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In this work, we report numerical results on the flow instability and bifurcation
of a viscoelastic fluid in the upstream region of a cylinder in a confined narrow
channel. Two-dimensional direct numerical simulations based on the FENE-P model (the
finite-extensible nonlinear elastic model with the Peterlin closure) are conducted with
numerical stabilization techniques. Our results show that the macroscopic viscoelastic
constitutive relation can capture the viscoelastic upstream instability reported in previous
experiments for low-Reynolds-number flows. The numerical simulations reveal that the
non-dimensional recirculation length (LD) is affected by the cylinder blockage ratio (BR),
the Weissenberg number (Wi), the viscosity ratio (β) and the maximum polymer extension
(L). Close to the onset of upstream recirculation, LD with Wi satisfy Landau-type quartic
potential under certain parameter space. The bifurcation may exhibit subcritical behaviour
depending on the values of L2 and β. The parameters β and L2 have nonlinear influence on
the upstream recirculation length. This work contributes to our theoretical understanding
of this new instability mechanism in viscoelastic wake flows.

Key words: viscoelasticity, wakes

1. Introduction

A mixture of a Newtonian fluid and high-molecular-weight polymers (even at extremely
low concentration) exhibits viscoelasticity. In the low-Reynolds-number range, when the
elasticity becomes the dominant source of nonlinearity, this flow can manifest many
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interesting and novel flow phenomena that have not been studied extensively, especially
flow instabilities, such as symmetry breaking (Arratia et al. 2006; Poole, Alves & Oliveira
2007; Haward, Toda-Peters & Shen 2018; Haward, Hopkins & Shen 2020), secondary
flow (Yue, Dooley & Feng 2008; Davoodi et al. 2018), time dependency and even elastic
instability and turbulence (Shaqfeh 1996; Groisman & Steinberg 2000, 2001; Larson 2000;
Schiamberg et al. 2006; Grilli, Vázquez-Quesada & Ellero 2013; Varshney & Steinberg
2019; Steinberg 2021). These instability phenomena widely occur in processes ranging
from plastic manufacturing (Denn 2001; Varchanis et al. 2021) to human blood plasma
(Brust et al. 2013; Thiébaud et al. 2014) and porous media flows (Walkama, Waisbord &
Guasto 2020; Hopkins, Haward & Shen 2021). However, detailed understandings of the
underlying mechanisms in many instances remain vague. In these flows, because the extra
elastic stress plays a key role, it is essential to know its value and how it influences the flow
field. Experimental measurement and numerical simulation are the two main approaches to
obtain the elastic stress. Compared to a large number of reported experimental studies with
regards to elastic instability phenomena, the numerical method is applied relatively less
(Poole 2019) to this problem and deserves to be employed more frequently because of its
advantages such as more feasible parametric studies and direct analysis of the elastic stress
field. However, a notoriously difficult problem in numerical simulation of viscoelastic flow
has challenged researchers for decades, namely the numerical instability when simulating
flow at high Weissenberg number (Wi), which is called the high-Weissenberg-number
problem (HWNP). The reader is referred to the recent review paper by Alves, Oliveira
& Pinho (2021) for a more complete account of these issues. In the following, we focus
on explaining an idealized flow model, that is, viscoelastic flow around a circular cylinder,
and the recent studies of its upstream instability.

Viscoelastic flows past bluff bodies are frequently encountered in industrial applications
(e.g. filtration processes and oil extraction) and natural phenomena (e.g. flow in soil
and blood flow in cardiovascular valves and brain tissues) (Larson 1999; Iliff et al.
2012; Marsden 2014). In addition, porous media are frequently modelled by ordered and
disordered arrays of microfluidic circular cylinders (Walkama et al. 2020; Hopkins et al.
2021). Placing one or more cylinders in channel or pipe inlet section is often used as a
disturbance source to study the channel viscoelastic instability in experiments (Varshney
& Steinberg 2018; Qin et al. 2019b). Viscoelastic flow around a circular cylinder has also
been regarded as a benchmark case for numerical and experimental studies (Ultman &
Denn 1971; Dhahir &Walters 1989). In Newtonian wake flows, a downstream recirculation
zone and vortex shedding can be observed because of the global instability in these flows
(Williamson & Rosirko 1988; Barkley 2006; Sipp & Lebedev 2007; Tang et al. 2020).
However, in viscoelastic wake flows, interestingly, an upstream recirculation can form in
cylinder wake flows confined between two plane plates.

The recirculation in front of a circular cylinder was firstly reported by Kenney
et al. (2013). Later, Shi et al. (2015), Zhao, Shen & Haward (2016), Qin et al.
(2019a), Haward et al. (2021) and Hopkins et al. (2022a,b) successively studied
this phenomenon experimentally. These experiments were performed using Boger
solutions, which are elastic without shear thinning, such as dilute polyethylene oxide
or polyacrylamide solutions, or using wormlike fluids with a strong shear-thinning
behaviour, such as cationic surfactant cetyltrimethylammonium bromide and stable
hydrotropic salt 3-hydroxynaphthalene-2-carboxylate solutions. Regarding the geometry
of the experimental set-up, the blockage ratio (BR), i.e. the ratio of cylinder diameter
to channel width, in these experiments is not less than 50 % and the depth-to-diameter
ratio (α) widely ranges from 0.5 to 5. Zhao et al. (2016) summarized the flow patterns
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Figure 1. Summary for the Wi–BR state space of flow patterns. Panels (a, b, d), (c) and (e) are adapted from
Zhao et al. (2016), Hopkins et al. (2021) and Qin et al. (2019a), respectively.

in the Wi–BR space with five states: Newtonian-like state, bending streamlines, vortex
growth upstream, unsteady downstream and three-dimensional time-dependent chaotic
upstream, which are shown in figure 1. Qin et al. (2019a) found that this flow is
inherently three-dimensional and observed symmetry breaking as well as strong upstream
propagation effects via elastic waves. At low BR (∼10 %), there also exists a mild upstream
instability, with only streamline bending, which was reported by Ribeiro et al. (2014),
Nolan et al. (2016) and Haward et al. (2018). Therefore, it seems that high BR is one of the
conditions for (strong) upstream instability. Besides, the experiments by Shi & Christopher
(2016) and Varshney & Steinberg (2017, 2018) also showed that when the cylinders are
arranged in tandem at low BR, the recirculation zone is likely to appear in the upstream
region of the rear cylinders. Few studies quantitatively investigated the length of upstream
recirculation. A schematic diagram of the upstream recirculation length (l) is shown in
figure 2, which is the distance from the foremost end of the upstream recirculation to the
foremost end of the cylinder. Using the cylinder diameter D to normalize l as LD = l/D,
Zhao et al. (2016) obtained a Landau-type behaviour of the dimensionless upstream
recirculation length LD (LD increasing with Wi). In the experiment of Qin et al. (2019a), LD
is almost linear with the Weissenberg number based on the first normal stress difference
WiN = N1/2γ̇ η(γ̇ ), where N1 is the first normal stress difference, γ̇ is the characteristic
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D
l = LD D

Upstream recirculation

Figure 2. Schematic diagram of upstream recirculation length.

shear rate defined by the mean centreline velocity and η(γ̇ ) is the shear viscosity at this γ̇ .
It is worth pointing out that the definitions of the Weissenberg number in these two studies
are different.

In the simulations of viscoelastic fluid flow, an additional elastic stress divergence
term is often linearly introduced to the right-hand side of the Navier–Stokes equations.
The elastic stress is closed by the constitutive relation with conformation tensor, such
as upper-convected Maxwell model (Olsson & Yström 1993), Oldroyd-B model (Oldroyd
1950), finite extensible nonlinear elastic (FENE) model series (Herrchen & Öttinger 1997),
Phan-Thien and Tanner model (Thien & Tanner 1977), etc. The calculated Wi is often
limited to a low value due to the aforementioned numerical instability. Varchanis et al.
(2020) simulated the asymmetric viscoelastic flow around a cylinder, which agreed well
with their experiment. Their numerical simulation was still limited to a low BR.

Flow around a cylinder in a channel is a typical mixed flow, including shear flow and
tensile flow. Using full-field time-resolved flow-induced birefringence imaging, Zhao et al.
(2016a) found that upstream instabilities are associated with high stress in the fluid that
accelerates in the narrow gap between the cylinder surface and the channel wall when
BR is large. In the narrowest area between the cylinder surface and the channel wall,
the fluid parcels are strongly stretched, which results in high elastic stress there. This
sharp growth in elastic stress may cause loss of convergence and trigger the well-known
HWNP in numerical simulation (Hulsen, Fattal & Kupferman 2005). It is a challenging
task to balance numerical accuracy and stability. Up to now, there have been no systematic
numerical simulations to investigate this upstream flow phenomenon (Poole 2019). In this
paper, we present numerical simulations of the viscoelastic upstream instability recently
observed experimentally in front of a cylinder in a narrow channel. The FENE model with
the Peterlin closure (FENE-P) is adopted to describe the rheological constitutive behaviour
of a dilute polymer solution. The square root reconstruction method (Balci et al. 2011) is
selected as the stabilization technique for the numerical simulation to handle HWNPs.

The rest of the paper is organized as follows. Section 2 introduces our specific problem,
governing equations, solution method, mesh generation and grid convergence test. In § 3,
we discuss our numerical results on the upstream instability. We conclude the present work
in § 4. In Appendix A, we also provide more results on the validation, some additional
results on the FENE-CR model, the effect of Péclet number and the effect of different
boundary conditions.

2. Problem formulation and numerical method

2.1. Problem description
Figure 3(a) shows the computational domain, which consists of a pressure-driven flow
from left to right past a circular cylinder in a confined channel. It is true that Qin et al.
(2019a) revealed the inherent three-dimensional nature of the upstream recirculation zone.
However, we study the corresponding flow instability in this two-dimensional setting as
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Figure 3. (a) Schematic diagram of computational domain and (b) the mesh topology near the cylinder.

the first attempt. The width of the channel is H. The diameter of the cylinder is D. Three
different blockage ratios (BR = D/H), i.e. 50 %, 62.5 % and 75 %, are considered. The
distance between the cylinder centre and the inlet is 37.5H (upstream region l1) and
the distance between the cylinder centre and the exit is 25H (downstream region l2). A
parabolic flow profile u( y) = 1.5Ū(1 − 4y2/H2) is adopted as the inlet velocity, where
Ū is the average velocity. The zero-pressure and zero-velocity gradient conditions are
adopted at the outlet. On the upper wall, the lower wall and the cylindrical wall, the
no-slip boundary condition is imposed. The treatment of boundary conditions for the
conformation tensor is discussed below and also in Appendix A.4.

2.2. Governing equations
The viscoelastic fluids in the experiments of Qin et al. (2019a,b) and Pan et al. (2013)
show both the shear thickening of elongational viscosity and the shear thinning of shear
viscosity. Thus, the FENE-P model is adopted in the present study, which takes into
account the finite elongation of polymer molecules and the bounded stress. The governing
equations of the flow combined with the FENE-P constitutive model read as follows (Bird,
Dotso & Johnson 1980; Bird, Armstrong & Hassager 1987):

∇ · u = 0,

ρ
∂u
∂t

+ ρ(u · ∇)u = −∇p + ηs�u + ∇ · τ ,

∂c
∂t

+ (u · ∇)c − (∇u) · c − c · (∇u)T = − τ

ηp
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.1)

with

τ = ηp

λ
[ f (c)c − θI], f (c) = 1

1 − tr(c)/L2 and θ = L2

L2 − 3
, (2.2a–c)

where ρ, u, p, t, λ, c, τ and I are fluid density, flow velocity, pressure, time, statistical
relaxation time of polymers, conformation tensor, stress tensor of polymers and identity
tensor, respectively, ηp and ηs are the polymeric contribution to zero-shear-rate viscosity
and solvent viscosity, respectively, tr denotes trace operator of tensor and the extensibility
parameter L measures the maximum stretching of the polymer chains (Bird et al. 1980,
1987; Purnode & Crochet 1998). When L is set as ∞ and θ tends to 1, the FENE-P model
returns to the Oldroyd-B model (Oldroyd 1950).
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Note that another common FENE-type model is the FENE-CR model, which has
been widely applied to predict the flow behaviour of viscoelastic fluids with a constant
shear viscosity and a bounded elongational viscosity. We have also performed numerical
simulations based on the FENE-CR model. More information about the FENE-CR model
and a comparison of the numerical results obtained using the FENE-P model and the
FENE-CR model are provided in Appendix A.3.

The main dimensionless parameters for this simulation are the Reynolds number Re
and the Weissenberg number Wi, which are defined as Re = ρŪH/2η0 and Wi = 2λŪ/H,
respectively. It is emphasized that the present study uses the half-channel width as the
reference length. Thus, a factor of 2 should be applied to the corresponding Wi defined
using the whole channel width as the reference length when comparing with published
data. Here η0 = ηp + ηs is the total viscosity of the solution at zero shear rate and β = ηs/η0
is the solvent viscosity ratio, a measurement of polymer concentration and molecular
characteristics of polymers. In this study, β is set to 0.59 in most of the cases. Besides,
β = 0.9, 0.75, 0.45, 0.3 and 0.15 are also considered in some cases. Four values of
L2 = 400, 2500, 10 000 and 40 000 are considered. It is suggested from the definitions
of Re and Wi that the fluid viscoelasticity is more prominent than the fluid inertia for
microscale flows. Fluid viscoelasticity can be characterized by Wi. In this work, we mostly
only change Wi to probe how the elasticity influences the upstream instability.

The drag coefficient acting on the cylinder is computed as

Cd = 1
η0ŪH

∫
S

[−pI + τ + ηs∇u] · i · dS, (2.3)

where S is a vector normal to each face element of the cylinder boundary, whose
magnitude is equal to the area of face element, and i is a unit vector aligned with the
streamwise direction.

The fluctuation frequency ( ff ) of flow field and elastic stress wave in the x direction can
be obtained by fast Fourier transform (FFT) of the time series of Cd. The Strouhal number
St is defined as

St = ff H/(2Ū). (2.4)

In the experiment of Qin et al. (2019a) and Pan et al. (2013), the Weissenberg number
is defined using the first normal stress difference. In order to compare our numerical
results with their experimental results, we calculate the first normal stress difference of
the FENE-P model under simple shear flow as follows (Purnode & Crochet 1998):

N1 = (1 − β)η0L4

λ(L2 − 3)

⎡
⎣ 2L6

λ2γ̇ 2(L2 − 3)
2

⎤
⎦

−1/3⎡
⎣�

2/3
1 + �

2/3
2 − 2

(
2L6

27λ2γ̇ 2(L2 − 3)
2

)1/3
⎤
⎦ ,

(2.5)

where

�1 = 1 +
√

1 + 2L6

27λ2γ̇ 2(L2 − 3)
2 , �2 = 1 −

√
1 + 2L6

27λ2γ̇ 2(L2 − 3)
2 . (2.6a,b)

The shear viscosity for the special strain rate (γ̇ ) reads

η = βη0 + (1 − β)η0

[
L6

4λ2γ̇ 2(L2 − 3)
2

]1/3

[�1/3
1 + �

1/3
2 ]. (2.7)
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Figure 4. (a) The Wi′N − Wi relationship and (b) the WiN – Wi relationship for the FENE-P model with
β = 0.59.

In experiment, the material properties of a viscoelastic fluid may be complicated and
not easy to fit the parameters in the existing viscoelastic constitutive models, including the
existence of branched chains of polymer molecules, the spectrum distribution of relaxation
time and the certain distribution of chain lengths of polymer molecules. Herein, we use
a normal stress similarity to re-calibrate the rheological parameters. The Weissenberg
number based on the first normal stress difference Wi′N can then be defined as the ratio of
the first normal stress difference to twice the Newtonian shear stress (Qin et al. 2019a,b),
i.e.

Wi′N = N1/[2γ̇ (η − ηs)], (2.8)

which is different from Wi for the FENE-P model. The Wi′N − Wi relationship for β = 0.59
is plotted in figure 4(a). For the Oldroyd-B model, L tends to infinity and we have

Wi′N = Wi. (2.9)

It is worth mentioning that the above definitions for Wi and Wi′N do not include the
effect of β. Thus, we adopt another definition here proposed in Pan et al. (2013):

WiN = N1/(2γ̇ η). (2.10)

In particular, for the Oldroyd-B model with L → ∞, one has

WiN = (1 − β)Wi. (2.11)

This definition reflects the influence of β. The value of WiN becomes smaller for larger
β. The corresponding WiN–Wi relationship for β = 0.59 is shown in figure 4(b). Note that
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for β = 0.59 and L2 = 2500, WiN is equal to 9.391 when Wi = 100, which is close to the
maximum WiN in the experiments of Qin et al. (2019a,b) and Pan et al. (2013).

2.3. Numerical method
The governing equations are solved by the open-source CFD platform OpenFOAM (Weller
et al. 1998) and the rheoTool toolbox (Pimenta & Alves 2018). Because no numerical
studies have reported the upstream instability in viscoelastic wake flows, we detail our
numerical method below and provide extensive validation of the numerical code. In order
to ensure the boundedness of tr(c) = ckk in the FENE-P model, an implicit algorithm is
used for pre-calculation before each time step (Richter, Iaccarino & Shaqfeh 2010). Tracing
the transport equation of the conformation tensor yields

∂ckk

∂t
+ (u · ∇)ckk = tr[(∇u) · c + c · (∇u)T ] − (ckk − 3)L4

λ(L2 − ckk)(L2 − 3)
. (2.12)

By defining

ϕ = − ln
(

1 − ckk

L2

)
, (2.13)

equation (2.12) can be rewritten as

∂ϕ

∂t
+ uj

∂ϕ

∂xj
= eϕ

L2

(
ckj

∂uk

∂xj
+ cjk

∂uj

∂xk

)
+ eϕ

λ(L2 − 3)
(3eϕ + L2 − L2eϕ). (2.14)

The scalar ϕ is solved at each time step, and then saved for the calculation of the next time
step. Once ϕ is obtained at a given time step, the conformation tensor c can be calculated
by (2.13).

Because of the high singularity of the constitutive governing equations, a small global
artificial dissipation term κΔc is added to the right-hand side of the transport equation of
conformation tensor c in order to avoid divergence. In our simulations, we set Re = 0.0001.
Molecular dissipation of polymer should be considered at this Re. The presence of this
additional diffusive term can be justified by the diffusivity of polymer in solvent, which
was estimated to be over the range of 10−5 to 10−7 cm2 s−1 (Haggerty, Sugarman
& Prud’homme 1988). The Schmidt number Sc = η0/ρκ , which is defined as the ratio
between the zero-shear-rate viscosity and the polymer molecular diffusivity, is introduced
to quantify the artificial dissipation. For dilute solution of polymer dissolved in water, the
density ρ is around 1000 kg m−3. The viscosity may vary over a wide range. For example,
η0 is equal to 0.3 Pa s in the experiment of Qin et al. (2019a). Thus, Sc is estimated over the
range of 105 to 108. The normalized transport equation of conformation tensor features two
dimensionless numbers, Wi and the Péclet number (Pe = Re × Sc). The value of Pe, instead
of Sc, will be specified in our discussions. In the present study, Re is set to be 0.0001. The
corresponding range of Pe is from 10 to 1000. The effect of Pe on the flow behaviour is
discussed in Appendix A.2. By comparing the numerical results and experimental results
of Qin et al. (2019a), Pe is fixed at 40 for the final simulation.

In order to improve the stability of numerical calculation, a stabilization technique
must be adopted. More information on common stabilization techniques can be found
in Appendix A.1. We perform a preliminary study to test two stabilization techniques,
i.e. the logarithmic reconstruction method and the square root reconstruction method. In
the numerical results based on the logarithmic reconstruction method, we do not observe
the upstream recirculation found in the experiments of Qin et al. (2019a). Moreover, the
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logarithmic reconstruction method was also adopted by Mokhtari et al. (2022) and Kumar
& Ardekani (2022) and the upstream recirculation was not reported in their simulations.
However, the square root reconstruction method can successfully predict the upstream
recirculation, which is, therefore, adopted in the present simulation. A new symmetric
tensor b is introduced satisfying c = b · bT . The transport equation of conformation tensor
c can then be rewritten as

∂b
∂t

+ (u · ∇)b = b∇u + ab + 1
2λ

(θ · (bT)−1 − beϕ) + κ

2
�b + κh, (2.15)

where

h = b−1[ 1
2 (�b)b + (∂xb)2 + (∂yb)2 + (∂zb)2]. (2.16)

As advised by Balci et al. (2011), the term κh in (2.15) is ignored in our numerical study.
Note that a in (2.15) is an antisymmetric tensor, which can be written in the form of
components as

a =
⎛
⎝ 0 a12 a13

−a12 0 a23
−a13−a23 0

⎞
⎠ . (2.17)

The components of a can be calculated by solving the following equations:

(b11 + b22)a12 + b23a13 − b31a23 = w1,

b23a12 + (b11 + b33)a13 + b12a23 = w2,

−b13a12 + b12a13 + (b22 + b33)a23 = w3,

⎫⎪⎬
⎪⎭ (2.18)

where

w1 = (b12u1,1 − b11u2,1) + (b22u1,2 − b12u2,2) + (b23u1,3 − b13u2,3),

w2 = (b13u1,1 − b11u3,1) + (b33u1,3 − b13u3,3) + (b23u1,2 − b12u3,2),

w3 = (b13u2,1 − b12u3,1) + (b23u2,2 − b22u3,2) + (b33u2,3 − b23u3,3).

⎫⎪⎬
⎪⎭ (2.19)

Here ui,j are the components of ∇u. For a detailed description of this method, the reader
is referred to Balci et al. (2011).

The second-order backward scheme is used for time discretization. The time step �t in
our simulation is set small enough to ensure numerical stability. The MINMOD scheme
is adopted for discretization of u · ∇b. The second-order upwind scheme is adopted
for discretization of u · ∇u. For the tensor b, the linear extrapolation boundary with
second-order accuracy is imposed on the upper and lower walls, and no-flux boundary
condition with first-order accuracy on the cylindrical wall, to ensure the stability of
numerical calculation. More discussion on the boundary condition for the tensor b can
be found in Appendix A.4. The pUcoupled algorithm is adopted for the pressure–velocity
coupling (Jareteg 2012; Pimenta & Alves 2019). Our simulation is performed using the
rheoFoam solver module of rheoTool in OpenFOAM extend 4.0 (Pimenta & Alves 2018).
The validation of the present numerical method is provided in Appendix A.1.

The subcritical bifurcation can be distinguished by checking whether the simulation
result is path-dependent or not, as shown in figure 5. In the present study, we systematically
vary the controlling parameter Wi and the initial condition to examine their effects on the
final simulation result. In the increasing Wi process, we gradually and slowly increase
Wi and use the numerical result of the current state to initialize the simulation for the
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DW

DW

A

O Wi
Wic

DW

IW

IW

IW

Figure 5. Method to identify subcritical bifurcation. The solid and dashed lines denote the stable and unstable
solutions, respectively. Parameter Wic denotes the critical condition; IW and DW denote the increasing and
decreasing Wi processes, respectively.

next simulation. In the decreasing Wi process, we gradually and slowly decrease Wi and
use the numerical result of the current state to initialize the simulation for the next state. We
explicitly point out which process is applied to perform the simulation only if the results at
the same Wi obtained for the increasing and decreasing Wi processes are not identical. For
an instability indicator A around the linear critical condition (Wic, as shown in figure 5),
finite-amplitude solutions can exist even if Wi is less than Wic, which results in a different
increasing Wi path from a decreasing Wi path (the hysteresis phenomenon). This method
for identifying subcritical bifurcation has been widely used in previous studies (Becherer,
Morozov & van Saarloo 2009; Pan et al. 2013; Burshtein et al. 2017). In this paper,
LD, the root-mean-square upstream recirculation length RMS(LD), the time-averaged drag
coefficient Cd, the root-mean-square drag coefficient Cdrms and an asymmetry parameter
I (defined in (3.8)) are selected as the instability indicators.

2.4. Mesh generation and grid convergence test
A block-structured mesh is generated for the computational domain using the commercial
software ANSYS ICEM. The surrounding region of the cylinder is discretized by an
O-type mesh, as shown in figure 3(b). The remainder of the computational domain is
discretized using several blocks of quadrilateral meshes. In the y direction, Ny = 121 (for
BR = 50 %, 201 for BR = 65 % and 75 %) grid points are unevenly distributed. In the
x direction, Nx = Ny. The dense mesh is applied near the cylinder. The O-type mesh
comprises Ns = 2(Nx + Ny − 2) = 800 (BR = 65 % and 75 %) or 440 (BR = 50 %) grid
points uniformly distributed along the cylinder perimeter and Nr = 200 (BR = 65 % and
75 %) or 120 (BR = 50 %) grid points stretched over an exponential progression along
the radial direction to ensure a fine mesh near the cylinder surface. We set the first cell
side-by-side to the cylinder surface in the radial direction to 0.00125H. In the x direction,
Nl1 = 701 grid points are set in the upstream region, and Nl2 = 301 grid points are unevenly
arranged in the downstream region. In the y direction, Ny = 121 (201 for BR = 65 % and
75 %) grid points are unevenly distributed. The total number of cells in the computational
domain is approximately 280 000 (BR = 65 % and 75 %) or 150 800 (BR = 50 %). The
detailed mesh generation description can be found in our previous publication (Peng et al.
2021).

The parameter set (BR, Wi, L2, β) = (50 %, 30, 2500, 0.59) is selected to check the mesh
dependency and the corresponding simulation is performed on three sets of meshes, which
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Mesh Nl1 Nl2 Ny Nx Nr �r Total LD

Mesh1 301 201 51 50 71 0.00125H 39 000 0.9202–1.0041
Mesh2 701 301 121 121 71 0.00125H 150 800 1.2329
Mesh3 1201 501 201 201 121 0.000625H 436 000 1.2726

Table 1. Parameter set (BR, Re, Wi, L2, β) = (50 %, 0.0001, 30, 2500, 0.59). Here Nl1 and Nl2 denote the grid
numbers of the upstream and downstream regions along the x direction, respectively; Nx and Ny denote the
grid numbers in the x and y directions, respectively; Nr denotes the grid numbers radiating from the cylinder
surface; and �r is the grid size of the innermost grid near the cylinder wall.

Cases BR β L2 Wi

Section 3.1 50 % 0.59 400, 2500, 10 000 0–100
50 % 0.59 40 000 0–60

Section 3.2 10 %–50 % 0.59 2500 0–100
62.5 % 0.59 2500, 10 000, 40 000 0–20
75 % 0.59 400, 2500, 10 000 0–10
75 % 0.59 40 000 0–9

Section 3.3 50 % 0.1–0.9 2500 0–30
75 % 0.3–0.9 10 000 0–20
75 % 0.15 10 000 0–15

Table 2. Parameter space of the present study.

are listed in table 1. The effect of the mesh size on LD is investigated. In our numerical
simulation, LD is measured as the horizontal distance from the most remote upstream
stagnation point (u = 0 and v = 0) to the front end of the cylinder. The simulation results
show that LD for Mesh1 is time dependent and its variation range is recorded in table 1.
Length LD is steady for Mesh2 and Mesh3 and the difference between the results for Mesh2
and Mesh3 is 3 %. We thus consider that our numerical results for Mesh2 are accurate
enough and the final simulations are performed on this mesh.

3. Results and discussion

In this section, we report the numerical results of the viscoelastic wake flow in a confined
channel. The parameters considered are (BR, β) = (50 %, 0.59) and L2 = 400, 2500, 10
000 or 40 000 in § 3.1; β = 0.59, L2 = 400, 2500, 10 000 or 40 000 and BR = 10 % to
75 % to study the effect of BR in § 3.2; and BR = 50 % or 75 %, L2 = 2500 or 10 000 and
β = 0.1–0.9 to study the effect of β in § 3.3. Table 2 summarizes the parameter space of
the present study. In a certain parameter range, the flow is unsteady. We use the data in
five statistical cycles to calculate the time-averaged power spectral density (PSD) and urms
quantities after the flow reaches the statistically steady state.

Before we perform the flow simulations, the effect of the length of downstream region
l2 on the upstream recirculation is examined. Here we consider the parameter set (BR,
β, L2, Wi) = (50 %, 0.59, 2500, 60). Three different l2 of 25H, 50H and 100H are
investigated. The upstream recirculation lengths at different l2 are summarized in table 3,
which indicates that l2 has a very small effect on the upstream recirculation. To save
computational time, l2 = 25H is selected for the final simulation.
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l2 25H 50H 100H

LD (Wi = 60) 2.3012 2.3001 2.2992

Table 3. Effect of l2 on the upstream recirculation length.

3.1. High-Weissenberg-number simulations for the FENE-P model at BR = 50 %
Simulation is first performed for the case with the parameter set (BR, β, L2) = (50 %, 0.59,
2500). The set (BR, β) = (50 %, 0.59) is often used as a benchmark case for numerical
simulation. Due to the numerical instability and heavy calculation burden, Wi was often
set to less than 0.5 in previous studies (e.g. Fan, Tanner & Phan-Thien 1999; Alves, Pinho
& Oliveira 2001; Hulsen et al. 2005). In our numerical simulation, relatively high-Wi flows
(up to 100) are calculated by considering polymer molecular diffusion and using a small
time step. Lee, Hwang & Cho (2021) indicated that the effect of molecular dissipation of
polymer can be negligible only when Pe is large (Pe >∼105) and Wi is small (Wi < ∼1).
Since the maximum Wi considered is 100 and Pe is equal to 40 in the present study,
molecular dissipation of polymer should be taken into account.

The streamline distributions and the u velocity profiles are shown in figure 6. In a
Newtonian fluid, the flow is almost symmetric with respect to the cylinder as shown
in figure 6(a). As Wi increases, the velocity decreases gradually along the directions
approaching the cylinder both upstream and downstream, and the downstream velocity
decreases faster. Figure 6( f ) indicates that the downstream u velocity almost linearly
increases with x except for the region near the cylinder wall for different Wi, which is
consistent with the experimental results of Haward et al. (2018). Note that the strain rate at
the rear stagnation point of the cylinder is equal to zero (Haward et al. 2019). At Wi = 15,
a recirculation zone starts to form upstream of the cylinder. Correspondingly, a region
of negative u velocity can be observed in the upstream recirculation region as shown in
figure 6( f ). With a further increase in Wi, the upstream recirculation bubble becomes
larger.

To better understand the upstream recirculation, we follow Lee et al. (2007) and discuss
the flow-type parameter defined as

ξ(x, y) = |γ̇ | − |Ω|
|γ̇ | + |Ω| , (3.1)

where |γ̇ | =
√

1
2 D : D and |Ω| =

√
1
2Ω : Ω are the magnitudes of the deformation rate

tensor D = 1
2 (∇u + ∇uT) and the vorticity tensor Ω = 1

2(∇u − ∇uT), respectively,
which can be locally evaluated using the components of the velocity vectors. Parameter
ξ is all-coordinate invariant (Lee et al. 2007). Here, ξ =−1 indicates solid body rotation,
ξ = 0 simple shear and ξ = 1 pure extension. The flow strength in the extensional regions
is quantified by the principal strain rate or the eigenvector of D (Astarita 1979):

λ1 = 1
2

√
(D11 − D22)

2 + 4D2
12. (3.2)

In order to better describe the tensile strength in the extension area, a dimensionless
parameter λ2 is defined by multiplying λ1 and ξ :

λ2 = ξλ1. (3.3)
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Figure 6. Streamlines for Newtonian (a) and viscoelastic (b–e) fluids at BR = 50 %, β = 0.59 and L2 = 2500
for different Wi and the corresponding u velocity profiles along y = 0 ( f ). The contours in (a–e) are coloured
by

√
u2 + v2/Ū. All the streamlines are almost symmetric about the horizontal centreline of the cylinder.

A local stretch Weissenberg number is defined as

Wielastic
local = λ

u2 + v2

[
u2 ∂u

∂x
+ uv

∂v

∂x
+ uv

∂u
∂y

+ v2 ∂v

∂y

]
, (3.4)

which describes the local effect on the Weissenberg number caused by stretching (positive
Wielastic

local ) or compression (negative Wielastic
local ) of fluid parcels along the flow streamline

direction.
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Figure 7. (a) Flow-type parameter distributions and (b) dimensionless λ2 distributions.

The ξ and λ2 distributions are shown in figures 7(a) and 7(b), respectively. In a
Newtonian fluid, both ξ and λ2 distribute symmetrically against the x and y axes with
respect to the cylinder. The fluid parcel around the cylinder exhibits high extension.
Just upstream of the cylinder, the flow velocity is reduced, resulting in compression.
In the narrow gap between the cylinder surface and the channel wall with x < 0, flow
velocity increases, resulting in stretching. Figure 7 shows that the upstream compression
or stretching regions further expand upstream along the middle line (y = 0) and the gap
middle line (y = 3/8H) as Wi increases. The λ2 distribution demonstrates that the strongest
tensile strength region appears in the gap between the cylinder surface and the channel
wall.

The local elastic stretch Weissenberg numbers (Wielastic
local ) at y = 0 and y = 3/8H are

extracted and shown in figure 8. As defined above, positive and negative Wielastic
local denote

fluid stretching and compression, respectively. At y = 0, the initial decrease in the flow
velocity results in a negative Wielastic

local for a long distance. Parameter Wielastic
local initially

decreases and then increases along the x direction. Generally, the location of the valley
point moves upstream and the corresponding minimum Wielastic

local decreases with increasing
Wi. For Wi = 60, the minimum Wielastic

local is about −19.8. At y = 3/8H, the increase in
the flow velocity results in a positive Wielastic

local for a long distance. Before approaching
2x/H = 0, Wi rapidly increases to the peak value and then experiences a sudden drop. The
maximum Wielastic

local is about 68.1 for Wi = 60, which occurs in the gap between the cylinder
surface and the channel wall. The absolute Wielastic

local in the gap (= 68.1) is much larger than
that in front of the cylinder (= 19.8). The large Wielastic

local in the gap reflects that the high
elastic stress is concentrated there, which extends upstream near the wall region as shown
in figure 9. A similar observation has been reported by Zhao et al. (2016) in wormlike
fluids.
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Figure 8. Variation of the local elastic stretch Weissenberg number along the x direction at (a) y = 0 and
(b) y = 3/8H.

1.0
Wi = 10

Wi = 40

Wi = 15

Wi = 60

0.5

0

–0.5

–1.0

2
y/

H

1.0

0.5

0

–0.5

–1.0

1.0

0.5

0

–0.5

–1.0

1.0

0.5

0

–0.5

–1.0
–6 –4 –2

1/(1–ckk /L
2)

0

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00

2
y/

H

2x/H
–6 –4 –2 0

–6 –4 –2 0 –6 –4 –2 0

2x/H

(a) (b)

(c) (d )

Figure 9. Contours of 1/(1 − ckk/L2) for different Wi; 1/(1 − ckk/L2) is positively correlated with the elastic
stress.

A well-known dimensionless parameter which rationalizes these streamline instabilities
is the M parameter introduced by McKinley, Pakdel & Öztekin (1996):

M =
[
λŪ
�

τ11

(η0|γ̇ |)
]1/2

, (3.5)

where λŪ = l is the characteristic length over which perturbations to the base stress
and velocity fields relax, � is the streamline radius of curvature and τ11 is the
streamwise tensile stress. We convert this definition of the criterion to a form amenable
to local evaluation in flows by the substitution of characteristic values with local values.
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Figure 10. Contours of M* in the viscoelastic cylindrical wake flow with upstream instability for different Wi.

To consider local effective relaxation time (λeff = λ/f ) and ignore solid-like rotational
flows, Cruz et al. (2016) proposed a modified Pakdel–McKinley criterion:

M∗ =
[
λeff |u|

r
τ11

||τ ||F

]1/2

, (3.6)

where r = |u|3/|u × u̇||. Here we note that u̇ is the material derivative of the velocity
vector, which is equivalent to u · ∇u for steady-state flow. The Frobenius norm (|| · ||F)

is used, so that the resulting τ11/||τ ||F will vary between zero, when the normal stress
is weak, and one, when the tensile normal stress dominates, in highly elastic shear or
extensional flows. Therefore in strongly extensional flows, M* is approximately given by
λeff |u|/r.

Contours of M* for different Wi are shown in figure 10. The largest M* region occurs
in the gap between the cylinder and the outer wall. In the upstream recirculation regions,
we can also find non-negligible, though smaller, values of M*. From the definition of
M*, high M* happens in highly elastic shear or extensional flows. Although the flow
curvature in the recirculation zone is large, we only see a relatively small value of M*
in the recirculation region because the extension in this region is not larger than that in the
gap regions (figure 8). The distribution of M* suggests that the instability is most likely
related to the high-shear region near the cylinder, which could be classified as the standard
curve-streamline shear flow instability. This conclusion would be also consistent with that
reported in Davoodi, Dominques & Poole (2019) where the effect of strain rate on the start
point of purely elastic instability in elongational-dominated flows was investigated.

The above results indicate that Wielastic
local and the stress dominate in the gap, compared

with those in front of the cylinder. In this sense, the flow across the gap can be regarded as
a main flow, while the upstream recirculation is a secondary flow. A primary–secondary
flow model shown in figure 11 can be applied to characterize this upstream recirculation,
i.e. a high-speed stretching gap flow and a relatively low-speed upstream recirculation.

The time evolutions of the drag coefficient for Wi = 70, 80, 90 and 100 are plotted in
figure 12. To save computing time, the numerical result of Wi = 60 (at time of 2tŪ/H =
525) is set as the initial value for these higher-Wi flows. The drag acting on the cylinder
increases with Wi when Wi >∼0.5 (refer to data in table 5 for low-Wi range and data
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Figure 11. The primary–secondary flow model for the present flow configuration.
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Figure 12. The solid black lines denote the temporal histories of the drag coefficient at (BR, β, L2) = (50 %,
0.59, 2500) for (a) Wi = 70, (b) Wi = 80, (c) Wi = 90 and (d) Wi = 100. The dashed brown line in (d) denotes
the temporal history of LD.

here in high-Wi range), no matter whether the flow is steady (Mokhtari et al. 2022)
or unsteady. The time-averaged drag coefficient (Cd) is ∼532 at Wi = 80 but ∼799 at
Wi = 82.5. A sharp increase in Cd is observed when Wi increases from 80 to 82.5 as
shown in figure 12(a), which results from the enhancement in the additional extensional
viscosity due to flow fluctuations (Browne & Datta 2021) as shown in figure 12(b). A
similar sudden increase of drag was also reported in the numerical simulation of Grilli
et al. (2013). Therefore, the increase in Cd with increasing Wi is sharper in unsteady flow
than in steady flow.

When Wi < ∼80, our calculation indicates that the flow is steady after developing for a
long time. However, the flow becomes unsteady when Wi ≥ 80. At Wi = 80, the fluctuation
of drag coefficient exhibits a fully developed periodic state with a single frequency
demonstrated by the FFT analysis shown in figure 13(a). For Wi = 100 in figure 12(d),
the variation of drag coefficient roughly maintains a periodic state that features more
discrete frequencies demonstrated by the FFT analysis shown in figure 13(b). Interestingly,
the quantitative analysis demonstrates St4 ≈ 4St1, St3 ≈ 3St1 and St2 ≈ 2St1, indicating the
nonlinear effect of the period-doubling. Figure 12(d) also shows the corresponding time
evolution of LD for one period, which exhibits a trend similar to that of the Cd curve.
The maximum drag of the cylinder corresponds to the longest upstream recirculation. The
corresponding streamlines at four time instants within one period are shown in figure 14.

A sharp increase of drag between Wi = 80 and 82.5 under the increasing Wi process
(i.e. the discontinuity on the Cd − Wi curve near Wi = 82.5) shown in figure 15(a) implies
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Figure 13. The FFT of the drag coefficients for (BR, β, L2) = (50 %, 0.59, 2500) at (a) Wi = 80 and
(b) Wi = 100.
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Figure 14. Streamlines at time instants (a) t = t1, (b) t = t2, (c) t = t3 and (d) t = t4 marked in figure 12(d) for
(BR, β, L2, Wi) = (50 %, 0.59, 2500, 100).
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Figure 15. Variations of (a) the time-averaged drag coefficient (Cd) and (b) the root-mean-square drag
coefficient (Cdrms) with Wi for (BR, β, L2) = (50 %, 0.59, 2500). Here IW and DW denote the increasing
and decreasing Wi processes, respectively.

a subcritical transition. We use the result of Wi = 82.5 as the initial field to study this
transition behaviour and gradually reduce Wi (i.e. the decreasing Wi process). It is found
that the Cd − Wi curve maintains continuity until Wi = 67.5 and then experiences a sudden
drop between Wi = 67.5 and 65 as shown in figure 15(a). Both figures 15 and 16 show
that the unsteady flow becomes steady when Wi is decreased from Wi = 67.5 to Wi = 65.
The hysteresis phenomenon shown in figure 15(b) implies that the transient transition is a
subcritical Hopf bifurcation.

For L2 = 10 000 and 40 000, we also observe the upstream recirculation. The
non-dimensional recirculation length (LD) as a function of Wi for L2 = 2500, 10 000 and
40 000 is summarized in figure 17(a). At high Wi, the flow becomes unsteady for
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Figure 16. The temporal histories of the drag coefficient at (BR, β, L2) = (50 %, 0.59, 2500) for (a) Wi = 67.5
and (b) Wi = 65 under the decreasing Wi process. The numerical result of Wi = 82.5 is selected as the initial
field. Here DW denotes the decreasing Wi process.
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Qin et al. (2019a)

Figure 17. (a) The LD–Wi relationship and (b) the LD–WiN relationship at (BR, β) = (50 %, 0.59). When the
flow becomes unsteady and LD varies with time at high Wi, the time-averaged LD is provided while the error
bar indicates the corresponding maximum and minimum values. Here IW and DW denote the increasing and
decreasing Wi processes, respectively.

L2 = 2500, as discussed above. For L2 = 40 000, the flow also becomes unsteady when
Wi ≥ 70. However, for L2 = 10 000, the unsteady behaviour is only observed when
20 ≤ Wi ≤ 50. When the flow is unsteady and LD varies with time, the maximum and
minimum values of LD at the corresponding Wi are provided, as shown in figure 17(a).
Note that we only present the result up to Wi = 60 for L2 = 40 000 here. A further increase
in Wi causes simulation divergence due to numerical instability, even if we use a very small
time step. We observe a sudden increase of LD before simulation divergence.

Length LD for L2 = 40 000 is shorter than those for L2 = 2500 or L2 = 10 000. However,
Qin et al. (2019a) implies the upstream recirculation length is positively correlated with
extensional viscosity. Variation of LD with WiN is plotted in figure 17(b). As mentioned
above, the definition of WiN is similar to that in Pan et al. (2013). The time-averaged
LD measured by Qin et al. (2019a) is also plotted in figure 17(b). Behaviour of LD at
L2 = 2500 is mostly consistent with the experimental results of Qin et al. (2019a). It
is worth pointing out that in their experiment, the upstream recirculation length varies
strongly with time when WiN is beyond 4.35. However, the fluctuation of LD is not
very obvious in our simulation when WiN > 13.5 for L2 = 10 000. Note that the present
simulation is two-dimensional and the present rheological model and parameters may be
different from those for the material used in the experiment. Besides, Re may be different
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Figure 18. Variation of LD with Wi at BR = 50 % for (a) L2 = 400, (b) L2 = 2500, (c) L2 = 10 000 and
(d) L2 = 40 000. The solid line denotes the data fitted with Landau-type quartic potential while the symbols •,
♦, � and ∗ denote the numerical results. The fitted Wic for each L2 is summarized in table 4. Here IW and DW
denote the increasing and decreasing Wi processes, respectively.

between our simulation and their experiment. Thus, the temporal behaviour of LD deviates
from that reported by Qin et al. (2019a).

Figure 17 clearly shows that there is a critical Weissenberg number Wic for the onset of
the upstream recirculation at each L2. Close to the transition, LD increases smoothly from
zero to a non-zero value with increasing Wi, and the relationship between LD and Wi can
be well described by a simple Landau-type quartic potential minimized as

Wi = Wic(gL2
D + hL−1

D + 1), (3.7)

where g denotes the growth rate coefficient and h quantifies system imperfection that
biases a transition to a favoured branch. Figure 18 shows the relationship between LD
and Wi for both the numerical results and the fitted data around the onset of the upstream
recirculation region. The corresponding values of g and h are listed in table 4. The fitted
Wic and g increase with L2 while h is always close to zero. When L2 = 10 000, the fitted
curve only collapses well with the numerical results when Wi is less than 40. This implies
that at BR = 50 %, variation in Wi may cause inherent change in flow state when L2 =
10 000. It may result from the velocity increase in the gap between the cylinder surface
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L2 = 400 L2 = 2500 L2 = 10 000 L2 = 40 000

Wic 14.97 16.252 16.83 17.94
g 2.8440 0.5164 0.8423 2.2303
h −0.00003 −0.00002 −0.00011 −0.0001

Table 4. The fitting parameters for BR = 50 % in (3.7).
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Figure 19. Time-averaged flow streamlines and contours of the dimensionless u velocity at (BR, β,
L2) = (50 %, 0.59, 10 000) for (a) Wi = 40 and (b) Wi = 50. (c) Variation of the maximum time-averaged
dimensionless u velocity max(ū/Ū) with Wi.

and the channel wall. The time-averaged streamlines and contours of the dimensionless u
velocity for Wi = 40 and 50 are shown in figures 19(a) and 19(b). The streamlines indicate
that the upstream recirculation elongates when Wi increases from 40 to 50. Meanwhile,
the contours of the dimensionless u velocity show that the maximum velocity in the gap
between the cylinder surface and the channel wall increases from 3.31 at Wi = 40 to 3.65
at Wi = 50. The maximum time-averaged dimensionless x-direction velocity in the flow
field max(ū/Ū) is extracted and plotted in figure 19(c). Obviously, a significant increase in
velocity occurs between Wi = 40 and 50. At high Wi, the elastic stress is concentrated
near the channel and cylinder walls, which acts to narrow the gap and accelerate the
flow velocity there. For example, the maximum velocity in the gap is 3.65 for (Wi, L2) =
(50, 10 000); however, it is about 3 for a Newtonian fluid. The effect of BR on the upstream
recirculation is discussed in the next section.

3.2. Effect of BR on viscoelastic upstream instability
Previous experiments indicated that the upstream recirculation occurs when BR is not
less than 50 %. When BR is low, such as 10 %, only upstream streamline bending occurs
(Haward et al. 2018). Thus, there is a critical value of BR which is around 50 % and
determined by Wi and L2, below which the upstream recirculation will not occur. When
BR is 50 % and Wi is low in the simulations discussed in § 3.1, the velocity in the midline
(y = 0) changes from 1.5 at the inlet to 0 at the cylinder surface, which results in a
compression Wielastic

local . However, the velocity along y = 3/8H changes from about 1.5 at
the inlet to about 3.0 in the gap, which leads to a stretching Wielastic

local . The maximum
compression Wielastic

local is almost equal to the maximum stretching Wielastic
local in this situation.
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Figure 20. Variation of Wic with BR for (β, L2) = (0.59, 2500). The instantaneous streamlines for five typical
cases with (BR, Wi) = P1 (25 %, 20), P2 (25 %, 30), P3 (50 %, 20), P4 (62.5 %, 20) and P5 (75 %, 20)
are plotted.

When BR exceeds 50 %, the gradient of flow velocity in the gap is steeper than that
upstream of the cylinder. That is, the stretching Wielastic

local upstream is larger than the
compression Wielastic

local in the gap. The compression Wielastic
local in the gap plays a leading

role, which results in a primary–secondary flow as shown in figure 11. Moreover, with
the increase of Wi, the flow velocity inside the gap may slightly increase (discussed in last
paragraph in § 3.1). This indicates that the blockage effect is more severe and the apparent
BR is increased (the increase of the flow rate in the centreline of the gap can be equivalent
to the increase of BR). Therefore, the upstream recirculation also occurs when BR = 50 %.

It is reasonable to speculate that a certain boundary exists in the space of (BR, Wi)
to distinguish the regimes with and without the upstream recirculation. Thus, we studied
the effect of BR on Wic for (β, L2) = (0.59, 2500), as shown in figure 20. Note that Wi
does not exceed 100 in this test. Here Wic is not obtained by fitting (3.7). Instead, at a
given BR, multiple simulations are performed near Wic. The bisection method is adopted
to determine Wic by checking whether the upstream recirculation occurs. Our results imply
that the upstream recirculation only occurs when BR is more than 16.7 %, i.e. the Wic–BR
curve asymptotically approaches BR ∼ 16.7 %. Hopkins et al. (2022a) found that for a
viscoelastic wormlike micellar solution, the upstream recirculation is observed only when
BR is greater than certain thresholds and Wic is almost inversely proportional to BR. Our
numerical simulation results qualitatively agree with their experimental results. We also
select five typical cases with (BR, Wi) = P1 (25 %, 20), P2 (25 %, 30), P3 (50 %, 20), P4
(62.5 %, 20) and P5 (75 %, 20) to demonstrate the instantaneous streamlines. Here P1 is
under the Wic–BR curve and no upstream recirculation exists. In contrast, P2 to P5 are all
located above the Wic–BR curve, and the upstream recirculation does occur. For a fixed Wi,
as BR increases (P3, P4 and P5), the upstream recirculation becomes longer and behaves
asymmetrically. This asymmetric behaviour is explained later in this section.

In the rest of this subsection we mainly consider high BR of 62.5 % and 75 % and
discuss its effect on the upstream recirculation. Figures 21(a) and 21(b) plot LD as a
function of Wi for BR = 62.5 % and 75 %, respectively. When (BR, L2) = (62.5 %, 2500),
(62.5 %, 10 000), (75 %, 400) and (75 %, 2500), the growth of upstream recirculation with
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Figure 21. The LD–Wi relationship for (a) BR = 62.5 % and (b) BR = 75 % (for the decreasing Wi process,
the numerical results of Wi = 10 are selected as the initial fields for L2 = 10 000, while the numerical results
of Wi = 9 are selected as the initial fields for L2 = 40 000). Variation in the root-mean-square LD with Wi at
L2 = 40 000 for (c) BR = 62.5 % and (d) BR = 75 %. Here IW and DW denote the increasing and decreasing
Wi processes, respectively.
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Figure 22. The growth of upstream recirculation with Wi at BR = 62.5 % for (a) L2 = 2500 and (b) L2 =
10 000. The solid line denotes the data fitted with Landau-type quartic potential while the symbols ♦ and
� denote the numerical results.

Wi close to the transition also satisfies (3.7), as shown in figures 22(a,b) and 23(a,b).
However, when (BR, L2) = (62.5 %, 40 000), (75 %, 10 000) and (75 %, 40 000), the
LD–Wi relationship for the increasing Wi process does not satisfy (3.7), as shown in
figures 21(a,b) and 23(d). In fact, there is a sudden increase of LD when Wi is larger than a
certain value, indicating that the LD–Wi relationship is discontinuous there. For example,
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Figure 23. The growth of upstream recirculation with Wi at BR = 75 % for (a) L2 = 400, (b) L2 = 2500,
(c) L2 = 10 000 and (d) L2 = 40 000. The solid line denotes the data fitted with Landau-type quartic potential
while the symbols •, ♦, � and ∗ denote the numerical results. Here DW denotes the decreasing Wi process.

when BR = 62.5 % and L2 = 10 000, LD equals zero at Wi = 14.5. However, LD suddenly
changes to 2.186–2.5697 when Wi > 14.5. Thus, the bifurcation for these parameter sets is
subcritical. For decreasing Wi, the results for (BR, L2) = (75 %, 10 000) and (75 %, 40 000)
still satisfy (3.7), as shown in figure 23(b,c). The flow instability is affected by external
disturbance. In previous experiments (Kenney et al. 2013; Shi et al. 2015; Zhao et al.
2016; Qin et al. 2019a; Haward et al. 2021), no sudden increase in the LD–Wi relationship
was observed, which may be caused by strong disturbance in those experiments. The
appearance of upstream recirculation is a more stable form. These scenarios are consistent
with our results obtained in the decreasing Wi process, where strong disturbance is also
introduced by the initial fields. It is worth pointing out that when (BR, L2) = (62.5 %,
40 000), LD jumps suddenly with increasing Wi around Wi = 15–16, as shown in
figure 21(a). This implies that hysteresis may exist. However, we are not able to carry
out further investigation due to serious numerical instability.

Figures 21(c) and 21(d) plot the root-mean-square LD as a function of Wi at L2 =
40 000 for BR = 62.5 % and 75 %, respectively. Comparison between figures 21(a) and
21(c) indicates that the critical Wi for the onset of the upstream recirculation and the
non-zero fluctuation in the upstream recirculation region almost coincide at Wi ∼ 15.
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Figure 24. (a) The u velocity contours and streamlines at time instant 2tŪ/H = 1710 and (b) the
corresponding urms distribution. The parameter set used in this simulation is (BR, L2, Wi) = (75 %, 40 000, 9).

The variations of the root-mean-square LD with Wi for both the increasing and decreasing
Wi processes in figure 21(d) also indicate that bifurcation is subcritical.

Parameter Wic for different BR can be obtained from figures 18 and 21. With an increase
in BR, Wic decreases. With an increase in L2, Wic becomes larger (the increasing Wi
process) for most cases. Yamani & McKinley (2023) defined an important parameter Wi/L
for flow instability. This parameter implies that L2 is positively related to Wic, which is
consistent with the present results. Therefore, the onset of the upstream recirculation is
promoted and Wic is smaller when L2 is smaller. Moreover, Wic is influenced by how the
flow field is initialized, i.e. the increasing or decreasing Wi process mentioned in § 2.3. The
value of Wic for the decreasing Wi process may be much lower than that for the increasing
Wi process. For example, Wic at (BR, L2) = (75 %, 10 000) is about 2.75 for the decreasing
Wi process and about 6.75 for the increasing Wi process.

At high Wi, such as (BR, Wi) = (62.5 %, 20) or (75 %, 10), LD only slightly changes
with the variation in Wi. Length LD may reach the saturation value in this situation. For
BR = 62.5 % or 75 %, the saturation value is large when L2 is large, which is different from
the trend for BR = 50 %. A large L2, i.e. a longer molecular chain length, means higher
potential of extensional viscosity. Qin et al. (2019a) imply the upstream recirculation
length is positively correlated with extensional viscosity, which is qualitatively consistent
with our results at BR = 62.5 % or 75 %.

When BR = 62.5 % or 75 %, the upstream recirculation exhibits strong time-dependence
behaviour at high Wi when L2 = 40 000. The u velocity contours and streamlines
at time instant 2tŪ/H = 1710 for (BR, L2, Wi) = (75 %, 40 000, 9) are shown in
figure 24(a). Under this parameter set, the flow is unsteady and the length and shape of the
upstream recirculation vary with time. However, the fluctuation amplitude in the upstream
recirculation region is not the maximum in the flow field. Instead, the strongest temporal
fluctuation occurs in the gap region, as shown by the urms distribution in figure 24(b).
Downstream of the cylinder, the high-velocity region is concentrated on both sides of the
centreline, as shown in figure 24(a). Correspondingly, the flow fluctuation also is high
there.

We carefully examine the symmetry of the flow field and find that the symmetry against
the horizontal centreline is obviously broken for BR = 62.5 % and 75 % when L2 is large,
such as L2 = 40 000. Figure 25 plots the variations of the averaged velocity (space average)
in the upper and lower gaps with time at (BR, L2, Wi) = (75 %, 40 000, 9). Both averaged
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Figure 25. Time histories of the averaged velocity (space average) in the upper and lower gaps for (BR, L2,

Wi) = (75 %, 40 000, 9).

velocities show strongly oscillating behaviour. The corresponding oscillating amplitudes
for upper and lower averaged velocities are opposite, in order to satisfy the continuity
equation. The upper averaged velocity fluctuates around a mean value of 4.168, which is
larger than the 3.898 for the lower averaged velocity.

A parameter, following Hopkins et al. (2021), is defined to evaluate the flow asymmetry:

I = |Qu − Ql|
Qu + Ql

, (3.8)

where Qu and Ql are the volumetric flow rate through the upper and lower gaps,
respectively. Variation of I with Wi for (BR, L2) = (75 %, 40 000) is presented in figure 26.
The flow symmetry is only maintained at Wi = 0, i.e. I = 0 for Newtonian flow. When
Wi > 0, the viscoelastic flow exhibits complex asymmetric behaviour for high BR and
high L2. For the increasing Wi process, I initially increases with Wi until Wi = 5.5. Then
I decreases with further increase in Wi until Wi = 6.75. Note that for (BR, L2) = (75 %,
40 000), the onset of the upstream recirculation occurs at Wic ∼ 6.75. When Wi > 6.75, I
increases again with Wi. For the decreasing Wi process, I decreases with decreasing Wi
from Wi = 9 to 5.5. However, I increases with a further decrease in Wi until Wi = 4.75,
which corresponds to Wic below which the upstream recirculation disappears. When
Wi < 4.75, I decreases again with decreasing Wi. The increasing and decreasing Wi paths
do not coincide for 4.75 < Wi < 6.75, which indicates a typical hysteresis phenomenon.

3.3. Effect of β and L2 on viscoelastic upstream instability
Figure 18(b) shows that the LD–Wi relationship for (BR, L2) = (50 %, 2500) approximately
satisfies a Landau-type quartic potential near Wic. However, figure 21(b) shows that the
variation of LD with Wi for (BR, L2) = (75 %, 10 000) under the increasing Wi process does
not approximately fit a Landau-type quartic potential near Wic, but shows the hysteresis
phenomenon. Thus, these two parameter sets are specially selected to investigate the effect
of β. For (BR, L2) = (50 %, 2500), β ranges from 0.1 to 0.9 and Wi is no more than 30. For
(BR, L2) = (75 %, 10 000), β ranges from 0.15 to 0.9 and Wi is no more than 20. Within
these parameter spaces, the flow fluctuations are small and LD only varies weakly with
time. Thus, the effect of β on time-dependent stability is not discussed here.

In experiments, β decreases with increasing polymer concentration. The FENE-P model
can describe the shear-thinning behaviour of a viscoelastic fluid, usually for the case when
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Figure 26. Variation of flow asymmetry parameter I with Wi for (BR, L2) = (75 %, 40 000). Here IW and DW
denote the increasing and decreasing Wi processes, respectively.
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Figure 27. The LD–Wi relationship at (BR, L2) = (50 %, 2500) for different β.

L2 is small. The smaller the value of β, the more obvious the shear-thinning effect in the
flow. In our study, L2 is large and the influence of β on shear thinning can be ignored
(Tamano et al. 2020). However, a variation in β may affect the distribution of elastic stress
as discussed below.

We first consider (BR, L2) = (50 %, 2500). The variations of LD with Wi for different β

are shown in figure 27. Near the upstream recirculation transition point, the LD–Wi curves
all approximately satisfies the Landau-type quartic potential. A smaller β corresponds to
a smaller Wic. For example, Wic is between 23 and 24 at β = 0.9, while Wic is between 8
and 9 at β = 0.2. For the same Wi, a lower β corresponds to a larger LD. For example, LD
is 0.3242 at β = 0.9 while LD is 2.1010 at β = 0.2, for a fixed Wi = 30.

For (BR, L2) = (75 %, 10 000), LD for different (Wi, β) is evaluated and shown in
figure 28. Parameter β has a nonlinear effect on LD. For both the increasing and decreasing
Wi processes, before the onset of upstream recirculation, the LD–Wi relationships are
identical and satisfy (3.7) at β = 0.9 or 0.75. However, the LD–Wi relationships for the
increasing and decreasing Wi processes at β = 0.59, 0.45, 0.3, or 0.15 are different. For
the increasing Wi process, LD experiences a sudden jump with increasing Wi, and the
LD–Wi relationship shows a discontinuity. Interestingly, the discontinuity point (Wic)
is located between 6.5 and 7.0 for all β. These features indicate that the transition is
subcritical bifurcation at β = 0.59, 0.45, 0.3 or 0.15. Thus, we can conclude that β

affects the bifurcation type, which due to the amplifying effect on elastic stress with
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β = 0.3 (DW)
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β = 0.15 (DW)
β = 0.15 (IW)

Wi = 7
Wi = 8
Wi = 9
Wi = 10
Wi = 15
Wi = 20

6

5

4

3

LD

LD

2

1

0

0.1

7

6

5

4

3

2

1

0
0.2 0.3 0.4 0.5

β

0.6 0.7 0.8 0.9

2 4 6 8 10

Wi
12 14 16 18 20

Figure 28. (a) The LD–Wi relationship and (b) the LD–β relationship at (BR, L2) = (75 %, 10 000). In (b), the
larger LD is selected if LD obtained in the increasing and decreasing Wi processes (denoted by IW and DW,
respectively) at the same parameters is not identical.

decreasing β. Note that β also shows a similar effect in other viscoelastic flows. For
example, in elasto-inertial pipe flow, recent experimental and theoretical studies indicated
supercritical bifurcation for large β and subcritical bifurcation for small β (Samanta et al.
2013, Chandra, Shankar & Das 2020, Choueiri et al. 2021, Wan, Sun & Zhang 2021). For
the decreasing Wi process, all the LD–Wi relationships are still uninterrupted to satisfy
(3.7).

The effect of L2 on the upstream flow behaviour has been discussed at various points
in the above subsections. We thus provide a brief summary in this subsection. Parameter
L2 has a noticeable effect on Wic for the onset of the upstream recirculation. Generally, a
larger L2 corresponds to a higher Wic as shown in figures 17(a) and 21(a,b). Also, L2 affects
subcritical behaviour. For large BR with high L2 (such as L2 = 40 000 for BR = 62.5 %, and
L2 = 10 000 or 40 000 for BR = 75 %), the upstream instability is subcritical. The effect
of L2 on subcritical behaviour is similar to that of 1 − β discussed in § 3.3. For larger BR
(e.g. 62.5 % and 75 %), the unsteady flow is more likely to appear at a larger L2.

4. Concluding remarks

In this paper, we confirm that the existing macroscopic viscoelastic constitutive
relationship (FENE-P model) is still qualitatively applicable for predicting the viscoelastic
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upstream instability through numerical simulation. By applying the square root
reconstruction method and considering the molecular dissipation effect to stabilize the
numerical simulations, we studied the viscoelastic flow over a circular cylinder in a narrow
channel at a very low Re and over a wide range of Wi.

Upstream recirculation is observed when Wi is beyond a certain critical value Wic and
BR is larger than around 16.7 %. The occurrence of upstream recirculation is related to
high local stretch Weissenberg number Wielastic

local and the high elastic stress in the narrow gap
between the cylinder surface and the channel wall, which is consistent with that reported by
Zhao et al. (2016). This flow instability around the narrow gap with a high local stretch can
also be interpreted by the curve-streamline shear flow instability (Davoodi et al. 2019). For
BR = 50 %, our simulation results on the upstream recirculation are basically consistent
with the experimental results of Qin et al. (2019a) for the time-averaged behaviour.

Higher BR could precipitate the onset of the upstream recirculation, that is, Wic becomes
lower. The viscosity ratio β has less effect on Wic (the discontinuous point, the increasing
Wi process), but has a nonlinear influence on LD at high BR (75 %) and relatively high L2

(10 000). For BR = 50 % and L2 = 2500, a lower β corresponds to a lower Wic. Close to the
onset of upstream recirculation, LD with Wi satisfy the Landau-type quartic potential when
BR, 1 − β and L2 are not very large, e.g. (BR, β, L2) = (50 %, 0.59, 2500). Close to the
unsteady transition, the occurrence of the hysteresis phenomenon (signalling a subcritical
bifurcation) depends on L2 and β (Burshtein et al. 2017). For the cases with large L2,
small β and large BR, the flow often exhibits subcritical behaviour. In this situation, strong
disturbance should be added in the initial flow field so that the corresponding simulation
results can be consistent with the experimental results.

When Wi exceeds a critical Wi ∼ 0.5 at BR = 50 % (the critical Wi depends on BR),
the drag on the cylinder increases with Wi, although the flow remains steady. When
Wi continues to increase beyond a certain threshold, the upstream recirculation becomes
unsteady. The drag on the cylinder increases more sharply in this range.

Our results advance the understanding of the underlying mechanism of this novel flow
instability, which may also be relevant to a number of interesting phenomena observed in
viscoelastic flows, e.g. stationary dead zones associated with complex geometries such as
multiple tandem circular cylinders (Shi & Christopher 2016) and porous media (Kawale
et al. 2017).

A cylinder in a channel is often used as a prototype configuration to experimentally study
the elastic instability. The upstream instability may extend downstream when Wi is larger.
It is interesting to study the elastic wave in the channel through numerical simulations.
However, only the elastic instability in a channel without a cylinder was studied (Morozov
2022). Our simulation could provide a platform for flows in a channel with cylinder(s).

The upstream recirculation phenomena are governed by many parameters and the
present study does not explore all the parameter space of (BR, Re, Wi, L2, β). These
parameters need to be investigated in more detail. In experiments of Shi et al. (2015),
upstream instability eventually occurs when the elastic Mach number Ma = √

Re × Wi is
beyond ∼10 at Re ∼ 1, which is affected by both channel geometry and fluid properties.
We believe that Re is an important dimensionless number for such instability. However,
the effect of Re is not discussed in this paper and will be studied in our future work.
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Appendix

A.1. Validation
To validate the present numerical method, a series of simulations based on the Oldroyd-B
model are performed for the flow past a cylinder in a channel with BR = 50 % (Mesh2)
and the numerical results are compared with published data. In these simulations, the
Reynolds number is set as zero, i.e. the convection terms in the momentum equations
are ignored. Note that polymer molecular dissipation is also not considered in this
discussion. The viscosity ratio β is fixed at 0.59 while Wi is varied from 0 to 0.55. At low
Wi, the viscoelastic equations could be numerically solved directly. However, previous
numerical tests (Fan et al. 1999; Alves et al. 2001; Hulsen et al. 2005; Alves 2009)
indicate that the stabilization technique must be adopted to avoid simulation divergence
at high Wi. Commonly used stabilization techniques include the elastic viscous split
stress (EVSS) method (Fan et al. 1999), the log-conformation representation method
(Log; Fattal & Kupferman 2004; Hulsen et al. 2005; Afonso et al. 2009) and the square
root reconstruction method (Sqrt; Alves 2009). The present study adopts the square root
reconstruction method.

The values of Cd for different Wi are compared with the published data and listed
in table 5. Our results are in good agreement with those reported in the literature. For
example, the drag coefficient for Wi = 0.35 obtained in our simulation is Cd = 117.33,
which is consistent with Cd = 117.315 in Hulsen et al. (2005) and Cd = 117.32 in Fan
et al. (1999). Besides, the stress profiles along the upper cylinder wall and the downstream
centreline for Wi = 0.3 and 0.45 are shown in figure 29. We can see a good agreement
between our result and that of Alves et al. (2001) for Wi = 0.3. However, a difference
among our results and those of Alves et al. (2001) and Afonso et al. (2009) can be observed
in the region immediately behind the cylinder for Wi = 0.45, even though the local refined
mesh is utilized there in our simulation as shown in figure 29(b). Note that a higher peak of
the local elastic stress occurs behind the cylinder when Wi is larger, which is very difficult
to accurately resolve by numerical simulation. Anyway, the comparison indicates that our
simulation can capture the main flow characteristics downstream since the behaviour of
the local elastic stress downstream is similar for the three simulations.

A.2. Effect of Pe
In this appendix, the effect of Pe on the upstream flow behaviour is examined. The
parameter set investigated is (BR, β, L2, Wi) = (50 %, 0.59, 2500, 50). Five Pe values of
10, 40, 64, 80 and 400 are considered. Figure 30 shows that, when Pe is equal to 10, 40
or 64, the flow field is similar to the experimental results of Qin et al. (2019a). However,
when Pe is set to be 80 or 400, the upstream recirculation becomes short and one or two
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Wi Hulsen et al.
(2005) Log

Fan et al.
(1999) EVSS

Alves et al.
(2001)

Afonso et al.
(2009) Log

Afonso et al.
(2009) Sqrt

Present
Sqrt

0 132.358 132.36 132.378 — — 132.36
0.05 130.363 130.36 130.355 — — 130.30
0.1 126.626 126.62 126.632 — — 126.565
0.15 123.193 123.19 123.210 — — 123.133
0.2 120.596 120.59 120.607 — — 120.555
0.25 118.836 118.83 118.838 118.818 118.821 118.808
0.3 117.775 117.78 117.787 117.774 117.776 117.776
0.35 117.315 117.32 117.323 117.323 117.324 117.33
0.4 117.373 117.36 117.357 117.364 117.370 117.36
0.45 117.787 117.80 117.851 117.817 — 117.776
0.5 118.501 118.49 118.518 118.680 — 118.508
0.55 119.466 — — 119.780 — 119.51

Table 5. Variation of Cd with Wi at Re = 0 for the Oldroyd-B fluid.
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Figure 29. Stress profile along the upper cylinder wall and the downstream centreline for the Oldroyd-B fluid
at (a) Wi = 0.3 and (b) Wi = 0.45.

recirculation regions attached to the channel wall appear. Thus, we select a relatively lower
Pe = 40 in the final simulation.

A.3. The FENE-CR model
The governing equations based on the FENE-CR model are similar to those for the
FENE-P model (equations (2.1)–(2.3)) except for the polymer stress definition, which is
expressed as

τ = ηp

λ
f (c)(c − I). (A1)

The FENE-CR model is reduced to the Oldroyd-B model if f (c) is set to 1 in (A1).
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Figure 30. Instantaneous streamlines for (BR, β, L2, Wi) = (50 %, 0.59, 2500, 50) at (a) Pe = 10, (b) Pe = 40,
(c) Pe = 64, (d) Pe = 80 and (e) Pe = 400.

Tracing the transport equation of the conformation tensor c for the FENE-CR model
yields

∂ckk

∂t
+ (u · ∇)ckk = tr[(∇u) · c + c · (∇u)T ] − (ckk − 3)L2

λ(L2 − ckk)
. (A2)

By using the scalar ϕ defined in (2.13), (A2) can be rewritten as

∂ϕ

∂t
+ uj

∂ϕ

∂xj
= eϕ

L2

(
ckj

∂uk

∂xj
+ cjk

∂uj

∂xk

)
+ eϕ

λL2 (3eϕ + L2 − L2eϕ). (A3)

When the square root reconstruction method is applied, the transport equation of
conformation tensor c for the FENE-CR model can then be rewritten as

∂b
∂t

+ (u · ∇)b = b∇u + ab + 1
2λ

((bT)−1 − b) eϕ + κ

2
�b + κh. (A4)

All other related equations are the same as those for the FENE-P model and thus not
repeated here. The simulation based on the FENE-CR model is also performed using the
rheoFoam solver module of rheoTool in OpenFOAM extend 4.0 (Pimenta & Alves 2018).

The parameter set considered here is (BR, β, L2) = (50 %, 0.59, 2500). Haward et al.
(2019a) suggested that the purely elastic instability is only observed when both shear
thinning and elasticity exist. The simulation based on the FENE-CR model would help
us to identify whether shear thinning is necessary for the upstream instability at high BR.
Variation of LD with Wi for the results based on both the FENE-CR and FENE-P models
is shown in figure 31. The results indicate that the simulations based on both models can
predict the occurrence of the upstream recirculation. Although deviations can be observed
for the LD–Wi curves based on the two models, the general trends are similar. Therefore,
shear thinning is not a necessary condition for this upstream instability.
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Figure 31. Variation of LD with Wi for (BR, β, L2) = (50 %, 0.59, 2500). The results based on both the
FENE-CR and FENE-P models are provided. Here IW and DW denote the increasing and decreasing Wi
processes, respectively.

A.4. Boundary condition for the tensor b
When simulating the viscoelastic fluid flow in OpenFOAM, the boundary condition for the
elastic stress on the wall needs to be explicitly implemented, in order to obtain the stress
gradient of the centre point of a grid element close to the wall (Alves et al. 2021). In our
numerical simulation, the b tensor adopts the linear extrapolation boundary condition on
the channel walls and the no-flux boundary condition on the cylinder wall. These uneven
implementations are based on the following considerations. First, if the linear extrapolation
boundary condition is imposed on the cylinder wall, a very small time step should be used
in the simulation. For example, for the parameter set (BR, β, L2) = (75 %, 0.59, 40 000),
the dimensionless time step must be set as 6.25 × 10−5. It takes more than one month for
the simulation to reach statistically steady state with parallel computing on 40 CPU cores.
Second, if the linear extrapolation boundary condition is imposed on the cylinder wall, the
simulation results show an unstable trend. For example, the upstream recirculation behaves
symmetrically in the experiment of Haward et al. (2021). However, the corresponding flow
field at (BR, β, L2, Wi) = (75 %, 0.59, 40 000, 9) exhibits obvious asymmetric behaviour,
which implies that too strong a disturbance is introduced into the simulation. Finally, if the
no-flux boundary condition is imposed on both the channel walls and the cylinder wall,
the upstream recirculation only occurs at very high Wi in the simulation. The deviation
between the numerical and experimental results is unacceptable.

Figure 32 shows the variations of LD and the root-mean-square LD with Wi at (BR,
β, L2) = (75 %, 0.59, 40 000) using different boundary conditions for the tensor b on
the cylinder wall. The boundary condition has a noticeable effect on Wic and the overall
upstream recirculation behaviour. The time-averaged u velocity contours and streamlines
and the corresponding urms distribution at (BR, β, L2, Wi) = (75 %, 0.59, 40 000, 9) are
presented in figures 33(a) and 33(b), respectively. The simulation is performed based
on the linear extrapolation boundary condition for the tensor b on the cylinder wall.
The flow asymmetry can be clearly seen in the urms distribution in figure 33. The flow
asymmetry parameter I is also computed and compared. The value of I is 0.0423 for the
liner extrapolation boundary condition and 0.0335 for the no-flux boundary condition.
Compared with that for the no-flux boundary condition, flow fluctuation is more severe for
the liner extrapolation boundary condition, which results in more additional elongational
viscosity and thus larger drag force. The comparison indicates that the results obtained
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Figure 32. Variation of (a) LD and (b) root-mean-square LD with Wi at (BR, β, L2) = (75 %, 0.59, 40 000) for
different boundary conditions of the tensor b on the cylinder wall. Here IW and DW denote the increasing and
decreasing Wi processes, respectively.
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Figure 33. (a) The time averaged u velocity contours and streamlines and (b) the corresponding urms

distribution at (BR, β, L2, Wi) = (75 %, 0.59, 40 000, 9). The linear extrapolation boundary condition for the
tensor b is imposed on the cylinder wall.

by the no-flux boundary condition on the cylinder wall are closer to the experimental
observations, which is therefore adopted in the present study.
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