s6. Elunt's Line.

The circumcentre, the centroid, and the orthocentre of a triangle are collinear, and the distance between the first two is half the distance letreeen the last two.*

Figure 61.

First Demonstration. \dagger

Let A^{\prime}, B^{\prime} be the mid points of $B C, C A$, and let the perpendiculars to BC, CA at $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}$ meet at O ;
then O is the circumcentre.
Let the perpendiculars AX, BY meet at H ;
then H is the orthocentre.
Join OH and let AA^{\prime} meet it at G . Join $\mathrm{A}^{\prime} \mathrm{B}^{\prime}$.
Because triangles $\mathrm{HAB}, \mathrm{OA}^{\prime} \mathrm{B}^{\prime}$ have their sides respectively parallel to each other, they are similar ;
therefore $\quad \mathrm{HA}: \mathrm{OA}^{\prime}=\mathrm{AB}: \mathrm{A}^{\prime} \mathrm{B}^{\prime}=\mathbf{2}: 1$.
Again triangles $\mathrm{HAG}, \mathrm{OA}^{\prime} \mathrm{G}$ are similar ;
therefore $\quad \mathrm{HG}: \mathrm{OG}=\mathrm{HA}: \mathrm{OA}^{\prime}=2: 1$
that is, $A A^{\prime}$ cuts $O H$ so that $H G=$ twice $O G$.
Hence also the medians from B and C cut OH
so that $\mathrm{HG}=$ twice OG ;
therefore G is the centroid, and H, G, O are collinear.
This is also a proof that the medians are concurrent.

Second Demonstration.

Let AA^{\prime} be the median from A, G the centroid, and O the circumcentre.

Join OA', OG, and let AX the perpendicular from \mathbf{A} to BC meet $O G$ produced at H.

[^0]```
 Then triangles HAG, OA'G are similar ;
therefore \(\quad \mathrm{HG}: O G=A G: A^{\prime} G=2: 1\),
that is, \(A X\) cuts \(O G\) produced so that \(H G=\) twice \(O G\).
Hence also the perpendiculars from \(B\) and \(C\) cut \(O G\) produced
so that \(\mathrm{HG}=\) twice OG ;
therefore H is the orthocentre, and \(\mathrm{H}, \mathrm{G}, \mathrm{O}\) are collinear.
This is also a proof that the perpendiculars to the sides from the vertices are concurrent.
```


## Third Denonstration.

Let AX be the perpendicular, $\mathrm{AA}^{\prime}$ the median, from A to BC : and let H be the orthocentre, G the centroid.

Join HG, and let the perpendicular from $A^{\prime}$ to BC meet H (; produced at O .

Then triangles HAG, OA'G are similar ;
therefore $\quad \mathrm{HG}: \mathrm{OG}=\mathrm{AG}: \mathrm{A}^{\prime} \mathbf{G}=2: 1$,
that is, the perpendicular to $B C$ from its mid point cuts $H G$ produced so that $H G=$ twice OG.
Hence also the perpendiculars to $\mathbf{C A}, \mathbf{A B}$ from their mid points cut $H G$ produced so that $H G=t$ wice $O G$;
therefore O is the circumcentre, and $\mathrm{H}, \mathrm{G}, \mathrm{O}$ are collinear.
This is also a proof that the perpendiculars to the sides from their mid points are concurrent.

## Fourte Demonstration.*

Figure 62.
Let $\mathbf{H}$ be the orthocentre, determined by drawing $A X$, BY perpendicular to $\mathrm{BC}, \mathrm{CA}$; O the circumcentre, determined by drawing $A^{\prime} O, B^{\prime} O$ perpendicular to $B C, C A$ from their mid points $A^{\prime}, B^{\prime}$. Join HO and let it meet the median $\mathrm{AA}^{\prime}$ at G .

Bisect HA, HB at U, V, and GA, GH at P, Q ;
join UV, PQ, $\mathrm{A}^{\prime} \mathrm{B}^{\prime}$.

[^1]Then $A^{\prime} B^{\prime}$ is parallel to $A B$ and equal to $\frac{1}{2} A B$, and $\quad \mathrm{UV}$ is parallel to AB and equal to $\frac{1}{2} \mathrm{AB}$; therefore $A^{\prime} B^{\prime}$ is parallel to $U V$ and equal to $U V$.
Because $\mathrm{OA}^{\prime}$ and HU are both perpendicular to BC ;
therefore $\mathrm{OA}^{\prime}$ is parallel to HU .
Similarly $\mathrm{OB}^{\prime}$ is parallel to HV.
Hence the triangles $\mathrm{OA}^{\prime} \mathrm{B}^{\prime}, \mathrm{HUV}$ are mutually equiangular, and, since $A^{\prime} B^{\prime}=U V$, congruent.
Therefore

$$
\mathrm{OA}^{\prime}=\mathrm{HU}=\frac{1}{2} \mathrm{AH} .
$$

Again $P Q$ is parallel to $A H$ and equal to $\frac{1}{2} A H$;
therefore PQ is parallel to $\mathrm{OA}^{\prime}$ and equal to $\mathrm{OA}^{\prime}$.
Hence the triangles $A^{\prime} G O, P G Q$ are congruent ;
therefore $A^{\prime} G=P G=\frac{1}{2} A G$;
therefore $G$ is the centroid, and $O G=Q G=\frac{1}{2} H G$.
The straight line HGO is frequently called Euler's line.
(1) The twelve radii drawn from the incentre and the excentres of a triangle perpendicular to the sides of the triangle meet by threes in four points, and these four points are the circumcentres of the triangles *

$$
I_{1} I_{2} I_{3}, \quad I I_{3} I_{2}, \quad I_{3} I I_{1}, \quad I_{2} I_{1} I .
$$

Figure 63.
The triads of concurrent radii are

$$
\begin{array}{ll}
\mathrm{I}_{1} \mathrm{D}_{1}, \mathrm{I}_{2} \mathrm{E}_{2}, \mathrm{I}_{3} \mathrm{~F}_{3} & \mathrm{ID}, \mathrm{I}_{3} \mathrm{E}_{3}, \mathrm{I}_{2} \mathrm{~F}_{2} \\
\mathrm{I}_{3} \mathrm{D}_{3}, \mathrm{IE}, \mathrm{I}_{1} \mathrm{~F}_{1} & \mathrm{I}_{2} \mathrm{D}_{2}, \mathrm{I}_{2} \mathrm{E}_{1}, \mathrm{IF}
\end{array}
$$

and the theorem follows at once from the converse of the first part of $\$ 5,(32)$.

A second proof of the concurrency of these four triads may be derived from Oppel's theorem in $\S 2$ and the expressions in $\S 4$, (5).

[^2]
## A third proof may be got from a theorem of Steiner*:

If the three perpendiculars from the vertices of one triangle on the sides of another are concurrent, the three corresponding perpendiculars from the vertices of the latter on the sides of the former are also concurrent.

The following proof is due to Mr W. J. C. Miller $\dagger$ :
Because

$$
\begin{aligned}
& -\mathrm{E}_{2} \mathrm{I}_{2} \mathrm{~A}=\frac{1}{2} \mathrm{CAB}=-\mathrm{F}_{3} \mathrm{I}_{2} \mathrm{~A} \\
& -\mathrm{F}_{;} \mathrm{I}_{3} \mathrm{P}=\frac{1}{2} \mathrm{ABC}=-\mathrm{D}_{1} \mathrm{I}_{1} \mathrm{~B} \\
& -\mathrm{D}_{1} \mathrm{I}_{1} \mathrm{C}=\frac{1}{2} \mathrm{BCA}=-\mathrm{E}_{2} \mathrm{I}_{2} \mathrm{C} ;
\end{aligned}
$$

therefore $I_{3} D_{1}, I_{2} E_{i}, I_{i} F_{:}$will meet in a point $O_{8}$ such that

$$
O_{4} I_{3}=O_{14} I_{2}=O_{6} I_{2}
$$

hence $O_{0}$ is the circumeentre of $I_{1} I_{2} I_{3}$.
Similarly for the other triads, which meet at the points

$$
\mathrm{O}_{\mathrm{i}}, \mathrm{O}_{2,}, \mathrm{O}_{\ldots} .
$$

Def. Mr Lemoine has proposed ${ }_{\stackrel{+}{*} \text { to call triangles such as those }}$ of Steiner's theorem orthologous, and the points of concurreacy of the perpendiculars centres of orthology.

Hence $A B C$ is ortlologous with each of the triangles

$$
\mathrm{I}_{1} \mathrm{I}_{2} \mathrm{I}_{3}, \quad \mathrm{I}_{5} \mathrm{I}_{2}, \quad I_{3} \mathrm{II}_{1}, \quad \mathrm{I}_{2} I_{2} \mathrm{I}
$$

and the respective centres of orthology are

$$
\mathrm{I}, \mathrm{O}_{1}: \mathrm{I}_{1}: \mathrm{O}_{1} ; \mathrm{I}_{2}, \mathrm{O}_{2} ; \mathrm{I}_{:}, \mathrm{O}_{3}
$$

(2) The figures $O_{0} I_{-} O_{1} I_{:}, O_{v} I_{0} O_{2} I_{1}, O_{0} I_{1} O_{3} I_{2}$ are thombi.

For $\quad O_{0} I_{i}, O_{1} I_{:}$are perpendicular to AC

$$
\mathrm{O}_{\mathrm{i}} \mathrm{I} . \mathrm{O}_{i} \mathrm{I}, \quad, \quad, \quad \mathrm{AD}:
$$

and

$$
O T_{E}=O I_{5}
$$

Hence

$$
O_{i} O_{3}, O_{i} O_{-}, \quad O_{2}
$$

are respectivels perpendicular to

$$
I_{z} I_{z}, \quad I_{i} I_{i}, \quad I_{z} I_{2}
$$

[^3]\[

$$
\begin{equation*}
O_{2} O_{3 i}, \quad O_{3} O_{1}, \quad O_{1} O_{2} \tag{3}
\end{equation*}
$$

\]

are respectively parallel to

$$
I_{2} I_{3}, \quad I_{3} I_{1}, \quad I_{1} I_{2}
$$

For $\mathrm{O}_{2} \mathrm{I}_{3}, \mathrm{O}_{3} \mathrm{I}_{2}$ are perpendicular to BC ;
and they are equal, since the radii of the circumcircles of the four I triangles are equal ;
therefore $\mathrm{O}_{2} \mathrm{O}_{3} \mathrm{I}_{2} \mathrm{I}_{:}$is a parallelogram.
(t) The four $O$ triangles are congruent to their respective four I triangles, and their corresponding sides are parallel.
(5) The points $\mathrm{O}_{1}, \mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{O}_{\text {. }}$ are the orthocentres of the four O triangles taken in order.
(6) The figures $1 O_{2} I_{1} O_{3}, I O_{3} I_{2} O_{1}, I O_{1} I_{3} O_{2}$ are rhombi.

For $\quad I O, I_{1} O_{2}$ are perpendicular to $A C$

$$
\mathrm{IO}, \mathrm{I}_{1} \mathrm{O}_{2}, \quad, \quad, \quad \mathrm{AB}
$$

and

$$
\mathrm{IO}_{2}=\mathrm{IO}
$$

since the radii of the circumcircles of the four I triangles are equal.
(7) The points $I, I_{1}, I_{2}, I_{3}$ are the circumcentres of the four $O$ triangles taken in order.

$$
\begin{equation*}
\mathrm{IO}_{0}, \quad \mathrm{I}_{1} \mathrm{O}_{1}, \quad \mathrm{I}_{2} \mathrm{O}_{2}, \quad \mathrm{I}_{3} \mathrm{O}_{2} \tag{8}
\end{equation*}
$$

are the Euler's lines of the four I triangles, and of the four $O$ triangles, and the circumcentre $O$ of $A B C$ is the mid point of each of them.
(d) By referring to the Section* on the nine-point circle, it will be seen that the circumcircle of ABC is the nine-point circle of the eight $I$ and $O$ triangles, and that the radii of the circumcircles of these eight triangles are each 2 R .

It will also be seen that the circumeircle of ABC bisects each of the six straight lines

$$
\mathrm{II}_{1}, \quad \mathrm{II}_{2}, \quad \mathrm{II}_{3}, \mathrm{I}_{2} \mathrm{I}_{3}, \quad \mathrm{I}_{3} \mathrm{I}_{1}, \quad \mathrm{I}_{1} \mathrm{I}_{2}
$$

[^4]and that
$$
\mathrm{U}, \mathrm{v}, \mathrm{w}, \mathrm{U}^{\prime}, \mathrm{v}^{\prime}, \mathrm{w}^{\prime} \text {; }
$$
are the diameters of the circumcircle $A B C$ perpendicular to
\[

$$
\begin{equation*}
\mathrm{BC}, \mathrm{CA}, \mathrm{AB} . \tag{10}
\end{equation*}
$$

\]

$\mathrm{U}^{\prime} \mathrm{V}^{\prime} \mathrm{W}^{\prime}, \mathrm{U}^{\prime} \mathrm{VW}, \mathrm{UV}{ }^{\prime} \mathrm{W}, \mathrm{UVW}$
are the complementary triangles of the four I triangles taken in order.
(11) $\quad \mathrm{O}_{6} \mathrm{O}_{1}, \mathrm{O}_{0} \mathrm{O}_{2}, \mathrm{O}_{0} \mathrm{O}_{3}, \mathrm{O}_{2} \mathrm{O}_{3}, \mathrm{O}_{3} \mathrm{O}_{1}, \mathrm{O}_{1} \mathrm{O}_{2}$
pass respectively through the points

$$
\mathrm{U}^{\prime}, \quad \mathrm{v}^{\prime}, \quad \mathrm{w}, \quad \mathrm{U}, \mathrm{v}, \quad \mathrm{w} .
$$

(12) The following pairs of straight lines intersect on the circumcircle of ABC :
at

$$
\begin{array}{rcc}
\mathrm{O}_{0} \mathrm{O}_{1}, \mathrm{O}_{2} \mathrm{O}_{3} ; & \mathrm{O}_{0} \mathrm{O}_{2}, \mathrm{O}_{3} \mathrm{O}_{1} ; & \mathrm{O}_{0} \mathrm{O}_{0}, \mathrm{O}_{2} \mathrm{O}_{2} \\
\mathrm{U}_{1}, & \mathrm{~V}_{1}, & \mathrm{~W}_{1} .
\end{array}
$$

(13) Triangle $\mathrm{U}_{1} \mathrm{~V}_{1} \mathrm{~W}_{1}$ bears to $\mathrm{O}_{0} \mathrm{O}_{1} \mathrm{O}_{2}$ exactly the same rela: tions that ABC does to $I_{1} I_{2} I_{3}$.

## Figure 64.

(14) Of the four I triangles taken in order let

$$
G_{0}, G_{1}, G_{2}, G_{i}
$$

be the centroids ; then the concurrency of

| $\mathrm{I}_{1} \mathrm{U}^{\prime}, \mathrm{I}_{2} \mathrm{~V}^{\prime}, \mathrm{I}_{3} \mathrm{~W}^{\prime}$ | determines | G |
| :---: | :---: | :---: |
| I U', $\mathrm{I}_{2} \mathrm{~V}, \mathrm{I}_{1} \mathrm{~W}$ | " |  |
| $\mathrm{I}_{3} \mathrm{U}, \mathrm{IV} \mathrm{V}^{\prime}, \mathrm{I}_{1} \mathrm{II}$ | " | G |
| $\mathrm{I}_{2} \mathrm{U}, \mathrm{I}_{2} \mathrm{~V}, \mathrm{I} \mathrm{H}$ | " |  |


(16) Through O pass*

$$
\begin{aligned}
& I G_{0}, \quad I_{1} G_{1}, \quad I_{2} G_{2}, \quad I_{i} G_{3} \quad \text { and } \\
& \mathrm{OI}=3 \mathrm{OG}_{6}, \mathrm{OI}_{1}=3 \mathrm{OG}_{1}, \mathrm{OI}_{2}=3 \mathrm{OG}_{2}, \mathrm{OI}_{3}=3 \mathrm{OG}_{3} \text {. }
\end{aligned}
$$

* Thomas Weddle in the Lady' and Gcntloman: Diary for 1849, p. 76.
(17) If through $G_{0}$ parallels be drawn to

$$
\mathrm{O}_{0} \mathrm{U}^{\prime}, \quad \mathrm{O}_{0} \mathrm{~V}^{\prime}, \quad \mathrm{O}_{0} \mathrm{~W}^{\prime}
$$

these parallels will meet
at
IU', IV', I W'

$$
G_{1}, \quad G_{2}, \quad G_{3} .
$$

(18) $\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3}$ is directly similar to $\mathrm{U}^{\prime} \mathrm{V}^{\prime} \mathrm{W}^{\prime}$ and $\mathrm{I}_{1} \mathrm{I}_{2} \mathrm{I}_{3}$, the ratio of similitude in the first case being $2: 3$, and in the second $1: 3$.
(19) I, U', V, W; $\mathrm{O}_{0}, \mathrm{U}^{\prime}, \mathrm{V}^{\prime}, \mathrm{W}^{\prime} ; \mathrm{G}_{0}, \mathrm{G}_{1}, \mathrm{G}_{2}, \mathrm{G}_{3}$
form orthic tetrastigms.

## Figure 63.

(20) The areas of the six rhombi *

$$
\begin{array}{ccc}
\mathrm{O}_{0} \mathrm{I}_{2} \mathrm{O}_{1} \mathrm{I}_{3}, & \mathrm{O}_{0} \mathrm{I}_{3} \mathrm{O}_{2} \mathrm{I}_{1}, & \mathrm{O}_{0} \mathrm{I}_{1} \mathrm{O}_{3} \mathrm{I}_{2} \\
\mathrm{I} \mathrm{O}_{2} \mathrm{I}_{3}, & \mathrm{I} \mathrm{O}_{3} \mathrm{O}_{2}, & \mathrm{I} \mathrm{O}_{1} \mathrm{O}_{2} \\
2 \mathrm{R} a, & 2 \mathrm{R} b, & 2 \mathrm{R} c
\end{array}
$$

(21) The areas of the three parallelograms $\dagger$

$$
\begin{array}{lll} 
& \mathrm{I}_{3} \mathrm{I}_{3} \mathrm{O}_{2} \mathrm{O}_{3}, & \mathrm{I}_{3} \mathrm{I}_{1} \mathrm{O}_{3} \mathrm{O}_{1},
\end{array}, \mathrm{I}_{2} \mathrm{I}_{2} \mathrm{O}_{1} \mathrm{O}_{2} .
$$

(22) The figure $\mathrm{I}_{1} \mathrm{O}_{;} \mathrm{I}_{2} \mathrm{O}_{1} \mathrm{I}_{3} \mathrm{O}_{2}$ is an equilateral hexagon + ; its opposite sides are parallel $\ddagger$, and equal to the diameter of the circumcircle $\ddagger$ of $A B C$; its angles are the supplements§ of the angles of ABC ; and its area $s$ is equal to the sum of the areas of $I_{1} I_{2} I_{3}$ and $\mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{3}$, that is equal to 4 Rs .

[^5]
[^0]:    * Proved by Euler in 1765. His proof will be found in Novi Commentarii Acedemiae ... Petropolitanac, XI. 114. An abstract of this paper of Euler's is printed in the Proceedings of the Edinburyh Mathematical Society, IV. 51-55 (1886).
    $\dagger$ This method of proof is given in Carnot's Geometrie de Position, $\S 131$ (1803). The second and third methods are imitations of it.

[^1]:    * This mode of proof assumes only the first book of Fuclid's Elinicuts and itimmediate consequences.

[^2]:    *The results (1)-(7) are given by T. S. Davies in the Philosophical Magazine, II. 26-34 (1827). The concurrency of the first triad at the circumcentre of triangle $\mathrm{I}_{1} \mathrm{I}_{2} \mathrm{I}_{3}$, and the length of the radins, 2 R , of that triangle were pointed out by Benjamin Bevan in Leybourn's Mathematical Repository, new series, I. 18 (pagination of questions), 143 (pagination of Part I.) in 1804. Compare the subscripts in the designations of the four $I$ triangles with the subscripts of the radii which meet at their circumcentres.

[^3]:    * Crelle's Journal, II. 287 (1827), or Steiner's Gcsummettc Werke, I. 157 (1ssi!.
    + Lady's and Gentleman's Diary for 1863, p. 54.
    $\ddagger$ Journul de Mathématiques Speriths. 3rd series, III. 63 (18e9s, and thr memoir Sur les triangles ortholoriques read at the Limoges metting (1s40) of the Association Francaise pour l'arancement des Seiences.

[^4]:    * Procecdings of the Edinburgh Mathematical Socicty, XI. 19-57 (1893).

[^5]:    * The last three are given by Rev. William Mason of Normantou in the Lady's and Gontloman's Diary for 1863, p. 53.
    + Mr S. Constable in the Elucational Times, XXXI. 113 (1878).
    $\ddagger$ T. S. Davies in the Philosophical Mayazine, II. 32 (1827).
    § Rev. William Mason in the Laty's and Gentleman's Diary for 1863, p. 54.

