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The synchronization hierarchy of finite permutation groups consists of classes of
groups lying between 2-transitive groups and primitive groups. This includes the
class of spreading groups, which are defined in terms of sets and multisets of
permuted points, and which are known to be primitive of almost simple, affine or
diagonal type. In this paper, we prove that in fact no spreading group of diagonal
type exists. As part of our proof, we show that all non-abelian finite simple groups,
other than six sporadic groups, have a transitive action in which a proper normal
subgroup of a point stabilizer is supplemented by all corresponding two-point
stabilizers.
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1. Introduction

An important fact in the characterization of a finite permutation group G on a
finite set Ω is that all 2-transitive groups are primitive. However, there is a large
gap between primitivity and 2-transitivity, in the sense that relatively few primi-
tive groups are 2-transitive. In [1], Araújo, Cameron and Steinberg introduced a
hierarchy of classes of permutation groups that provides a finer characterization.
These classes include spreading groups, defined in terms of sets and multisets of
elements of Ω (see § 2 for a precise definition); separating groups, defined in terms
of subsets of Ω, or graphs on Ω preserved by G; and synchronizing groups, origi-
nally defined in [2] in terms of transformation semigroups on Ω containing G. (See
also [6] for equivalent definitions of these properties in terms of G-modules.) In
particular, these members of the hierarchy are related as follows (see [1, p. 151]):

2-transitive =⇒ spreading =⇒ separating =⇒ synchronising =⇒ primitive.

Moreover, the finite primitive groups can be divided into five types via the
O’Nan–Scott Theorem, and by [1, Thereom 2.11 & Proposition 3.7], each
synchronizing group is one of three types: almost simple, affine or diagonal
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(the relevant diagonal type groups will be defined in § 2). It is also well-known
that each finite 2-transitive group is almost simple or affine.

Now, [1, § 6–7] classifies the affine spreading groups, and provides examples of
almost simple groups that are spreading but not 2-transitive, separating but not
spreading, or synchronizing but not separating, while [5] describes affine synchro-
nizing groups that are not spreading. In addition, [8, Theorem 1.4] states that a
primitive group that is not almost simple is synchronizing if and only if it is separat-
ing. The first (and so far only) known examples of synchronizing groups of diagonal
type were presented in [4]: the groups PSL2(q) × PSL2(q) acting diagonally on
PSL2(q), with q = 13 and q = 17.

Many open questions involving this hierarchy of permutation groups remain, and
in this paper, we work towards solving Problem 12.4 of [1], the classification of
spreading groups (of almost simple or diagonal type). Specifically, we completely
resolve the diagonal case, with the aid of the following theorem.

Theorem 1.1 [8, Theorem 1.5]. Let G be a synchronizing primitive group of
diagonal type. Then G has socle T × T , where T is a non-abelian finite simple
group.

In addition, it is shown in [4, Theorem 2] that the diagonal type group
PSL2(q) × PSL2(q) is non-spreading for every prime power q. We generalize this
result to all groups of diagonal type, as follows.

Theorem 1.2. Each primitive group of diagonal type is non-spreading.

Therefore, the types of spreading groups are precisely the types of finite
2-transitive groups: almost simple and affine.

For all but six possible socles T × T , we will prove Theorem 1.2 as a consequence
of the following result, which may be of general interest, and which distinguishes
six sporadic simple groups from all other non-abelian finite simple groups. For the
six remaining socles, we employ elementary character theory.

Theorem 1.3. Let T be a non-abelian finite simple group. Then the following are
equivalent.

(i) There exists a proper subgroup A of T and a proper normal subgroup B of A
such that A = B(A ∩ Aτ ) for all τ ∈ Aut(T ).

(ii) There exists a proper subgroup A of T and a proper normal subgroup B of A
such that A = B(A ∩ At) for all t ∈ T .

(iii) The group T does not lie in the set {J1, M22, J3, McL, Th, M} of sporadic
groups.

Property (ii) of this theorem implies that, in the transitive action of T on the
set of right cosets of A, the proper normal subgroup B of the point stabilizer
A is supplemented by all corresponding two-point stabilizers. This is a stronger
property than all two-point stabilizers being nontrivial, which is equivalent to the
action having base size at least three.
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2. Background

In this section, we provide the background on spreading permutation groups, and
on primitive groups of diagonal type, that will be necessary to prove Theorems 1.2
and 1.3.

Given a set Ω, a multiset (or set) J of elements of Ω and a point ω ∈ Ω, we write
μJ(ω) to denote the multiplicity of ω in J . We say that J is trivial if either μJ is
constant on Ω, or there exists a unique point ω ∈ Ω such that μJ (ω) �= 0. Addition-
ally, a sum J + K of multisets is defined so that μJ+K(ω) = μJ(ω) + μK(ω) for all
ω, and similarly for scalar products of multisets. As usual, the cardinality of J is
|J | :=

∑
ω∈Ω μJ(ω).

We are now able to define spreading permutation groups.

Definition 2.1 [1, § 5.5]. A transitive permutation group G on Ω is non-spreading
if there exist a nontrivial subset X of Ω and a nontrivial multiset J of elements of
Ω, such that |J | divides |Ω| and

∑
x∈Xg μJ (x) is constant for all g ∈ G. Otherwise,

G is spreading.

We shall call a pair (X, J) satisfying the above properties a witness to G being
non-spreading. Recall from § 1 that each imprimitive group is non-spreading. It
is also immediate from Definition 2.1 that if G is non-spreading, then so is each
transitive subgroup of G. The following theorem provides a useful method for finding
a witness to a group being non-spreading.

Theorem 2.2 [3]. Let G be a finite group acting transitively on a finite set Ω, let
A be a subgroup of G, and let B a proper normal subgroup of A. Additionally, let
ω1, . . . , ωk ∈ Ω with k � 2, such that ωB

i �= ωB
j for i �= j, and

ωA
1 = ωB

1 ∪ ωB
2 ∪ . . . ∪ ωB

k .

Finally, let Δ := {Y ∈ XG | Y ∩ ωA
1 �= ∅} for some non-empty X � Ω. If B is

transitive on each A-orbit of Δ, then (X, Ω + kωB
1 − ωA

1 ) is a witness to G being
non-spreading.

Now, let T be a non-abelian finite simple group. In the remainder of this section,
we shall consider the primitive groups of diagonal type with socle T × T . To define
these groups, let T × T act on the set Ω := T by x(t1,t2) := t−1

1 xt2. In addition,
let ρ1 : T × T → Sym(Ω) be the corresponding permutation representation, and let
ρ2 : Aut(T ) → Sym(Ω) be the natural permutation representation of Aut(T ) on Ω.
Then ρ2(Inn(T )) = ρ1({(t, t) | t ∈ T}). Finally, let σ ∈ Sym(Ω) such that xσ = x−1

for all x ∈ T . Define W (T ) := 〈ρ1(T × T ), ρ2(Aut(T )), σ〉 � Sym(Ω), and note that
W (T ) ∼= (T × T ).(Out(T ) × C2). The groups of diagonal type with socle T × T are
precisely the subgroups of W (T ) containing ρ1(T × T ) (see, for example, [17, § 1]).
We will often drop the use of ρ1 and ρ2, and allow elements (and subgroups) of
T × T and Aut(T ) to denote permutations (and subgroups) of Sym(Ω).

In order to derive Theorem 1.2 from Theorem 1.3 (for most non-abelian finite
simple groups), we require the following corollary of Theorem 2.2. Throughout the
remainder of this section, we will use the elementary fact that if G is a transitive
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permutation group on a set Σ and H � G, then H acts transitively on Σ if and
only if G = HGα for each α ∈ Σ.

Corollary 2.3. Let T be a non-abelian finite simple group, and suppose that there
exists a proper subgroup A of T and a proper normal subgroup B of A such that
A = B(A ∩ Aτ ) for all τ ∈ Aut(T ). Then (A, Ω + |A : B|B − A) is a witness to the
diagonal type group W (T ) being non-spreading in its action on Ω = T .

Proof. Let G := W (T ), M := ρ1(1 × T ), ω1 := 1T , and D := Gω1 = 〈ρ2(Aut(T )),
σ〉 ∼= Aut(T ) × C2. Note that G = DM , as M acts transitively on Ω. Let
X := A � Ω. Then ω1×B

1 = B < A = ω1×A
1 , and XG = XDM = {Aτ t | τ ∈ Aut(T ),

t ∈ T}. Next, define Δ := {Y ∈ XG | Y ∩ ω1×A
1 �= ∅}, and observe that

Δ = {Aτa | τ ∈ Aut(T ), a ∈ A}. Thus the orbits of 1 × A on Δ are
Δτ = {Aτa | a ∈ A} for each τ ∈ Aut(T ). Additionally, the stabilizer in 1 × A of
Aτ ∈ Δτ is 1 × (A ∩ Aτ ). As A = B(A ∩ Aτ ), we observe that 1 × B is transitive
on Δτ . The result now follows from Theorem 2.2, applied to the groups G, 1 × A
and 1 × B. �

Our next lemma translates Property (i) of Theorem 1.3 into the language of coset
actions.

Lemma 2.4. Let T be a non-abelian finite simple group, R ∈ {T, Aut(T )}, and
A a proper subgroup of T . Suppose also that A has a proper normal subgroup B
that acts transitively on each orbit of A in its action on the right cosets of A
in R. If R = Aut(T ), or if all Aut(T )-conjugates of A are conjugate in T , then
A = B(A ∩ Aτ ) for all τ ∈ Aut(T ).

Proof. Let Σ be the set of right cosets of A in R. Then the point stabilizers in the
action of A on Σ are precisely the subgroups A ∩ At with t ∈ R. As B is transitive
on each orbit in this action, it follows that A = B(A ∩ At) for all t ∈ R. Hence
we are done if R = Aut(T ). Assume therefore that all Aut(T )-conjugates of A are
conjugate in T . Then for each τ ∈ Aut(T ), there exists t ∈ T such that Aτ = At,
and so B(A ∩ Aτ ) = B(A ∩ At) = A. �

In the case where T is one of the six sporadic groups listed in Property (iii) of
Theorem 1.3, we will show that W (T ) is non-spreading using the following lemma,
which involves elementary character theory. The multiset in the witness here is
similar to that of Theorem 2.2.

Lemma 2.5. Let T be a non-abelian finite simple group, and let Irr(T ) be the set
of irreducible complex characters of T . Suppose also that there exist pairwise non-
conjugate elements r, s1 and s2 of T , such that:

(i) |sT
1 | = |sT

2 |; and

(ii) χ(rτ ) = 0 for all τ ∈ Aut(T ) and all χ ∈ Irr(T ) with χ(s1) �= χ(s2).

Then (rT , Ω + sT
1 − sT

2 ) is a witness to the diagonal type group W (T ) being non-
spreading in its action on Ω = T .
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Proof. The set X := rT and the multiset J := Ω + sT
1 − sT

2 are clearly nontriv-
ial, and (i) implies that |J | = |Ω|. Thus by Definition 2.1, it remains to prove
that

∑
x∈Xg μJ(x) is constant for all g ∈ G := W (T ). In fact, we will show that

|Xg ∩ sT
1 | = |Xg ∩ sT

2 | for all g, and it will follow immediately that
∑

x∈Xg μJ(x) =
|X| for all g.

As above, G1T
= 〈ρ2(Aut(T )), σ〉, and the transitivity of M := ρ1(1 × T ) on Ω

implies that G = G1T
M . Hence for each g ∈ G, there exist τ ∈ Aut(T ), ε = ±1

and t ∈ T such that Xg = ((rτ )ε)T t. Letting m := (rτ )ε, i ∈ {1, 2} and h ∈ sT
i , we

observe from [16, Problem 3.9] that the set {(x, y) | x ∈ mT , y ∈ tT , xy = h} has
size

ag,i :=
|mT ||tT |

|T |
∑

χ∈Irr(T )

χ(m)χ(t)χ(si)
χ(1)

,

where χ(si) is the complex conjugate of χ(si). Since ag,i is constant for all
h ∈ sT

i , and |mT tu ∩ sT
i | is constant for all u ∈ T , it follows that |Xg ∩ sT

i | =
ag,i|sT

i |/|tT |. As χ((rτ )−1)= χ(rτ ) for each character χ of T , (i) and (ii) yield
|Xg ∩ sT

1 |= |Xg ∩ sT
2 | for all g ∈ G, as required. �

Remark 2.6. For many small non-abelian finite simple groups T , it is possible to
choose an element r ∈ T satisfying Property (ii) of Lemma 2.5 when s1 and s2

are non-conjugate elements of T such that s−1
1 = s2, or more generally, such that

〈s1〉 = 〈s2〉. The non-abelian finite simple groups with all elements conjugate to
their inverses are classified in [18, Theorem 1.2], and [14, Corollary B.1] shows
that PSp6(2) and PΩ+

8 (2) are the only such groups where u, v ∈ T are conjugate
whenever 〈u〉 = 〈v〉. Denoting conjugacy classes as in the Atlas [13], we observe
by inspecting the Atlas character tables of these two groups that we can choose
r ∈ 7A, s1 ∈ 6A and s2 ∈ 6B when T = PSp6(2), and r ∈ 7A, s1 ∈ 15A and
s2 ∈ 15B when T = PΩ+

8 (2). We leave open the problem of determining which non-
abelian finite simple groups, if any, do not contain pairwise non-conjugate elements
r, s1 and s2 satisfying Properties (i) and (ii) of Lemma 2.5.

3. Non-abelian finite simple groups and groups of diagonal type

In this section, we show that Property (i) of Theorem 1.3 holds for all non-abelian
finite simple groups other than the sporadic groups J1, M22, J3, McL, Th and M,
and then prove Theorems 1.3 and 1.2. Note that we address the Tits group 2F4(2)′

together with the sporadic groups. Throughout, we use Atlas [13] notation for the
structures of groups.

We first consider the finite simple groups of Lie type, beginning with the Cheval-
ley groups (i.e. the untwisted groups of Lie type) defined over fields of size q � 3,
then the twisted groups of Lie type, and finally the Chevalley groups with q = 2.

Proposition 3.1. Let T be a finite simple Chevalley group X�(q), with q � 3. Then
Property (i) of Theorem 1.3 holds for T .

Proof. Let p be the prime dividing q, and let U be a Sylow p-subgroup of T . Then
T contains a subgroup N such that A := NT (U) and N form a (B, N)-pair, and
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the normal subgroup H := A ∩ N of N complements U in A (see [12, Ch. 7.2–9.4]).
Since q � 3 (and since T is not the soluble group A1(3) = PSL2(3)), we observe from
[12, pp. 121–122] that |H| > 1, and so U is a proper subgroup of A. Furthermore,
as A is the normalizer in T of the Sylow subgroup U , all Aut(T )-conjugates of A
are conjugate in T .

By Lemma 2.4, it suffices to show that A and U have the same orbits in the
action of T on the set of right cosets of A. For each element w of the Weyl group
W := N/H, fix a preimage nw ∈ N of w under the natural homomorphism from N
to W . In addition, let x and y be elements of T so that Ax and Ay lie in a common A-
orbit. Then the double cosets AxA and AyA are equal. By [12, Theorem 8.4.3], there
exist ax, ay ∈ A, wx, wy ∈ W and ux, uy ∈ U < A such that x = axnwx

ux and
y = aynwy

uy. It follows that Anwx
A = Anwy

A. As A and N form a (B, N)-pair,
[12, Proposition 8.2.3] yields nwx

= nwy
. Thus AxU = Anwx

U = Anwy
U = AyU ,

i.e. Ax and Ay lie in the same U -orbit, as required. �

Proposition 3.2. Let T be a finite simple twisted group of Lie type tX�(q). Then
Property (i) of Theorem 1.3 holds for T .

Proof. Note that T �∼= 2F4(2)′. As above, let p be the prime dividing q, and let U be
a Sylow p-subgroup of T . By [12, Ch. 13–14], T contains subgroups N , H and W
analogous to those in the proof of Proposition 3.1, so that A := U : H and N form
a (B, N)-pair, and W = N/H. Furthermore, H is nontrivial for all q, as T is not
isomorphic to 2A2(2) = PSU3(2), 2B2(2) = Sz(2) or 2F4(2). Although [12] directly
states only that A � NT (U), we can show that A = NT (U). Indeed, if this were not
the case, then some preimage nw ∈ N of a fundamental reflection w ∈ W would
normalise U (see [12, Proposition 8.2.2 & Theorem 8.3.2]). However, we deduce
from Proposition 13.6.1 and the proof of Theorem 13.5.4 in [12] that no such w
exists, and so A = NT (U). We now proceed exactly as in the proof of Proposition
3.1, this time using Proposition 13.5.3 of [12] instead of Theorem 8.4.3. �

Proposition 3.3. Let T be a finite simple Chevalley group X�(2). Then Property
(i) of Theorem 1.3 holds for T .

Proof. Since A2(2) = PSL3(2) ∼= PSL2(7) is addressed by Proposition 3.1, and since
the remaining groups X�(2) with 	 � 2 are not simple, we shall assume that 	 � 3.
Let Φ ⊆ R� be a root system for T , with Φ+ ⊆ Φ a system of positive roots and
Π ⊆ Φ+ a system of simple roots (see, for example, [12, Ch. 2]). Then Φ is the dis-
joint union of Φ+ and −Φ+, and each node in the Dynkin diagram D corresponding
to T is associated with a unique root in Π (and vice versa). Hence each diagram
automorphism of D induces a permutation of Π. Let r and s be the simple roots
associated with a leaf in D and the adjacent node, respectively. Additionally, let S
be the closure of the set {s} under the group of diagram automorphisms of D, so
that |S| ∈ {1, 2}.

Next, let U , N and W be as in the proof of Proposition 3.1. In this case, the
group H from that proof is trivial, and so NT (U) = U and W ∼= N . By [12, Propo-
sition 2.1.8, p. 68 & p. 93], T is generated by a set {xu | u ∈ Φ} of involutions
(xu is written as xu(1) in [12]), with U = 〈xu | u ∈ Φ+〉, and N is generated by a
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set {nv | v ∈ Π} of involutions. Let A := 〈U, nv | v ∈ Π \ S〉 be the parabolic sub-
group of T corresponding to the subset Π \ S of Π. Then by [12, Ch. 8.5] and
the well-known structure of parabolic subgroups of Chevalley groups, A has shape
[2m] : (L{r} × LΠ\({r}∪S)) for some positive integer m, where L{r} ∼= A1(2) ∼= S3

and LΠ\({r}∪S) are Levi subgroups. Since q = 2, all automorphisms of T are prod-
ucts of inner and graph automorphisms. Moreover, Π \ S is fixed setwise by all
diagram automorphisms of D, which correspond to the graph automorphisms of T ,
and so all Aut(T )-conjugates of A are conjugate in T . In addition, A contains an
index two subgroup B of shape [2m] : (F × LΠ\({r}∪S)), where F := L′

{r} ∼= C3. We
will show that AtA = AtB for all t ∈ T , and the result will follow from Lemma 2.4.

Since NT (U) = U � A, we deduce as in the proof of Proposition 3.1 that, for
each t ∈ T , there exists n ∈ N such that AtA = AnA. Thus it suffices to prove
that AnA = AnB for all n ∈ N (it will immediately follow that AnB = AtB for
the corresponding t ∈ T ). We also observe using [12, Ch. 8.5] (and the fact that
F has index two in L{r}) that xr ∈ A \ B and x−rxr ∈ B. The former contain-
ment implies that AnA = AnB ∪ AnxrB. To complete the proof, we will show that
AnxrB = AnB.

The Weyl group W acts linearly on R� and fixes Φ. Let w be the ele-
ment of W corresponding to n. By [12, Lemma 7.2.1(i)], nxr = xw(r)n and
x−w(r)n = xw(−r)n = nx−r. If w(r) ∈ Φ+, then xw(r) ∈ 〈xu | u ∈ Φ+〉 = U � A,
and so Anxr = An. Otherwise, −w(r) ∈ Φ+ and x−w(r) ∈ A, yielding An = Anx−r

and hence Anxr = Anx−rxr, which lies in AnB by the previous paragraph. In
either case, we see that AnxrB = AnB, as required. �

Next, we consider the alternating groups, followed by the sporadic groups and
the Tits group.

Proposition 3.4. Let T be a finite simple alternating group An. Then Property
(i) of Theorem 1.3 holds for T .

Proof. Since A5
∼= PSL2(4) = A1(4) and A6

∼= PSL2(9) = A1(9) are addressed by
Proposition 3.1, we shall assume that n � 7. Let Σ be the set of 3-subsets of a
set of size n, and let α ∈ Σ. Then A := Tα = (S3 × Sn−3) ∩ T , and all Aut(T )-
conjugates of A are conjugate in T . Additionally, A has four orbits on Σ, namely
{α} and {β ∈ Σ | |β ∩ α| = i} for i ∈ {0, 1, 2}. Since the index two subgroup
B := A3 × An−3 of A acts transitively on each of these orbits, and since the action
of T on Σ is equivalent to its action on the right cosets of A, the result follows from
Lemma 2.4. �

Proposition 3.5. Let T be the Tits group 2F4(2)′, or a sporadic simple group that
does not lie in {J1, M22, J3, McL, Th, M}. Then Property (i) of Theorem 1.3 holds
for T .

Proof. We observe from the Atlas [13] that T has a maximal subgroup A, as
specified in Table 1, such that either T = O′N or all Aut(T )-conjugates of Tα are
conjugate in T . It is also clear that the group B in the table is a proper normal
subgroup of A. Note that if T = M12, then A has two normal subgroups isomorphic
to S5; in what follows, B may be chosen as either.
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Table 1. A maximal subgroup A of a group T from Proposition 3.5, with B a proper
normal subgroup of A

T A B |T : A|

M11 A6.2 A6 11
M12 S5 × 2 S5 396
J2 A5 × D10 A5 × 5 1008

M23 (24 : (3 × A5)) : 2 24 : (3 × A5) 1771
2F4(2)′ (22.[28]) : S3 (22.[28]) : 3 2925
HS S8 A8 1100
M24 M12 : 2 M12 1288
He PSp4(4) : 2 PSp4(4) 2058

Ru (26 : PSU3(3)) : 2 26 : PSU3(3) 188500
Suz (3.PSU4(3)) : 2 3.PSU4(3) 22880
O′N PSL3(7) : 2 PSL3(7) 122760
Co3 McL : 2 McL 276
Co2 PSU6(2) : 2 PSU6(2) 2300

Fi22 PΩ+
8 (2) : S3 PΩ+

8 (2) : 3 61776
HN PSU3(8) : 3 PSU3(8) 16500000
Ly (3.McL) : 2 3.McL 9606125

Fi23 PΩ+
8 (3) : S3 PΩ+

8 (3) : 3 137632
Co1 (3.Suz) : 2 3.Suz 1545600

J4 (21+12
+ .3M22) : 2 21+12

+ .3M22 3980549947

Fi′24 (3 × PΩ+
8 (3) : 3) : 2 3 × PΩ+

8 (3) : 3 14081405184

B (2.2E6(2)) : 2 2.2E6(2) 13571955000
.

Now, let R := Aut(T ) if T = O′N, and R := T otherwise. Additionally, let χ be
the permutation character corresponding to the action of R on the set Σ of right
cosets of A in R. Then for each t ∈ R, the number of points in Σ fixed by t is equal to
χ(t). By the Cauchy–Frobenius Lemma, A and B have cA := 1/|A|∑a∈A χ(a) and
cB := 1/|B|∑b∈B χ(b) orbits on Σ, respectively. It is straightforward to compute
cA and cB in GAP [15] using the Character Table Library [9] (cA is most readily
calculated as the inner product [χ, χ]), and in each case we obtain cA = cB . Thus
Lemma 2.4 yields the result. �

We are now able to prove Theorem 1.3. Given a group G and a non-trivial (core-
free) subgroup H of G, we will write b(G, H) to denote the base size of G in its
action on the set Σ of right cosets of H, i.e., the minimum size of a subset Δ of Σ
such that the pointwise stabilizer G(Δ) is trivial. Notice that b(G, H) � 2, as H is
a point stabilizer in this action.

Proof of Theorem 1.3. Propositions 3.1–3.5 show that (iii) implies (i), which clearly
implies (ii). To complete the proof, we will show that if (iii) does not hold, then
neither does (ii). If T ∈ {J1, M22, J3, McL}, then we construct T in Magma [7] via
the AutomorphismGroupSimpleGroup and Socle functions, and show that (ii) does
not hold via fast, direct computations.
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Table 2. Elements r, s1 and s2 that satisfy Properties (i) and (ii) of Lemma 2.5, for each
of six sporadic groups T

T r s1 s2

J1 7A 5A 5B
M22 5A 7A 7B
J3 5A 19A 19B
McL 4A 9A 9B
Th 7A 39A 39B
M 110A 119A 119B

Each element is specified by its corresponding conjugacy class, labelled as in the
Atlas [13].

Suppose next that T = Th, let C be a proper subgroup of T , and let A be a sub-
group of C. Observe that if b(T, C) = 2, then (as discussed below the statement of
Theorem 1.3) the two-point stabilizer C ∩ Ct is trivial for some t. Hence A∩At = 1,
and so A does not satisfy (ii). In general, b(T, A) � b(T, C). By [11, Theorem 1],
T has only two maximal subgroups (up to conjugacy) with corresponding base size
greater than two, namely M1 := 3D4(2) : 3 and M2 := 25.PSL5(2), and b(T, M1) =
b(T, M2) = 3. Hence any proper subgroup A of T satisfying (ii) is a non-simple
subgroup of M1 or M2 with b(T, A) = 3.

Now, let Σ be the set of right cosets in T of a proper subgroup A, and let c be
the number of orbits of A on Σ. If b(T, A) � 3, then |A ∩ At| � 2 for all t ∈ T , and
it follows from the Orbit-Stabiliser Theorem that c|A|/2 � |Σ|. If A is a maximal
subgroup of either M1 or M ′

1
∼= 3D4(2), then the character table of A is included in

The GAP Character Table Library. Thus for every such A �= M ′
1, we can compute

c as in the proof of Proposition 3.5, and we see that in fact c|A|/2 < |Σ|, and
hence b(T, A) = 2. To show that b(T, A) = 2 for each maximal subgroup A of M2,
we construct T and M2 in Magma as subgroups of GL248(2) using the respective
generating pairs {x, y} and {w1, w2} given in [19]. Magma calculations (with a
runtime of less than 10 minutes and a memory usage of 1.5 GB) then show that
A ∩ Ay = 1 for all representatives A of the conjugacy classes of maximal subgroups
of M2 returned by the MaximalSubgroups function. Therefore, M1 and M2 are
the only non-simple subgroups of T with corresponding base size at least three.
Further character table computations in GAP show that if A ∈ {M1, M2}, then for
each proper normal subgroup B of A, the number of B-orbits on Σ is greater than
the number of A-orbits. An additional application of the Orbit-Stabiliser Theorem
yields B(A ∩ At) < A for some t ∈ T . Therefore, (ii) does not hold.

Finally, suppose that T = M. As above, any proper subgroup A of T satisfying
(ii) also satisfies b(T, A) � 3. By [10, Theorem 3.1], the unique (up to conjugacy)
proper subgroup A of T with b(T, A) � 3 is the maximal subgroup K := 2.B, with
b(T, K) = 3. Since K is quasisimple, its centre Z of order two is its unique non-
trivial proper normal subgroup, and Z lies in each maximal subgroup of K. Hence
Z(K ∩ Kt) < K for all t ∈ T \ K, and so (ii) does not hold. �
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We now prove our main theorem.

Proof of Theorem 1.2. As each spreading primitive group is synchronizing,
Theorem 1.1 implies that a spreading primitive group of diagonal type has socle
T × T , for some non-abelian finite simple group T . For each T , let Ω := T , and let
W (T ) be the subgroup of Sym(Ω) defined in § 2. Recall also that each subgroup of
a non-spreading group is non-spreading. Thus it suffices to show that W (T ) is non-
spreading for each T . If T /∈ {J1, M22, J3, McL, Th, M}, then this is an immediate
consequence of Theorem 1.3 and Corollary 2.3.

For each of the six remaining groups T , let r, s1 and s2 be members of the
conjugacy classes of T given in Table 2. By inspecting the character table for T in
[13], we observe that these elements satisfy Properties (i) and (ii) of Lemma 2.5.
Therefore, that lemma shows that W (T ) is non-spreading. �
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