of motion (δ) when this is shifted only
slightly off axis. Equivalently, substantial sideways forces can only be avoided if the
translation of the cylinder is very closely aligned to its axis. As we will find below, this
narrow reorientation window has important consequences for slender locomotion through
a viscoplastic material.

2.2. Application to the swimming filament
We now return to the swimming filament in the (X, Z)-coordinate system (figure 1a), and
use the slender-body results to determine the net forces induced by the swimming motion.
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Cylindrical yield-stress locomotion

We first move into the frame of the wave (in which the motion is independent of time) by
using the dimensionless translating coordinate ζ ≡ (Z + ct)/λ. We remove all remaining
dimensions from the problem by scaling speeds with the wave speed c and stresses with
K(c/R)n. The swimmer is then periodic over −1

2 ≤ ζ ≤ 1
2 and the centreline lies along

X/λ = X (ζ ), which for the canonical sinusoidal waveform in (2.4) is X = a sin 2πζ .
An awkward feature in the application of the slender-body theory to the locomotion

problem is that the analysis is formulated in terms of the local Bingham number Bi and
motion direction δ. Both quantities, however, vary along the swimmer and depend on the
locomotion speed of the swimmer, which must be found as part of the solution of the
problem. In other words, neither Bi nor δ are prescribed. Instead, the relative importance
of the yield stress is provided by the swimmer Bingham number,

Bs = τY

K(c/R)n , (2.11)

which, together with n and specification of the waveform X (ζ ), parametrizes the
locomotion problem. The local Bingham number Bi(ζ ) (2.6) is related to Bs by

Bi(ζ ) = Bs

Vn , (2.12)

where V(ζ ) = U/c is the dimensionless speed of each segment.
The constraint that the swimmer’s centreline is perfectly inextensible demands that, in

the frame of the wave, the body must move in the direction of the centreline at the constant
speed,

Q =
∫ 1/2

−1/2

√
1 +

(
∂X
∂ζ

)2

dζ =
∫ 1/2

−1/2

dζ
cosΦ

(2.13)

(Taylor 1952), which is the arclength of the waveform relative to its wavelength (such that
a point on the body travels exactly one wavelength every dimensionless time unit). Here

tanΦ = dX
dζ
, (2.14)

denotes the local slope of the centreline (see figure 1b). In a stationary (i.e. laboratory)
frame, the swimmer’s body therefore has velocity

(U,W) = Q sinΦX̂ + (Q cosΦ − 1 + Ws)Ẑ , (2.15)

where Ws is the constant translation speed of the swimmer in the ζ direction; i.e. the
dimensionless swimming speed (which is sometimes referred to as the ‘wave efficiency’).
Hence,

V cos δ = Q − (1 − Ws) cosΦ,

V sin δ = (1 − Ws) sinΦ,

}
(2.16)

which allows determination of the speed,

V(ζ ) =
√
(Ws − 1)2 + 2Q(Ws − 1) cosΦ + Q2, (2.17)

the local Bingham number Bi = Bs/Vn (2.12) and the inclination,

tan δ = − (Ws − 1) sinΦ
(Ws − 1) cosΦ + Q

, (2.18)

of each segment of the swimmer’s body.
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We now compute the net axial force on the swimmer by integrating over the local
contributions from each local cross-section, as given by (2.5) with Un = [cV(ζ )]n. The
net force must vanish for steady swimming, leading to∫ 1/2

−1/2
Vn(Fz cosΦ − Fx sinΦ)

dζ
cosΦ

= 0. (2.19)

This integral constraint implicitly determines the swimming speed Ws(n,Bs) given (2.17)
and (2.18) and the dimensionless force components, Fx = Fx(δ, n,V−nBs) and Fz =
Fz(δ, n,V−nBs). We use an iterative procedure to find numerical solutions to this implicit
problem: for a given Bs, n and X (ζ ), we vary Ws until (2.19) is satisfied, evaluating the
integral by quadrature and exploiting interpolations within a tabulation of the slender-body
force components. The tabulation resolves any sharp variations in Fx and Fz and, in
particular, the narrow window described in § 2.1.2 in which the force reorientates.
Wherever the local Bingham number Bi = V−vBs falls outside the tabulated range, we
extrapolate using the limiting behaviour for Bi � 1 or Bi � 1 outlined in § 2.1.

Along with the swimming speed, we also determine the extent of the yielded region
around the swimming filament, the net dissipation rate, and a measure of the swimming
efficiency. The first of these metrics follows from mapping the yield surface on the
(x, y)-plane calculated by slender-body theory for each local cross-section to the swimmer
coordinates (X, Y). The second metric, the net dissipation rate, must equal the power
expended by the swimmer,

P = −
∫ 1/2

−1/2
Vn[V cos δFz + V sin δFx]

dζ
cosΦ

= −Q
∫ 1/2

−1/2

VnFz

cosΦ
dζ. (2.20)

For the third metric, we follow Lighthill (1975) and numerous others and define the
efficiency,

η = Q|Ws|n+1|Fz(δ = 0, n,W−n
s Bs)|

P , (2.21)

which is the ratio of the power needed to drag the undeformed swimmer’s body (of length
equal to the arclength Q) at the swimming speed to the power actually expended.

Note that the specific waveform X of the swimmer only enters the problem through
the definition of Φ in (2.14); i.e. the slope of the centreline. In other words, for a given
waveform, the amplitude and wavelength of the swimming gait are only relevant in how
they combine to set Φ, which must remain sufficiently shallow for the slender-body
theory to be applicable. More specifically, the radius of curvature of the centreline (which
is O(a−1λ)) must remain much greater than the swimmer’s radius R. For the sample
waveforms that we adopt, this restriction demands that the wave amplitude parameter a
should not be too large (specifically, a � λ/R); this is a condition that we informally
ignore in presenting model solutions, but is important to keep in mind.

3. Results

Figure 3 displays numerical results exploiting the construction of § 2 for a swimmer
propelled by the sinusoidal waveform X = a sin 2πζ . As indicated by the comparison of
panels (a–c), for n = 1

2 , 1 and 2, respectively, the results for different power-law exponents
are qualitatively similar. More significant is the role of the yield stress, with an increase of
Bs prompting a clear increase in locomotion speed towards the wave speed.
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Figure 3. Locomotion speed Ws against wave amplitude a for a swimmer driven by sinusoidal waves in
Herschel–Bulkley fluid with (a) n = 1

2 , (b) n = 1 and (c) n = 2. Examples with Bs = 10−3, 10−1, . . . 103 are
presented (colour coded by Bs, from blue to red). The data are replotted logarithmically over a wider range of
a in (d), with n = 1

2 , 1 and 2 shown in red, blue and green (respectively). The dashed line shows the result for
Newtonian fluid (§ 3.1; (3.2)), and the low-amplitude, plastic solutions of § 3.2 are shown by the stars. The inset
in (d) shows the data for a > 0.12, replotted as 1 − Ws against the quantity E(a, n,Bs) defined in (3.17a,b); the
solid (black) line shows the prediction 1 − Ws = E from § 3.3.

The associated power expenditure, or dissipation rate, is shown in figure 4. Naturally,
this measure increases with Bs as the swimmer has to break the yield stress to move;
however, after compensating for this effect the figure shows a progressive decrease in
the scaled power P/Bs for larger yield stress. The power steadily increases with wave
amplitude, and approaches different high-Bi limits for small and large a, as discussed
below.

The swimming efficiency is plotted in figure 5. In the Newtonian limit (central panel,
dotted line), the efficiency has a maximum of around 8 % at a ≈ 0.19. Swimming through
a viscoplastic medium is rather more efficient, achieving a far higher maximum efficiency
of around 88 % at a ≈ 0.12 and high values of Bs; we discuss this limit in more detail in
§ 3.3. The viscoplastic solutions also deviate from the Newtonian limit substantially for
low amplitudes, even when Bs is small; this deviation represents the fact that sufficiently
low-amplitude swimming with finite Bs must inherently become plastic in nature, as
discussed in § 3.2.

An impression of the yielded sheath around the swimmer is displayed in figure 6, which
shows the yield surfaces predicted in certain cross-sections through the swimmer for a
range of values for a and Bs, and a particular choice of the scaled wavelength λ/R (which
does not affect the wave speed or power in the slender limit). Not surprisingly, the yielded
region becomes more localised as Bs is increased. On the other hand, as long as Bs is
not small, variations in the wave amplitude can result in yield surfaces that lie at similar
distances from the swimmer even while the swimming speed increases by almost an order
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(a) (b) (c)

10–1

101
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105

10–210–4 10–3 10010–1

a
10–210–4 10–3 10010–1

a
10–210–4 10–3 10010–1

a

n = 0.5 n = 1 n = 2

P/Bs

Bs

Figure 4. The scaled power P/Bs expended by a sinusoidal swimmer for n = 0.5, n = 1 and n = 2, as
labelled, and different Bs between 10−3 and 103, coloured from blue to red. Two n-independent limiting values
are also shown (green): low-amplitude plastic swimming (dotted) with P/Bs ∼ 4fx( 1

2 π)a ∼ 16(π + 2
√

2)a,
and plastic sliding for moderate a and Bs � 1 (dashed) with P/Bs ∼ 2πQ2 (which, for this sinusoidal gait, is
∼ 32πa2 when a � 1).

(a) (b) (c)

10–2

100

10–1

10–210–3 10010–1

a
10–210–3 10010–1

a
10–210–3 10010–1

a

n = 0.5 n = 1 n = 2

η

Bs

Figure 5. The efficiency η (2.21) for the same data as in figure 4. In the burrowing limit, η ∼ Q−1, shown by
the green dashed line. The central panel also shows the Newtonian limit (black dotted).

of magnitude (compare, for example, figures 6c and 6f ). However, for smaller Bs and larger
a, self-intersections of the yield surfaces can arise (e.g. figure 6g); the implied overlap of
the yielded regions occurs when the span of the flow domain is no longer much smaller
than the wavelength of the swimming stroke, and implies a break down of the slender-body
theory approximation.

The characteristics displayed by the numerical results in these figures motivate a
discussion of a number of limits of the problem, which we discuss below.

3.1. Newtonian limit
When n = 1 and Bi � 1, the force components have the limits in (2.7), and the constraint
(2.19) reduces to

Ws = 1 − Q

[∫ 1/2

−1/2
(2 tan2Φ + 1) cosΦ dζ

]−1

. (3.1)
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Figure 6. Yield surfaces (grey) around sinusoidal swimmer (black) with n = 1, wavelength λ/R = 40,
Bingham number Bs = 0.1 (a,d,g), Bs = 1 (b,e,h) and Bs = 100 (c, f,i), and amplitude (scaled by the
wavelength) a = 0.05 (a–c), a = 0.1 (d–f ) and a = 0.15 (g–i). The swimming speed is included in each panel
(red). For the lowest Bs, only the plane of the wave is shown; higher Bs solutions also include the out-of-plane
yield surfaces (upper plots in each panel).

For a sinusoidal wave profile, we then recover a result derived by Hancock (1953),

Ws = 1 −
∫ 1/2

−1/2

√
1 + 4π2a2 cos2 2πζ dζ

[∫ 1/2

−1/2

1 + 8π2a2 cos2 2πζ√
1 + 4π2a2 cos2 2πζ

dζ

]−1

, (3.2)

which gives Ws ∼ 2π2a2 for small a. For a more general waveform, if χ=aχ1 with a � 1,
we set Φ = aΦ1 ∼ aX ′

1 and Q = 1 + a2Q2 = 1 + 1
2 a2 ∫ 1

0 Φ
2
1 dζ (in view of (2.13) and

(2.14)), and then find Ws = a2W2 with

W2 ∼
∫ 1/2

−1/2
Φ2

1 dζ. (3.3)

3.2. Low-amplitude plastic swimming
For low-amplitude swimming with a yield stress, we again set Φ = aΦ1 ∼ aX ′

1,Q = 1 +
a2Q2 and Ws = a2W2. Away from the extrema of the waveform, (2.17) and (2.18) then
imply that V + O(a) and

δ ∼ 1
2
π sgn(Φ1)− a

Φ1

(
Q2 + 1

2
Φ2

1 + W2

)
, (3.4)
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Over small regions surrounding those extrema, however, the wave slope Φ becomes
smaller, leading to different scalings of the translation speed and motion direction. In
particular, where Φ = O(a2), we find that V = O(a2) and

δ ∼ tan−1 Φ1

a(Q2 + W2)
, (3.5)

(assuming Q2 + W2 > 0), so that δ runs through the entire range [−1
2π, 1

2π].
Because V is therefore always small, the low-amplitude limit corresponds to Bi =

O(a−n) � 1 or larger, as long as Bs is non-zero (see (2.12)). This implies that the force
components are given by the plastic limit Bi � 1. The angle of motion δ, on the other hand,
varies across its entire range (i.e. δ is not restricted to the narrow reorientation window; that
limit, relevant for larger amplitude swimming, is considered below in § 3.3). As discussed
further in Appendix A.3, the force components in this plastic limit take the form

Fx(δ, n,Bi) ∼ −Bifx(|δ|) sgn(δ) Fz(δ, n,Bi) ∼ −Bifz(|δ|) sgn(cos δ), (3.6a,b)

for some functions fx and fz. These functions can be determined from extrapolations of
numerical results for Bi � 1, as plotted in figure 9 in the appendix. We note further the
limiting value fx(1

2π) ≡ 4(π + 2
√

2) and that

fz(|δ|) ≈ A(1
2π − |δ|), (3.7)

provides a good fit to the numerical data with A ≈ 4.4.
In view of (3.6), the constraint of vanishing drag (2.19) becomes

A
∫ 1/2

−1/2

(
1
2
π − |δ|

)
dζ ∼ a

∫ 1/2

−1/2
fx(|δ|)|X ′

1| dζ, (3.8)

which is independent of n. The forms for δ identified in (3.4) and (3.5) now imply that the
contributions to the integrals in (3.8) arise from a ‘global’ region where (Φ, χ) = O(a)
and δ is close to ±1

2π, and from narrow ‘local’ regions near the waveform’s extrema,
where Φ = O(a2) and δ varies. For symmetrical waveforms, X (ζ ) = −X (−ζ ) and
X (ζ ) = X (1

4 − ζ ), with extrema X (±1
4 ) = ±1, the leading-order global contributions

to the left- and right-hand sides of (3.8) are

2aA + 4aA(Q2 + W2)

∫ 1/4−ε

0

dζ
|X ′

1|
and 4afx

(
1
2
π

)
, (3.9)

respectively, where we have introduced a splitting point ε, satisfying a � ε � 1, to
separate the global and local regions (Hinch 1991). The left-hand side of (3.8) has two
local contributions from the O(ε) regions around |ζ | = 1

4 , each of which is equal to

2aA(Q2 + W2)

|X ′′
1 (

1
4 )|

∫ Δ

0

(
1
2
π − tan−1 τ

)
dτ, Δ = ε|X ′′

1 (
1
4 )|

a(Q2 + W2)
. (3.10)

The integrals in (3.9) and (3.10) diverge logarithmically for ε → 0. In writing the full
constraint, we therefore reorganise accordingly to arrive at the implicit equation,

(Q2 + W2)

{
J + log

[
|X ′′

1 (
1
4 )|

a(Q2 + W2)

]}
∼ fx(1

2π)− 1
2 A

A

∣∣∣∣X ′′
1

(
1
4

)∣∣∣∣ , (3.11)
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with

J =
[∣∣∣∣X ′′

1

(
1
4

)∣∣∣∣
∫ 1/4−ε

0

dζ
|X ′

1|
− log ε−1

]
ε→0

+ 1. (3.12)

For the sinusoidal waveform, J ≈ 1.24, and the predictions from (3.11) are included in
figure 3(d). The results are surprisingly close to the corresponding Newtonian prediction
(§ 3.1), at least over the range of amplitudes and rheological parameters used in the plot.

Equation (3.11) implies the presence of a potentially non-asymptotic log a−1 term,
which demands that Ws → 1 − Q < 0 for sufficiently small a. That is, the swimmer must
inevitably reverse direction at very low amplitudes. For the sinusoidal waveform, the other
factors in (3.11) conspire to arrange the speed reversal to arise for a < 10−7, far less that
the range of amplitudes used in figure 3. Figure 7 shows results for different waveforms
given either by the sawtooth-like profile,

X =
16∑

j=1

(−1)j−1

8π2(2j − 1)2
sin[2π(2j − 1)ζ ], (3.13)

or the smoothed square wave,

X = tanh(ς sin 2πζ )

tanh ς
, (3.14)

where ς is a smoothing parameter. For the latter, the speed reversal is observed for higher
amplitudes provided the wave is sufficiently sharp (i.e. ς large enough). The fact that such
strokes lead to the body swimming backwards implies a far more significant rheological
effect than has been noted for other complex fluids. It also implies the curious result that if
the ambient fluid has a yield stress, there is a non-zero amplitude with which the swimmer
can undulate whilst remaining stationary.

The dissipation rate associated with this low-amplitude plastic swimming can be
computed from (2.20), and reduces to the left-hand side of (3.8), up to a factor of Bs,
in this limit. Thus the dissipation is P ∼ 4afx(1

2π)Bs ∼ 16(π + 2
√

2)aBs, which, unlike
the swimming speed, is independent of the swimming gait (see figure 4) and scales linearly
with the swimming amplitude a. The efficiency (2.21) is η ∼ 2πBs|Ws|/P in this limit,
and thus depends sensitively on the swimming gait through the dependence on Ws. For the
sinusoidal swimmer, figure 5 shows that the efficiency in a Newtonian fluid is far lower
than in a viscoplastic fluid for small a; this trend must become interrupted as a is decreased
further, however, because Ws vanishes at some non-zero amplitude in the viscoplastic case.

3.3. Plastic sliding or burrowing
The numerical results in figure 3 indicate that Ws approaches the wave speed for
sufficiently strong amplitudes and yield stresses. Our rationalisation of this observation
is that at such parameter settings, the swimmer is able to exploit the strong drag anisotropy
for small δ that is created by the narrow reorientation window (discussed § 2.1), in order
to ‘slide’ through the medium without appreciable drift. That is, each segment of the
swimmer travels in essentially its local axial direction, while the associated force on that
segment can be directed at a wide range of angles δf . Suppose the swimmer is in this limit,
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Figure 7. Swimming speed Ws against amplitude a for n = 1 and waveforms given by the sawtooth profile
(3.13) (green) or smoothed square wave (3.14) with ς = 0.01, 1, 1.5, 2, 2.75, 4 and 6 (from blue to red). In (a),
the low-amplitude range is shown, with the solid lines showing the solution of (3.11) and the stars indicating
numerical solutions, all with Bs = 103. In (b), higher amplitudes are shown, together with more numerical
solutions with Bs = 5 (dashed) and 50 (solid). The inset in (a) displays the waveforms.

with swimming speed Ws = 1 − ε and ε � 1. Then,

V ∼ Q − ε cosΦ & δ ∼ tan−1 ε sinΦ
Q

= ε

Q
sinΦ + · · · . (3.15a,b)

Consequently, given the limits of the force components in (2.9a,b),

Vn(Fx sinΦ − Fz cosΦ) ∼ πBs

[
2 cosΦ − εαnB2/(n+1)

s

Q(3n+1)/(n+1) sin2Φ

]
, (3.16)

and the force-balance condition (2.19) demands that

ε ∼ E(a, n,Bs) ≡ 2Q(3n+1)/(n+1)B−2/(n+1)
s

αnI
, I(a) =

∫ 1/2

−1/2
sinΦ tanΦ dζ. (3.17a,b)

The convergence of 1 − Ws to E(a, n,Bs) is confirmed by the numerical solutions, as
displayed in the inset of figure 3(c).

We expect this theory to hold as long as δ lies within the narrow reorientation window,
which requires αnBi2/(n+1)δ � β, for some number β that we compute to be approximately
5 (see Appendix A.2 and figure 8). That is,

|δ| � β

αn
Bi−2/(n+1) =⇒ | sinΦ| � 1

2
βI(a) ≈ 5

2
I(a), (3.18)

independent of n, at every point along the swimmer’s body. Given the specific sinusoidal
waveform in (2.4), this requirement reduces to a � 0.12. Simultaneously, however, the
swimming stroke should also fall within the plastic limit Bi � 1, which restricts the range
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of possible values of Bs; see the inset in figure 3(c), which demonstrates that E(a, n,Bs)
must be small.

As discussed in Appendix A.2, the flow around the cylindrical body in the narrow
reorientation window becomes restricted to a viscoplastic boundary layer. Consequently,
in this form of burrowing locomotion the deformations are strongly localised, and the
swimmer slides along a conduit that is only slightly bigger than its body. This feature is
illustrated by the yield surfaces in the final column of figure 6.

Note that the condition in (3.18) is relatively insensitive to the waveform, being a �
0.11–0.12 for a variety of different profiles, including the sinusoid, sawtooth (3.13) and
smoothed square waves (3.14). This feature can be seen in figure 7(b), where the speed
data for Bs = 50 and 103 approach the limit Ws ≈ 1 for such amplitudes, independently of
the waveform.

The dissipation rate or power output in this limit reduces to P ∼ 2πQ2Bs, as shown
in figure 4. The factor of VnFz(0, n,Bi) ≡ 2πBs arises from the need to exceed the yield
stress around the unit radius of the swimmer in this limit, while the dependence on Q2,
and thus on the swimming gait and amplitude, follows because the swimmer’s body must
travel along a distance of the arclength Q at a speed of Q each wavelength. The power
required to drag the straightened swimmer axially at the (unit) swimming speed is lower
by a factor of Q, leading to an efficiency of η ∼ 1/Q; cf. figure 5. The efficiency is thus
maximised at the smallest amplitude for which the burrowing state can be attained, which
is a ≈ 0.11–0.12. Dependence on the waveform enters through Q: the maximal efficiency
is given by the sawtooth triangle wave (3.13), as in the Newtonian problem (see Lighthill
1975), although the maximum is here given by η ≈ 90 % at a = 0.12. For comparison, the
peak efficiencies are η(0.12) ≈ 88 % for the sinusoidal waveform and η(0.12) ≈ 68 % for
the square wave in (3.14); in all cases, these numbers are an order of magnitude higher
than their Newtonian equivalents.

4. Conclusion

In this paper, we have generalised a previous viscoplastic slender-body theory (Hewitt
& Balmforth 2018) and applied it to the problem of locomotion through a viscoplastic
ambient fluid driven by a waving cylindrical filament. For low-amplitude waves, the
stresses become dominated by the yield stress and the problem reduces to that for
swimming through a perfectly plastic medium (more specifically, a rigid-plastic material
with the von Mises yield condition, given our use of the Herschel–Bulkley viscoplastic
constitutive law). A curious feature of this limit is that the swimming speed must become
negative (i.e. the swimmer moves in the same direction as the wave) if the wave amplitude
is sufficiently small relative to its wavelength. This phenomenon requires very small
amplitudes and results in extremely small speeds when the swimmer employs a sinusoidal
waveform, but is more pronounced with a square-wave-like swimming gait.

When wave amplitudes are not so small and for larger yield stresses, a key feature of
viscoplastic slender-body flow comes into play: unless the motion is very closely directed
along the axis of each cylindrical filament of the body, significant sideways forces arise.
Only in almost axial motion does the drag force become closely aligned with the direction
of motion. In the locomotion problem, the appreciable anisotropy in the drag that is set up
across the narrow angular ‘reorientation’ window allows the swimmer to burrow through
the medium by sliding along its axis at nearly the wave speed.

An analysis of this limit of plastic sliding or burrowing indicates that the wave amplitude
need not be particularly large to achieve this burrowing motion (the wave amplitude needs
to be approximately one eighth of the wavelength), a result that is insensitive to the specific

936 A17-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

48
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.48


D.R. Hewitt and N.J. Balmforth

waveform of the swimmer. There is no obvious advantage in employing a higher wave
amplitude than this, because the swimming speed cannot increase past the wave speed
whereas the power expended by the swimmer continues to increase with wave amplitude.
Indeed, this result is clearly demonstrated by considering the swimming efficiency η,
which compares the power consumption by swimming with that required to drag the
straightened body at the same locomotion speed. The efficiency can become relatively
large in the burrowing limit (an order of magnitude higher than the Newtonian equivalent)
because dragging and burrowing differ only in the higher body speed of the undulating
swimmer. Importantly, because this style of locomotion is characteristic of nearly plastic
deformation in the surrounding medium, the ability to burrow in this manner is not limited
to a viscoplastic fluid, but should characterise any plastic material such as a cohesive
granular medium like wet sand.

Burrowing of this kind has been observed experimentally for various worms that
naturally inhabit wet sediments or soils. Dorgan et al. (2013), for example, measured the
motion of the polychaete worm Armandia brevis through sediments and found that the
worms burrowed along their axis at a swimming speed essentially equal to the wave speed
(that is, a dimensionless wave speed or ‘wave efficiency’ of 1). They observed that the
worms burrowed with a scaled amplitude (relative to wavelength) of a ≈ 0.18, which is
consistent with our theoretical prediction for being in the burrowing limit (a � 0.12).
Although we cannot be certain whether these swimmers operate in the plastic limit,
having no access to the detailed rheology of the ambient, support for this conclusion is
also provided by the fact that these observations were insensitive to the swimmer’s wave
frequency (and thus wave speed), consistent with our theory when Bs is sufficiently large.
Further, the same worms swimming in water displayed an inability to burrow along their
axis, presumably because of the absence of a plastic yield stress, and instead ‘drifted’ with
a much slower, frequency-dependent, translation speed.

Similarly, observations of burrowing sand lances (Gidmark et al. 2011) and ocellated
skinks (Sharpe, Kuckuk & Goldman 2015) have also revealed locomotion speeds reaching
those of propulsive undulations with a ≈ 0.25–0.35. While the relevance of plasticity
in the ambient material to enable this form of burrowing locomotion has already been
recognised (Dorgan 2015), the present study provides the first theoretical framework in
which to describe such slender motion through a viscoplastic ambient. Further comparison
of theory and observation is certainly warranted, but requires a detailed characterisation
of ambient rheology. A consideration of the dynamics at the head of the swimmer,
where the conduit followed by burrowing is opened, may also be worthwhile. Finally,
the framework presented here could be extended in the future to describe other forms of
observed locomotion such as peristalsis (Kudrolli & Ramirez 2019).

Supplementary material. Supplementary material are available at https://doi.org/10.1017/jfm.2022.48.
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Appendix A. Analysis

A.1. Formulation
In this appendix we quote the dimensionless governing equations used to generate the
slender-body results discussed in § 2.1: that is, for viscoplastic flow around an infinitely
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long, straight cylinder translating at an angle δ to its axis (see also Hewitt & Balmforth
2018). Lengths are scaled by the cylinder radius R, velocities by the translation speed U of
the cylinder and stresses by K(U/R)n. In the cylindrical polar coordinates system (r, θ, z)
aligned with the centreline, (2.3) becomes

1
r
∂

∂r
(ru)+ 1

r
∂v

∂θ
= 0, (A1)

∂p
∂r

= 1
r
∂

∂r
(rτrr)+ 1

r
∂

∂θ
τrθ − τθθ

r
,

1
r
∂p
∂θ

= 1
r2
∂

∂r
(r2τrθ )+ 1

r
∂

∂θ
τθθ , (A2a,b)

0 = 1
r
∂

∂r
(rτrz)+ 1

r
∂

∂θ
τθz, (A3)

where subscripts indicate tensor components. The dimensionless version of the
Herschel–Bulkley law (2.1) is

τij =
(
γ̇ n−1 + Bi

γ̇

)
γ̇ ij for τ > Bi, (A4)

and γ̇ ij = 0 otherwise, where

{γ̇ ij} =
⎛
⎝ 2ur vr + (uθ − v)/r wr
vr + (uθ − v)/r 2(vθ + u)/r wθ /r

wr wθ /r 0

⎞
⎠ , (A5)

and subscripts of r and θ on the velocity components denote partial derivatives.
The translation of the cylinder demands the boundary conditions (u, v,w) =
(cos θ sin δ,− sin θ sin δ, cos δ) at r = 1. In the far field, the stresses must eventually fall
below the yield stress and the fluid must plug up, such that (u, v,w) → (0, 0, 0). The net
drag per unit length exerted on the cylinder is x̂Fx + ẑFz, with[

Fx
Fz

]
=

∮ [
(−p + τrr) cos θ − τrθ sin θ

τrz

]
r=1

dθ =
∮ [

2τrr cos θ + (rτrθ )r sin θ
τrz

]
r=1

dθ.

(A6)

We solve these equations numerically using an augmented Lagrangian finite-difference
scheme, employing a Fourier transform in the azimuthal direction. The scheme differs
from that used in Hewitt & Balmforth (2018) only by the inclusion of a nonlinear viscosity
to capture shear thinning or thickening for n /= 1.

A.2. Axial and nearly axial motion: force reorientation
For purely axial motion, we have

rτrz = −rpBi & τrz = −Bi − (−wr)
n, (A7a,b)

where r = rp denotes the (axisymmetrical) yield surface for which τrz = −Bi (wr < 0),
given that w = 1 on r = 1 and decreases to w = 0 with wr = 0 at r = rp. Hence,

w = 1 −
∫ r

1

[
(rp − r)

Bi
r

]1/n

dr. (A8)
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D.R. Hewitt and N.J. Balmforth

In the limit of a thin gap, for Bi � 1, we have r = 1 + Bi−1/(1+n)ξ and

wξ ∼ −(ξp − ξ)1/n, w ∼ n
n + 1

(ξp − ξ)(n+1)/n & ξp =
(

1 + 1
n

)n/(n+1)

, (A9)

where ξ = ξp denotes the rescaled yield surface. Because the axial shear stress τrz ∼ −Bi
in this limit, the axial force is given by Fz ∼ −2πBi, corresponding to the perfectly plastic
limit for a cylinder translating along its axis.

If, instead, the motion is nearly, but not exactly, aligned with the axis, and Bi � 1,
the sideways translation is largely contained within 1 < r < rp or 0 < ξ < ξp, and the
leading-order shear rate is γ̇ ∼ (ξp − ξ)1/n. The lateral force balances demand that

∂p
∂ξ

∼ 0,
∂p
∂θ

∼ Bi1/(n+1) ∂τrθ

∂ξ
∼ Bi(n+2)/(n+1) ∂

∂ξ

[
vξ

(ξp − ξ)1/n

]
, (A10a,b)

since

τrθ ∼ Bi vr

|wr| ∼ Bi vξ
(ξp − ξ)1/n

. (A11)

But v = O(δ) at ξ = 0 and v(ξp, θ) = 0, and so

v ∼ −nξ(ξp − ξ)1+1/n

2n + 1
Bi−(n+2)/(n+1) ∂p

∂θ
, (A12)

as long as δ � O(Bi−(n+2)/(n+1)p), which turns out to be the case.
The continuity relation implies a radial velocity u given by

uξ ∼ Bi−1/(n+1)vθ ∼ nξ(ξp − ξ)1+1/n

2n + 1
Bi−(n+3)/(n+1) ∂

2p
∂θ2 , (A13)

or

u ∼ −n2(ξp − ξ)2+1/n[nξp + (2n + 1)ξ ]
(2n + 1)2(3n + 1)

Bi−(n+3)/(n+1) ∂
2p
∂θ2 , (A14)

if u = 0 at ξ = ξp. But we also have that u = δ cos θ at ξ = 0, and so

p ∼ (2n + 1)2(3n + 1)

n3ξ
3+1/n
p

Bi(n+3)/(n+1)δ cos θ. (A15)

Finally,

Fx ∼ −
∮

p cos θ dθ ∼ −αnπBi(n+3)/(n+1)δ, (A16)

where αn is defined in (2.10). The transverse force therefore becomes dominated by the
axial force Fz = O(Bi) only when δ � O(Bi−2/(n+1)). The collapse of the force direction
δf when plotted against αnBi2/(n+1)δ for different n (and large Bi) is illustrated in figure 8;
also included is the prediction δf ∼ tan−1(1

2αnBi2/(n+1)δ) based on the preceding results.
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Cylindrical yield-stress locomotion

2 4 6

αnBi
2/(n+1)δ
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δf
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1.0

0.5
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Figure 8. The force direction δf against αnBi2/(n+1)δ for n = 1
2 (blue), n = 1 (black) and n = 2

(red), with Bi = 2j+n and j = 3, 4, . . . , 10. The thick (green) dashed lines shows the prediction δf ∼
tan−1( 1

2αnBi2/(n+1)δ). The vertical dotted line at αnBi2/(n+1)δ = 5 roughly locates the window of strong force
anisotropy.

A.3. Plastic solutions outside the narrow window of force reorientation
The nearly plastic solutions outside the narrow window where the force becomes
reorientated are illustrated in figure 9. These solutions are characterised by a region of
almost plastic deformation surrounding the cylinder over distances of order the radius.
The perfectly plastic flow is buffered by viscoplastic shear layers where the viscous stress
remains important, and the two shear stress components τnz and τsn dominate the stress
tensor. Here, s denotes the arclength along the centreline of the boundary layer and n is
the transverse coordinate in the plane of the cylinder’s cross-section. Of key importance is
the shear layer against the cylinder, which transmits the fluid drag.

In the plastic limit, Bi → ∞, the boundary layers become infinitely thin and feature
jumps in tangential velocity. The corresponding plastic solution satisfies the slip
conditions, (

τnz
τsn

)
= − Bi√

V2 + W2

(
W
V

)
, (A17)

where V and W denote the jumps in the tangential velocity components, which can be
extracted from a boundary-layer analysis like that used above. It does not seem possible
to analytically find the limiting plastic solution for general δ (the method of sliplines,
which proves useful in the purely two-dimensional flow problem, is not available here).
For δ → 1

2π, the transverse motion of the cylinder dominates the axial translation, which
enters as a regular perturbation of the two-dimensional problem solved by Randolph &
Houlsby (1984). In particular, one may calculate the transverse drag fx(1

2π) as quoted in
§ 3.2. We also observe that the linear approximation (3.7) for fz works well nearly all the
way up to the reorientation window.

The limit Bi � 1 and Bi−2/(n+1) � δ � 1 is somewhat curious, as it corresponds to
the sliding of a cylinder in the direction of its length through a perfectly plastic medium
with an arbitrarily small (as long as Bi can be taken sufficiently large) but non-zero
sideways translation. Associated with this motion is a finite transverse drag (the force
angle approaches a value close to 1

3π) and a flow pattern like that in figure 9(d) (save for
the viscoplastic boundary layers, which shrink to slip surfaces as Bi → ∞). Of course, the
transverse drag eventually declines, and the flow pattern is consumed by the boundary layer
of the axial velocity, as the motion aligns with the axis within the reorientation window.
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Figure 9. Numerical solutions showing the deformation rate invariant γ̇ (as a density over the (x, y)-plane)
and flow pattern (which has vertical symmetry; here showing streamlines of the planar velocity field ux̂ + vŷ
in the upper half-plane (blue); and contours of constant axial speed w in the lower half-plane (green)) around
a moving cylinder for Bi = 1024 and n = 1. The angle of inclination, shown pictorially in blue at the centre
of each cylinder, is (a)–(d) 2π−1δ = [ 3

4 ,
1
2 , 0.1, 0.05]. Panels (e) and ( f ) show the scaled drag components

(|Fx|, |Fz|)/Bi and direction δf against
√

2π−1δ for n = 1
2 (dashed), n = 1 (solid) and n = 2 (dotted), with

Bi = 2j+n and j = 3, 4, . . . , 10. The thick (red) dashed lines show the approximations fx(|δ|) (extrapolated
from the numerical results) and fz(|δ|) = A( 1

2 π − |δ|) with A = 4.4, as quoted in § 3.2, and the stars indicate
the analytical results for pure axial or transverse motion. The (red) points in ( f ) indicate the motion angles used
for (a)–(d).

However, this requires a viscous effect (i.e. finite Bi). The origin of this curious feature is
in the perfectly plastic solution itself: for pure axial motion, there is no deformation of the
fluid, with the translation of the cylinder permitted by slip along its surface. But sideways
translation cannot be accommodated by this style of motion, no matter how small, which
instead demands plastic deformation over a finite region.
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