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Flux conditions are semi-analytical expressions that can be used to determine the flux at
the grounding line of marine ice sheets. In the glaciology literature, such flux conditions
have initially been established for the Weertman and Coulomb friction laws. However, the
extension to more general and complex friction laws, such as the Budd friction law, for
which basal friction depends on both the basal velocity and the effective pressure, is a
topic of recent research. Several studies have also shown that hybrid friction laws, which
consider a transition between a power-law friction far from the grounding line and a plastic
behaviour close to it, were good candidates for improved modelling of marine ice sheets.
In this article, we show that the flux conditions previously derived for the Weertman and
Coulomb friction laws can be generalised to flux conditions for the Budd friction law
with two different effective-pressure models. In doing so, we build a bridge between the
results obtained for these two friction laws. We provide a justification for the existence and
uniqueness of a solution to the boundary-layer problem based on asymptotic developments.
We also generalise our results to hybrid friction laws, based on a parametrisation of the flux
condition. Finally, we discuss the validity of the assumptions made during the derivation,
and we provide additional explicit expressions for the flux that stay valid when the bedrock
slopes are important or when the friction coefficients are relatively small.

Key words: ice sheets, boundary layers, lubrication theory

1. Introduction

Marine ice sheets, such as the West Antarctic ice sheet, are continental ice masses which
possess both a grounded and a floating part. These two regions are separated by the
so-called grounding line where ice starts floating. There have been several studies in the
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recent literature aimed at understanding the grounding-line behaviour using numerical
simulations, analytical methods or a combination of both. In particular, Schoof (2007b)
and Tsai, Stewart & Thompson (2015) have derived, based on simplified mechanical
models for marine ice sheets and asymptotic expansions, so-called flux conditions, which
allow the flux at the grounding line, i.e. the amount of ice that crosses the grounding line
per unit time, to be determined as a function of grounding-line thickness. The stability
of marine ice-sheet systems can then be studied, and it has been found that, under
certain assumptions, their dynamical behaviour in these simplified mechanical models
can be described in terms of saddle-node bifurcations and hysteresis (Schoof 2007a,
2012).

Schoof (2007b) and Tsai et al. (2015) considered two friction laws: the Weertman
friction law, in which the magnitude of basal friction is proportional to a power of the basal
velocity, and the Coulomb friction law, in which basal friction depends on a yield stress
proportional to an effective pressure between the ice sheet and the underlying bedrock.
Their work has been extended to more complex configurations including the impact of
buttressing, which appears for three-dimensional ice sheets (Schoof, Davis & Popa 2017;
Haseloff & Sergienko 2018, 2022; Pegler 2018a,b; Sergienko 2022a), the regime of low
driving and basal stress (Sergienko & Wingham 2019) and the impact of non-negligeable
bed gradients (Sergienko & Wingham 2022). A current research topic is the study of
more complex friction laws (Sergienko & Haseloff 2023). This research is motivated
by the observation that the behaviour of marine ice sheets in long-term numerical
simulations is significantly influenced by the friction law that is used, even if the starting
configuration can be similar if one tunes adequately the friction coefficients (Brondex et al.
2017).

In this paper, we derive flux conditions for a general class of friction models related to
the Budd friction law, which includes dependence on the basal velocity and on effective
pressure. Modelling effective pressure is a challenging topic, and complex hydrology
models can be coupled to the ice-sheet model (Hewitt 2013; Werder et al. 2013; Bueler
& van Pelt 2015). Here, we consider two different effective-pressure models that are
elementary. The first one is associated with a perfectly permeable bed, similar to the
effective-pressure model used in Tsai et al. (2015). The second one considers a linear
dependence between the effective pressure and the ice thickness, which is frequent
in numerical simulations of ice sheets (Bueler & Brown 2009; Martin et al. 2011).
The derivation of the flux conditions leads to a problem that is formulated in terms
of a dynamical system. We provide insight into the existence and uniqueness of a
solution to this problem. We propose a numerical solution strategy for obtaining the
value of a numerical factor appearing in this system. We also consider hybrid friction
laws that are similar to the ones considered in Schoof (2005, 2010), Gagliardini et al.
(2007) and Zoet & Iverson (2020). Instead of allowing only friction coefficients to
be tuned, these friction laws can represent different regimes which can be triggered
where certain physical conditions are met, e.g. friction has a plastic behaviour near the
grounding line. The derivation of flux conditions for hybrid friction laws is challenging
because they introduce additional parameters whose magnitude is not necessarily
small.

This paper is structured as follows. First, in § 2, the mathematical problem associated
with the mechanical behaviour of marine ice sheets is described. Then, in § 3, we show
that the approach adopted in Schoof (2007b) and Tsai et al. (2015) can be generalised to
the Budd friction law in combination with two different effective-pressure models. Using
asymptotic developments, we also provide a justification for the existence and uniqueness
of a solution to the resulting leading-order dynamical system. In § 4, we generalise our
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Figure 1. Schematic representation of the ice-sheet geometry. The unknowns are the grounding-line position
xgl, the ice thickness h = h(x) and the horizontal velocity u = u(x). The bed is characterised by a prescribed
elevation b = b(x). We also assume that the calving-front position xc is known.

results to hybrid friction laws similar to the one described in Schoof (2005) based on a
parametrisation of the flux condition. In § 5, we discuss the validity of the assumptions
made to derive the flux conditions, and we propose explicit expressions that can be used
to take into account effects that have been neglected in the initial derivation. In § 6, the
flux conditions are compared with numerical simulations. Finally, in § 7, we discuss our
results.

2. Problem formulation

We consider the evolution of an isothermal marine ice sheet using a flowline model
known as the shallow-shelf approximation (Morland 1987; MacAyeal 1989). Such a model
is suited for rapidly sliding ice sheets. Vertical shear in the ice is then neglected, and
the vertical normal stress is cryostatic. We assume that the ice sheet is in a steady
state. For a two-dimensional geometry, the solution to the flowline model consists of
two functions defined over an interval Ω = (0, xc): the thickness h : Ω → R

+ and the
horizontal velocity u : Ω → R. The position x = xc corresponds to a calving front, where
icebergs detach from the marine ice sheet. For simplicity, we consider a fixed calving-front
position. In general, the domain Ω contains both a grounded and a floating portion,
denoted respectively by Ωg and Ωf . If it exists and is unique, the point where the ice
transitions from a grounded to a floating configuration is known as the grounding line and
is denoted here by xgl. This position is itself an unknown of the problem. A schematic
representation of such an ice-sheet geometry is shown in figure 1.

2.1. Governing equations

2.1.1. Multi-domain formulation
Let us denote by (hg, ug) and (hf , uf ) the values taken by the functions (h, u) on
the grounded portion Ωg and the floating portion Ωf of the domain Ω , respectively.
With these notations, the governing equations read as follows in the grounded portion:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
dx

(ughg) = a, in Ωg,

2A−1/n d
dx

(
hg

∣∣∣∣dug

dx

∣∣∣∣
(1/n)−1 dug

dx

)
− τb

−Λhg|ug|m−1ug = ρghg
d

dx
(b + hg), in Ωg.

(2.1a)

(2.1b)

Equation (2.1a) is a mass-conservation equation, stating that the flux variation of the ice
flow must be exactly compensated by the net mass accumulation rate a. Equation (2.1b) is
a momentum-conservation equation and establishes a balance between the divergence of
membrane stress, the friction stress, the lateral-drag stress and the gravitational stress. The
factor A and the exponent n are ice viscosity parameters associated with the Glen flow law
(usually, n = 3), Λ and m are lateral-drag coefficients, ρ is the ice density, ρw is the water
density, g is the gravitational acceleration and b = b(x) is the prescribed elevation of the
underlying bedrock. The models used for the friction stress τb = τb(h, u) are described in
the next section. While we do not explicitly consider lateral drag in the present study, we
do include it in the problem formulation, as it allows for an easier comparison with the
other results from the literature.

In the floating portion, friction with the ocean and the air is neglected, leading to the
following:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
dx

(uf hf ) = a, in Ωf ,

2A−1/n d
dx

(
hf

∣∣∣∣duf

dx

∣∣∣∣
(1/n)−1 duf

dx

)
− Λhf |uf |m−1uf

= ρ

(
1 − ρ

ρw

)
ghf

dhf

dx
, in Ωf .

(2.2a)

(2.2b)

Finally, continuity conditions are added at the interface between the regions:

hg = hf , ug = uf , 2A−1/nhg

∣∣∣∣dug

dx

∣∣∣∣
(1/n)−1 dug

dx
= 2A−1/nhf

∣∣∣∣duf

dx

∣∣∣∣
(1/n)−1 duf

dx
on Σ.

(2.3)

The portions Ωg and Ωf and their interface Σ are defined by a flotation condition:⎧⎪⎪⎨
⎪⎪⎩

Ωg = {x ∈ Ω : ρgh > ρwg〈−b〉},
Ωf = {x ∈ Ω : ρgh < ρwg〈−b〉},
Σ = Ω̄g ∩ Ω̄f .

(2.4a)

(2.4b)

(2.4c)

The symbol 〈·〉 = max(·, 0) corresponds to the Macaulay brackets. Hence, the grounded
portion includes both the parts where the bedrock lies above the sea level (i.e. where
〈−b〉 = 0), as well as the parts where the bedrock lies below the sea level, but where there
is too much ice for it to be floating (i.e. where ρgh > −ρwgb).

In the simplest configuration, such as the one shown in figure 1, the grounded and
floating portions can be written as open sets Ωg = (0, xgl) and Ωg = (xgl, xc), so that the
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grounded-line position can be properly defined as the unique element of Σ : Σ = {xgl}.
We note that, in general, the geometry might be more complex. For example, there
could be several isolated points on which the ice sheet switches from a grounded to
a floating position and vice versa, leading to multiple grounding lines. A more exotic
configuration, not considered here, is the one described by Pegler (2018a) with the
so-called marginal-flotation zones. In that case, the interface Σ becomes a set of its own,
i.e. the grounding-line width becomes finite.

2.1.2. Boundary conditions
At x = 0, we assume the ice to be sufficiently slow so that it is virtually motionless (this
could also correspond to a symmetry condition):

u = 0, at x = 0. (2.5)

At the calving front, equilibrium between the horizontal stress in the ice and the ocean
water pressure yields the following Neumann boundary condition:

2A−1/n
∣∣∣∣du
dx

∣∣∣∣
(1/n)−1 du

dx
= 1

2
ρ

(
1 − ρ

ρw

)
gh, at x = xc. (2.6)

Actually, if one considers an ice shelf without lateral drag and restricts the domain to
the grounded part Ωg only, which we will do in this study, then this boundary condition
can still be used, i.e.

2A−1/n
∣∣∣∣du
dx

∣∣∣∣
(1/n)−1 du

dx
= 1

2
ρ

(
1 − ρ

ρw

)
gh, at x = xgl. (2.7)

Indeed, (2.2b) with Λ = 0 implies that the quantity[
2A−1/nh

∣∣∣∣du
dx

∣∣∣∣
(1/n)−1 du

dx
− 1

2
ρ

(
1 − ρ

ρw

)
gh

]
(2.8)

is conserved through the ice shelf.

2.2. Friction laws

2.2.1. Power-law friction laws
The simplest friction law is the Weertman friction law, for which τb is proportional to |u|p
with p > 0 (Weertman 1957). Usually, p = 1/3 is chosen. To take into account effective
pressure, one can use the so-called Budd friction law (Budd, Keage & Blundy 1979) for
which

τb = CNq |u|p−1u, (2.9)

with C a friction coefficient, N an effective pressure and p, q ≥ 0. Two elementary
effective-pressure models are presented in § 2.2.5. The Budd friction law can be rewritten
as a sliding law, i.e. the velocity can be written as a function of the basal friction stress:

u = C−1/pN−q/p|τb|1/p−1τb. (2.10)

It can also be noted that the law in (2.9) includes as a particular case the Weertman friction
law if one sets p = 1/3 and q = 0.
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2.2.2. Coulomb friction law
A Coulomb behaviour assumes that there is a yield stress τy = CN that must be reached
for ice to be sliding: {

τb = CNsgn(u), if |u| > 0,

|τb| ≤ CN, if u = 0.

(2.11a)

(2.11b)

If the ice velocity is non-zero everywhere, then τb = CNsgn(u), which formally
corresponds to a Budd friction law with p = 0 and q = 1. In the rest of this paper, we
will always consider this case.

2.2.3. Hybrid friction laws
Tsai et al. (2015) have considered a hybrid law that combines the Weertman and Coulomb
friction laws:

τb = min(A−p
s |u|p, CN) sgn(u), (2.12)

with As a friction coefficient that controls the onset of the plastic behaviour. Such a law
was originally introduced in Schoof (2010). Smoothed versions have already been studied
analytically and numerically (Schoof 2005, 2010; Gagliardini et al. 2007). They take the
following form:

τb = C
( |u|

|u| + AsC1/pN1/p

)p

N sgn(u), (2.13)

or, by introducing u0 = AsC1/pN1/p,

τb = C
( |u|

|u| + u0

)p

N sgn(u). (2.14)

This type of law, which exhibits viscoplastic behaviour, is interesting from a modelling
perspective because it can be used to include both form and skin drag, even if these are
distinct mechanisms (Minchew & Joughin 2020). Form drag is associated with friction
induced by ice deformation around obstacles and can be modelled with a power-law
friction law, while skin drag is associated with friction induced by shear stress at the
ice–bedrock interface, and can be modelled with a Coulomb friction law. Recently, Zoet &
Iverson (2015, 2020) have shown that such laws are in good agreement with experimental
results.

2.2.4. Summary
The friction laws that we will consider in this article are shown in figure 2.

2.2.5. Effective pressure
Modelling effective pressure is complex. The effective pressure can be expected to depend
on both the subglacial interface and the subglacial hydrology whose description is an
active area of research (Flowers 2015). State-of-the-art hydrology models typically involve
sets of partial differential equations that must be coupled with the ice-sheet model itself
(Hewitt 2013; Werder et al. 2013; Bueler & van Pelt 2015). Here, we will limit ourselves to
very simple hydrology models that provide an explicit equation for the effective pressure
N = ρgh − pw.

The first elementary effective-pressure model we consider consists in assuming that
the bedrock below the ice sheet is perfectly permeable and connected to the nearby
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Weertman (W)

τb = C|u|p−1u

Coulomb (C)

τb = CN sgn(u)

Budd (B)

τb = CNq|u|p−1u

Tsai (T)

τb = min(As
−p|u|p, CN ) sgn(u)

Regularised coulomb with u0 (RC1)

τb = C ( |u|

|u| + u0
)
p

N sgn(u)

Regularised Coulomb with As (RC2)

τb = C
p

N sgn(u)

u0 = As C
1/pN1/p

|u|

|u| + As C
1/pN1/p( )

Figure 2. The considered friction models. The same notation C is used for the friction coefficient in every
friction law although those coefficients are not necessarily comparable to one another.

ocean, so that N = ρgh − pw with pw following a hydrostatic distribution: pw = ρwg〈−b〉.
The second elementary effective-pressure model we consider consists in assuming a
dependence of pw on the ice-sheet thickness h, such as through a linear relation pw =
cρgh, with c a coefficient close to, but smaller than, one. We choose this model for its
simplicity, and because similar parametrisations are common in ice-sheet models. For
example, Bueler & Brown (2009) consider pw = 0.95ρgh(w/wc), with w the thickness of a
subglacial water film and wc a critical value of that thickness. Martin et al. (2011) consider
pw = 0.96λρgh, with λ a parameter depending on the bedrock elevation that is such that
0 ≤ λ ≤ 1. We acknowledge that such relations are usually used as parametrisations to
close models, and they do not necessarily rely on the modelling of a physical phenomenon.
For convenience, we name the first type of elementary effective-pressure model NA and
the second one NB.

2.3. Dimensionless formulation
We introduce scales [x], [h], [u], and [τb], leading to the dimensionless variables

x̂ = x
[x]

, ĥ = h
[h]

, b̂ = b
[h]

, û = u
[u]

, τ̂b = τb

[τb]
, (2.15)

and to the following dimensionless ratios:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α = a
([u]/[x])[h]

, β =
(

db
dx

)
[x]
[h]

, γ = [τb][x]
ρg[h]2 ,

δ = ρw − ρ

ρw
, ε = A−1/n[u]1/n

2ρg[x]1/n[h]
, λ = Λ[u]m[x]

ρg[h]
.

(2.16a)

(2.16b)

These scales and ratios should be characteristic of ice streams. The problem can be further
simplified by choosing the scales so that additional constraints on the dimensionless ratios
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are enforced, e.g. by setting some of them to a unit value. However, we postpone these
assumptions to a later stage, where the context will provide justification for them. We
also introduce the dimensionless flotation thickness ĥb as ĥb = (1 − δ)−1b̂. With these
notations, the governing equations become⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d
dx̂

(ûg ĥg) = α,

4ε
d
dx̂

(
ĥg

∣∣∣∣dûg

dx̂

∣∣∣∣
(1/n)−1 dûg

dx̂

)
− γ τ̂b − λ ĥg|ûg|m−1ûg = ĥg

(
dĥg

dx̂
+ β

)
,

(2.17a)

(2.17b)

for 0 < x̂ < x̂gl,

ĥg = ĥf , ûg = ûf , ĥg

∣∣∣∣dûg

dx

∣∣∣∣
(1/n)−1 dûg

dx
= ĥf

∣∣∣∣dûf

dx

∣∣∣∣
(1/n)−1 dûf

dx
, (2.18)

at x̂ = x̂gl, ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d
dx̂

(ûf ĥf ) = α,

4ε
d
dx̂

(
ĥf

∣∣∣∣dûf

dx̂

∣∣∣∣
(1/n)−1 dûf

dx̂

)
− λ ĥf |ûf |m−1ûf = δ ĥf

dĥf

dx̂
,

(2.19a)

(2.19b)

for x̂gl < x̂ < x̂c, with the following boundary conditions:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

û = 0, at x̂ = 0,∣∣∣∣dû
dx̂

∣∣∣∣
(1/n)−1 dû

dx̂
= δĥ

8ε
, at x̂ = x̂gl,

ĥ = ĥb, at x̂ = x̂gl.

(2.20a)

(2.20b)

(2.20c)

2.4. Flux conditions
A flux condition is an expression of the grounding-line flux qgl ≡ h(xgl)u(xgl) as a function
of the different physical parameters A, C, . . . that appear in the problem formulation. Such
an expression usually takes the form of an approximation that is valid within an asymptotic
regime associated with the magnitude of the previously introduced dimensionless ratios.
Historically, the first flux condition was derived by Schoof (2007b) for the Weertman
friction law. They considered an unbuttressed ice sheet, i.e. λ = 0, a scaling and a bed
geometry such that α ∼ 1, γ ∼ 1 and |β| � 1, and they assumed that ε � 1 and δ � 1.
Tsai et al. (2015) derived a flux condition under the same assumptions, but for the
Coulomb friction law. They showed that the resulting flux condition was more sensitive
compared with the one derived by Schoof (2007b). The importance of buttressing, i.e. the
case λ /= 0, was discussed by Pegler (2016, 2018a,b), Schoof et al. (2017) and Haseloff
& Sergienko (2018, 2022). They showed that taking into account lateral drag could
significantly change the dynamics of ice sheets, in particular by modifying the stability
criterion that was previously derived for unbuttressed ice sheets (Schoof 2012). The regime
of low basal stress, γ � 1, was covered by Sergienko & Wingham (2019). The same
authors also discussed the importance of α and β, showing that the so-called marine
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ice-sheet instability hypothesis was not applicable in general (Sergienko 2022b; Sergienko
& Wingham 2022). Schoof et al. (2017) studied the impact that calving laws have on the
flux conditions. All these authors, except Tsai et al. (2015), have considered the Weertman
friction law in their studies. Recently, Sergienko & Haseloff (2023) studied the notion of
stability of marine ice sheets submitted to a climate forcing for a broad class of friction
laws. However, they did not derive flux conditions for the configuration studied in the
present paper, which we describe hereafter.

In this paper, we derive flux conditions for the Budd friction law with two elementary
effective-pressure models, and show how they can be extended to hybrid friction laws. We
will use the same assumptions that were done by Schoof (2007b) and Tsai et al. (2015),
namely, we consider an unbuttressed ice sheet (λ = 0), scales that are such that α, β, and
γ are at most of order O(1), and consider the asymptotic regimes ε � 1 and δ � 1. We
will discuss in a later section the validity of these hypotheses, and we will show how the
flux conditions can be modified to remain valid in the event that α, β, and γ are not small
or moderate.

3. Generalisation to the Budd friction law

We now proceed to the derivation of a flux condition for the Budd friction law, that is, we
consider a friction law belonging to the family of friction laws τb = CNq|u|p−1u, where the
effective pressure N obeys one of the two elementary models previously introduced. We
assume that n = 3, 0 ≤ p ≤ 1/3 and 0 ≤ q ≤ 1, which holds for commonly used values.
We assume that all the variables that appear are constant, except x and the functions b, h, u
and N, which depend on this coordinate. We base our derivation on the ideas that Schoof
(2007b) and Tsai et al. (2015) have developed for the Weertman and the Coulomb friction
laws, and we show that they can be extended to the present context.

We introduce the dimensionless effective pressure as N̂ = N/[N] where the scale [N] is
related to the scales [h] and [τb] as follows:

[N] =
{
ρg[h] (NA model),
(1 − c)ρg[h] (NB model),

and [τb] = C[u]p[N]q. (3.1)

We neglect lateral drag (λ = 0) and consider scales that are such that

α = 1, γ = 1 and |β| � 1. (3.2)

With these considerations, the following problem is obtained:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
dx̂

(û ĥ) = 1, for 0 < x̂ < x̂gl,

4ε
d
dx̂

(
ĥ
∣∣∣∣dû
dx̂

∣∣∣∣
(1/n)−1 dû

dx̂

)
− (ĥ − 1A〈ĥb〉)q|û|p−1û

−ĥ

(
dĥ
dx̂

+ β

)
= 0, for 0 < x̂ < x̂gl,

û = 0, at x̂ = 0,∣∣∣∣dû
dx̂

∣∣∣∣
(1/n)−1 dû

dx̂
= δĥ

8ε
, at x̂ = x̂gl,

ĥ = ĥb, at x̂ = x̂gl,

(3.3a)

(3.3b)

(3.3c)

(3.3d)

(3.3e)

in which 1A = 1 for the NA model, and 1A = 0 for the NB model.
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3.1. Derivation of the flux condition

3.1.1. Equivalent dynamical system for the boundary-layer problem
One can expand the unknown fields as powers of ε and keep the leading-order terms
because ε is typically very small – approximately 10−3 for commonly used values of the
physical parameters. One then expects an equilibrium between the friction and gravity
terms in (3.3b), with the divergence of membrane stress which can be neglected. However,
this balance fails in two cases. If δ is such that ε � δ, then the Neumann boundary
condition (3.3d) at the grounding line cannot be fulfilled. This hints at the existence
of a boundary layer near the grounding line, in which the membrane-stress divergence
becomes relatively important. Furthermore, if the friction stress reaches a zero value at
the grounding line (e.g. if 1A = 1 and q /= 0), then all the terms appearing in (3.3b) must
become very small close to the grounding line, leading again to a boundary layer. In what
follows, we place ourselves in one of these two cases so that we expect the presence of a
boundary layer close to the grounding line.

To solve a very similar problem, Schoof (2007b) and Tsai et al. (2015) used the method
of matched asymptotics: the solution inland, known as the outer solution, was matched
with the so-called inner solution associated with the boundary layer. To obtain this inner
solution, they introduced a scaling of the form

x̂gl − x̂ = εκxX, ĥ = εκhH, ĥb = εκhHb, b̂ = εκhB, û = εκuU, (3.4)

where κx, κh and κu are chosen in a such way that the divergence of membrane stress, the
friction stress and the gravity stress are of the same order of magnitude near the grounding
line; in other words, they are of all of order O(εκ) for a same exponent κ . Furthermore,
they are chosen such that the flux Q = HU is O(1) at the grounding line. This leads in the
current context to the following exponent values:

κx = n( p − q + 2)

n + ( p − q) + 3
, κu = − n

n + ( p − q) + 3
, κh = n

n + ( p − q) + 3
. (3.5)

We remark that with the assumed values for n, p, and q, we have κx > 0, κu < 0 and
κh > 0. At leading order, the flux Q is then constant within the boundary layer, and we
replace it by the grounding-line flux Qgl.

The inner problem can be further transformed. As in Schoof (2007b) and Tsai et al.
(2015), the solution to the inner problem is written as a trajectory of a two-dimensional
dynamical system of the form X̃ �→ (Ũ, W̃), where X̃, Ũ and W̃ are respectively a scaled
spatial coordinate, a scaled velocity and a scaled membrane stress, thus allowing the
dynamics of the system to be interpreted in the phase plane (Ũ, W̃). To obtain this
dynamical system, the following change of variables is introduced:

X = Hgl
(2−q−np)/(p+1)X̃, U = Hgl

(2−q+n)/(p+1)Ũ,

−|UX|(1/n)−1UX = HglW̃, Qgl = Hgl
(n+( p−q)+3)/(p+1)Q̃gl.

}
(3.6)
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At leading order, the following leading-order system is then obtained:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dŨ

dX̃
= −|W̃|n−1W̃, for X̃ > 0,

dW̃

dX̃
= −|W̃|n+1

Ũ
− 1

4
Ũ

Q̃gl

(
Q̃gl

Ũ
− 1A

)q

|Ũ|p−1Ũ

+ Q̃gl|W̃|n−1W̃

4Ũ2
, for X̃ > 0,

(Ũ, W̃) = (Q̃gl, δ/8), at X̃ = 0,

(Ũ, W̃) → (0, 0), as X̃ → +∞.

(3.7a)

(3.7b)

(3.7c)

(3.7d)

Equation (3.7d) is a matching condition and follows from the fact that the inner and outer
solutions must be of the same order in an intermediate region. Because U = ûε−κu and the
outer solution is such that û ∼ 1, we must enforce U → 0, and therefore Ũ → 0, outside
of the boundary layer. Similarly, UX = O(εκx−κu), and thus W̃ → 0 outside of it.

3.1.2. Flux condition
The rescaled flux at the grounding line, Q̃gl, appears as a free parameter in (3.7). In the
following section we will provide a justification for the existence of a trajectory that follows
the flow defined by (3.7a) and (3.7b) and satisfies the boundary condition (3.7c) for a
unique value of Q̃gl dependent on the effective-pressure model and the parameters n, p, q
and δ. Then

Q̃gl ≡ Q̃gl(1A, n, p, q, δ). (3.8)

This numerical value can be computed using the numerical method described in the
Appendix B. Using (3.6), it is possible to switch back to the original variables. The
flux at the grounding line is then given by the following expressions, for the NA and NB
effective-pressure models, respectively:

qgl = Q̃gl(ρg)−(q−1)/(p+1)(2ρg)n/(p+1)C−1/(p+1)A1/(p+1)h(n+( p−q)+3)/(p+1)
gl , (3.9a)

qgl = Q̃gl(ρg)−(q−1)/(p+1)(2ρg)n/(p+1)[C(1 − c)q]−1/(p+1)A1/(p+1)h(n+( p−q)+3)/(p+1)
gl .

(3.9b)

3.1.3. Impact of the relative ice–water density difference
Tsai et al. (2015) also showed a way to derive the approximate dependence of Q̃gl on δ.
The idea is to remark that if δ is treated as a small parameter in (3.7), then ŨX̃ ≈ 0 within
the boundary layer. This observation supports the introduction of a new scaling so that this
term becomes O(1) at the grounding line. With

X̃ = (δ/8)r1 X̌, Q̃gl = (δ/8)r2Q̌gl, Ũ = (δ/8)r2 [Q̌ − (δ/8)Ǔ], W̃ = (δ/8)W̌,

(3.10)

a distinguished limit can be obtained, in which the dominant powers of δ balance each
other. For the NA model, a distinguished limit is achieved for

r1 = [( p − q + 1) − np]/(p + 1) and r2 = (n − q)/(p + 1). (3.11)
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10−4

10−3

δ
10−1.5 10−110−8

10−7

10−6

10−5

10−4

10−3

δ

Q̃gl

(NA)

Weertman (p = 1/3)
Coulomb
Budd (p = 1/3, q = 1)

(NB)(a) (b)

Figure 3. Comparison between values of Q̃gl obtained numerically (circles) and the scaling Q̃gl ∝ (δ/8)r2

(lines) for several friction laws and effective-pressure models. The lines obey the equation Q̃gl =
Q̃gl|δ=0.1(δ/0.1)r2 with r2 = (n − 1Aq)/( p + 1). In (b), the Weertman and the Budd results coincide, as
expected.

For the NB model, a distinguished limit is obtained for

r1 = [( p + 1) − np]/(p + 1) and r2 = n/(p + 1). (3.12)

Finally, the following flux at the grounding line is obtained for the NA and
NB effective-pressure models:

qgl = Q̌gl

(
1 − ρ/ρw

8

)(n−q)/(p+1)

(ρg)−(q−1)/(p+1)(2ρg)n/(p+1)

× C−1/(p+1)A1/(p+1)h(n+( p−q)+3)/(p+1)
gl , (3.13a)

qgl = Q̌gl

(
1 − ρ/ρw

8

)n/(p+1)

(ρg)−(q−1)/(p+1)(2ρg)n/(p+1)

× [C(1 − c)q]−1/(p+1)A1/(p+1)h(n+( p−q)+3)/(p+1)
gl . (3.13b)

This scaling Q̃gl = (δ/8)r2Q̌gl, that is, the way in which Q̃gl depends on δ, is verified
numerically in figure 3.

3.2. Analysis of the leading-order dynamical system
We now consider the analysis of the dynamical system governed by the system of
(3.7). More precisely, we motivate the existence of a solution for a unique value of
the grounding-line flux Q̃gl by considering separately the case where the friction stress
vanishes, or not, at the grounding line.

3.2.1. Strategy
To study the leading-order dynamical system, we first rewrite the system of equations in
a way that allows the dynamics close to the origin in the (Ũ, W̃) phase plane, i.e. for
X̃ → +∞, to be studied. To this end, we rewrite this system in terms of new variables
X , ξ, Ψ and Qgl. The interpretation of these variables is the following: X plays the role of
a spatial coordinate, ξ is a rescaled velocity, Ψ is a measure of the ratio of friction stress
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over gravity stress and Qgl is a rescaled grounding-line flux. The specific form that these
variables take will be described separately for the case in which friction vanishes at the
grounding line, and the case in which it does not. A problem of the following form is then
obtained: ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dξ

dX = Fξ (ξ, Ψ,X ;Qgl), for X > 0,

dΨ

dX = FΨ (ξ, Ψ,X ;Qgl), for X > 0,

(ξ, Ψ ) = (Gξ (Qgl), GΨ (Qgl)), at X = 0,

(ξ, Ψ ) → (0, 1), as X → +∞.

(3.14a)

(3.14b)

(3.14c)

(3.14d)

We then identify the point (ξ, Ψ ) = (0, 1) as a fixed point, and study the dynamics of
the flow defined by (3.14a) and (3.14b) close to that point. It turns out that the only way to
reach the fixed point is through a centre manifold that is unique. Therefore, if a solution
to the problem defined by (3.14) exists, it necessarily goes through this centre manifold.
The question then amounts to finding whether an orbit that reaches this centre manifold,
i.e. that obeys (3.14a), (3.14b) and (3.14d), can satisfy the boundary condition (3.14c). This
last condition is in fact satisfied for exactly one value of the grounding-line flux Qgl. To
show this, we introduce a mapping D as follows:

D : (0, +∞) → R : Qgl �→ D(Qgl) ≡ f (Qgl)[Ψ c(Gξ (Qgl);Qgl) − GΨ (Qgl)], (3.15)

in which f is a strictly positive or a strictly negative function and Ψ c(ξ,Qgl) is the Ψ

coordinate of the centre manifold at position ξ . To satisfy (3.14c), it is then necessary and
sufficient that D(Qgl) = 0 for some Qgl. If, in addition, D is a strictly monotonic function,
then this root is unique. Overall, this means that there is exactly one value of Qgl that leads
to a solution of (3.14), and the solution to the leading-order dynamical system exists and
is unique.

To simplify the notations in what follows, we define c1 and c2 by

c1 = 1 + (p − q + 3)/n and c2 = 1 − (p − q + 3)/n. (3.16)

We note that, for the assumed ranges of values of n, p and q, the following inequalities
hold:

c1 > 1 and − 1 < c2 < 1. (3.17)

3.2.2. Non-vanishing friction at the grounding line
We first consider the case of a non-vanishing friction stress at the grounding line, that
is, a friction model with either an exponent q = 0, so that there is no dependence with
respect to the effective pressure, or with the NB effective-pressure model. We note that
this case shares similarities with the study considered in Schoof et al. (2017), where the
authors have included a lateral-drag term in their momentum balance. This term is of the
form Λh|u|m−1u, which is analogous to a Budd friction law with p = m, q = 1 and the
NB effective-pressure model. In fact, it can be noted that the Budd friction law taken with
the NB effective-pressure model is effectively equivalent to considering a friction term
dominated by lateral drag.
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We introduce ξ, Ψ and Qgl as

ξ = Q̃(q−2)/n−1
gl Ũc1, Ψ = Q̃−(q−2)/n

gl W̃ Ũ1−c1, Qgl = Q̃(p+1)/n
gl , (3.18)

and X as⎧⎪⎪⎨
⎪⎪⎩

X =
∫ X̃

0
s(ξ(X), Ψ (X)) dX,

s(ξ, Ψ ) = Q̃(q−2+np)/nc1
gl ξ (n( p−q)−( p−q+3)+n)/(( p−q+3)+n)|Ψ |n−1Ψ.

(3.19a)

(3.19b)

The system (3.7) then becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dξ

dX = −c1ξ
2, for X > 0,

dΨ

dX = −c2ξΨ − 1
4
|Ψ |−n−1Ψ + 1

4
, for X > 0,

(ξ, Ψ ) = (Qgl,Q−1
gl δ/8), at X = 0,

(ξ, Ψ ) → (0, 1), as X → +∞.

(3.20a)

(3.20b)

(3.20c)

(3.20d)

It can be remarked that Qgl completely disappears from the differential equations and is
only present in the boundary conditions. This system is similar to the system considered by
Schoof (2011), where they considered the Weertman friction law. The only differences are
the values of the parameters c1 and c2 which, in our case, could depend on q if we consider
the NB effective-pressure model. The method used in Schoof (2011) to show the existence
and uniqueness of a solution can still be applied. We briefly describe it, the calculations
being analogous.

The idea of Schoof (2011) to show existence and uniqueness properties of a similar
system is to consider the characterisation of (ξ, Ψ ) = (0, 1) as a fixed point that can only
be reached through a centre manifold that is unique, as well as the evolution of the product
Ψ ξ along that manifold. They showed that this product was equal to zero at the fixed point,
and increasing without bound for increasing values of ξ along that orbit. It then follows
that there is exactly one value of Qgl that satisfies (3.20c), which shows the existence and
uniqueness of a solution. These ideas can still be applied to the more general case that is
considered here.

The reasoning can also be made with respect to the mapping D defined in (3.15)
by choosing f (Qgl) = Qgl. Indeed, the centre manifold is independent of Qgl, so
Ψ c(ξ ;Qgl) ≡ Ψ c(ξ). Furthermore, the mapping ξ �→ ξΨ c(ξ) increases without bound
with ξ . Therefore, the mapping

Qgl �→ D(Qgl) = QglΨ
c(Qgl) − (δ/8) (3.21)

also increases without bound with Qgl. Because ξΨ c(ξ) = 0 for ξ = 0, we also have
D(0) = −δ/8 < 0. Hence, D has exactly one root, which concludes the discussion.

3.2.3. Vanishing friction at the grounding line
We now consider friction laws that vanish at the grounding line, namely friction laws that
involve the NA effective-pressure model (in particular, we consider that q /= 0). In that
case, it cannot be shown that the product Ψ ξ increases monotonically with ξ along an
orbit that reaches the centre manifold. Geometrically, the hyperbola Ψ = (δ/8)/ξ will not
necessarily intersect the solution trajectory at a single location.
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We propose another strategy. Specifically, we consider another change of variables for
ξ , namely, ξ = (Ũ/Q̃gl)

1/2, and we take f (Qgl) = 1 in (3.15). This change of variables is
similar to the one described in the supplementary material of Schoof et al. (2017). We will
also limit ourselves to the Budd friction law with a linear dependence with respect to the
effective pressure, that is, q = 1. For that value, we note that c2 > 0. The system (3.7) then
becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dξ

dX = −1
2
Qglξ

2c1+1, for X > 0,

dΨ

dX = −c2 Qglξ
2c1Ψ − 1

4
|Ψ |−n−1Ψ (1 − ξ2) + 1

4
, for X > 0,

(ξ, Ψ ) = (1,Q−1
gl δ/8), at X = 0,

(ξ, Ψ ) → (0, 1), as X → +∞,

(3.22a)

(3.22b)

(3.22c)

(3.22d)

and the mapping D becomes

Qgl �→ D(Qgl) = Ψ c(1;Qgl) − (δ/8)Q−1
gl . (3.23)

As before, the only fixed point in the system is the point (ξ, Ψ ) = (0, 1), which
corresponds to the boundary condition (3.22d). We can again determine that the only
way to reach this point is through a centre manifold. In contrast to the previous case, Qgl
appears in the definition of the flow defined by (3.22a) and (3.22b), so the centre manifold
depends on Qgl. To demonstrate that D possesses exactly one root, we then show, based on
asymptotic expansions, that the following properties hold: (i) D is a continuous mapping,
(ii) dD/dQgl > 0 for all Qgl > 0, (iii) limQgl→+∞ D(Qgl) > 0 and (iv) D(δ/8) < 0. The
details of this analysis can be found in the Appendix A.

3.3. Existence of a boundary layer

It can be remarked that, for some configurations, we obtain Q̌gl ≈ 1. In fact, these
configurations are those that are such that friction at the grounding line does not vanish, i.e.
they correspond to a friction law with q = 0, or with q > 0 but with the effective-pressure
model NB. In that case, no boundary layer is needed close to the grounding line, and the
membrane-stress divergence can be neglected. Indeed, the flux condition can be obtained
by simply combining a balance between the friction and the gravity stresses and the
boundary conditions at the grounding line. For the Budd friction law, that approach yields

CNqup ≈ −ρgh
d

dx
(b + h). (3.24)

With the assumption that the bedrock slope db/dx is negligible (|β| � 1) and that the
flux divergence dqadv/dx is not too large (α = 1), and in particular much smaller than
qadv(du/dx)/u, we have

d
dx

(b + h) ≈ dh
dx

≈ qadv

d
dx

(
1
u

)
. (3.25)

Using this relation in (3.24) and combining it with the grounding-line boundary condition
(2.7) leads to the following relation at the grounding line:

CNq
(

qgl

hgl

)p

≈ ρg
h3

gl

qgl

(
1
4
ρ

(
1 − ρ

ρw

)
g
)n

hn
glA, (3.26)
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that is,

qgl ≈
(ρg

C

)1/(p+1)

N−q/(p+1)

(
1
4
ρ

(
1 − ρ

ρw

)
g
)n/(p+1)

A1/(p+1)h(n+p+3)/(p+1)
gl . (3.27)

This relation corresponds to our flux condition (3.13b) with Q̌gl ≈ 1, as announced. In fact,
the observation that the membrane-stress divergence can be neglected to derive the flux
condition has been remarked by Schoof (2007b, 2011) in their derivation for the Weertman
friction law, and later by Sergienko & Wingham (2022) who revisited their boundary-layer
analysis. In particular, Sergienko & Wingham (2022) have shown that, for ε � δ, which
is what is assumed here, the boundary layer is very weak, and this observation can be
explained by the nonlinearity of the governing equations. Furthermore, the boundary layer
will become increasingly weak as δ becomes smaller.

However, this analysis is not valid for a combination of friction law and
effective-pressure model that is such that friction stress vanishes at the grounding line.
For these configurations, there is another stress regime in the vicinity of the grounding
line. In our analysis, this takes the form of a boundary layer, which is necessary to obtain
the correct flux condition. If it were not the case, then one would obtain Q̌gl = 1. It
follows that the fact that Q̌gl takes a value distinct from unity reflects the importance of
membrane-stress divergence in the boundary layer. This key observation was already made
by Tsai et al. (2015) for the Coulomb law, and is here confirmed for the more general Budd
friction law.

The distinction between these two distinct behaviours can be observed in solutions to
the different formulations of the problem that arise in the derivation of the flux conditions.
First, let us consider the solutions to the problem written in its dimensionless form, namely
to the system (3.3). We consider the Weertman law with p = 1/3, the Coulomb law and
the Budd law with p = 1/3 and q = 1, with both the NA and NB hydrological models. We
take β = −10−1, ε = 6 × 10−4 and δ = 10−1. The solutions of the problem are shown in
figure 4. The most striking difference concerns the ratio of the membrane-stress divergence
and the gravity stress: this ratio is almost equal to zero in the entire grounded domain for
the Weertman friction law, as well as for the Coulomb and Budd friction laws with the
NB model. On the other hand, it becomes significant close to the grounding line for the
Coulomb and Budd friction laws when they are coupled with the NA model, i.e. when the
friction stress vanishes at the grounding line.

A similar observation can be made if the problem is formulated in terms of (Ũ, W̃), i.e.
by considering the system (3.7). The solutions are shown in figure 5. Qualitatively, the
solutions associated with vanishing grounding-line friction exhibit a stronger curvature
in their trajectories. Importantly, the far-field solutions, shown in dotted lines and
corresponding to a simple friction–gravity balance, do not represent well the dynamics
close to the grounding line located at Ũ = Q̃gl.

Finally, this observation is also present in the version of the problem used in the analysis
presented in the previous subsection, namely (3.20). Indeed, the solution is then obtained
as a portion of an orbit that reaches the fixed point located at (ξ, Ψ ) = (0, 1) through its
centre manifold. The solution trajectory can be parametrised by ξ ∈ [0,Qgl], where Qgl
is the ξ coordinate of the intersection of the centre manifold with the hyperbola whose
equation is ξΨ = δ/8. An asymptotic analysis reveals that the centre manifold is such that
Ψ ∼ 1 for small ξ . It thus follows that, for small values of δ/8, the solution trajectory is
included in the region which is such that Ψ ∼ 1. Because Ψ is a scaled version of the ratio
between friction and gravity stresses, the divergence of membrane stress can be neglected
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Budd ( p = 1/3, q = 1)
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Figure 4. Solutions to the dimensionless problem for various friction laws, with the NA (continuous lines) and
the NB effective-pressure model (dashed lines). Panel (c) shows the ratio of the membrane-stress divergence
and the gravity stress.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00

1

2

Ũ/Q̃gl

W̃
/(

δ/
8
)

Weertman (p = 1/3)
Coulomb
Budd (p = 1/3, q = 1)

Figure 5. Solutions to the problem formulated in terms of (Ũ, W̃), for various friction laws, with the
NA (continuous lines) and the NB effective-pressure model (dashed lines). The dotted lines correspond to
the far-field solutions associated with the coupling of the Coulomb and Budd friction laws with the NA model.

over the whole domain, even close to the grounding line. This argument is similar to the
one developed in Schoof (2011) for the Weertman friction law.

4. Generalisation to hybrid friction laws

The derivation of the flux condition for the Budd friction law can be generalised to more
general friction laws of the form

τb = CΦ(|u|, N)Nq|u|p−1u. (4.1)

In this equation, Φ denotes a general function of |u| and N which is dimensionless.
We illustrate the derivation of flux conditions for hybrid flux conditions with the (RC1)

friction law. The derivation of flux conditions for the (RC2) and (T) friction laws is similar,
and the details can be found in the supplementary material that is available at https://doi.
org/10.1017/jfm.2023.760. For the (RC1) friction law,

τb = C
( |u|

|u| + u0

)p′

N sgn(u), i.e. Φ(|u|, N) =
( |u|

|u| + u0

)p′

, with ( p, q) = (0, 1).

(4.2)
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T. Gregov, F. Pattyn and M. Arnst

As compared with figure 2, we use an exponent p′ instead of p so as to distinguish this
exponent from the one in |u|p−1 in (4.1). Following the same steps as the ones described
in the context of the Budd friction law, the system (3.7) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dŨ

dX̃
= −|W̃|n−1W̃, for X̃ > 0,

dW̃

dX̃
= −|W̃|n+1

Ũ
− 1

4

(
|Ũ|

|Ũ| + υ̃

)p′

×
(

1 − 1A
Ũ

Q̃gl

)
sgn(Ũ) + Q̃gl|W̃|n−1W̃

4Ũ2
, for X̃ > 0,

(Ũ, W̃) = (Q̃gl, δ/8), at X̃ = 0,

(Ũ, W̃) → (0, 0), as X̃ → +∞,

(4.3a)

(4.3b)

(4.3c)

(4.3d)

with υ̃ defined such that υ̃ = υ/υc with υ ≡ u0/[u] and

υc ≡
{

(2ρg)nC−1Ahn+1
gl [u]−1 (NA model),

(2ρg)n[C(1 − c)]−1Ahn+1
gl [u]−1 (NB model).

(4.4)

The difference with the system in (3.7) is that the system in (4.3) depends on an additional
parameter, namely, υ̃. This new parameter is a scaled version of u0. We interpret υ as
the dimensionless version of the reference velocity in the (RC1) friction law and υc as
the proper variable with which υ must be compared in order to assess its importance
on the system. The previous derivation cannot be applied as it assumes that Q̃gl is the
only parameter left in the system (provided n, p′ and δ are fixed). Furthermore, we cannot
consider that υ̃ is a small parameter and rescale the system accordingly, mirroring what
has been done with δ, because u0 could be large.

We propose the following strategy. If the value of the parameter υ̃ is fixed, then Q̃gl can
be found using the numerical approach presented in Appendix B. Repeating this process
for a collection of parameter values υ̃(1), . . . , υ̃(N), a collection of corresponding values
Q̃(1)

gl , . . . , Q̃(N)
gl , solutions of (4.3), is obtained. A parametric representation of the mapping

υ̃ �→ Q̃gl(υ̃) can then be fitted to the obtained dataset. The flux conditions for the two
effective-pressure models are then expressed as

qgl = Q̃gl(υ̃)(2ρg)nC−1Ahn+2
gl , (4.5a)

qgl = Q̃gl(υ̃)(2ρg)n[C(1 − c)]−1Ahn+2
gl . (4.5b)

The form of the function that approximates the relation υ̃ �→ Q̃gl(υ̃) can be constrained.
The friction law presented in (4.2) is such that it tends towards a Coulomb-like friction
law for small values of u0 and a Budd-like friction law for large values of u0. Assuming
that this behaviour is also present in the flux condition, we expect the following relations
to hold:

Q̃gl(υ̃) ∼ Q̃(C)
gl , for υ̃ � 1, (4.6a)

Q̃gl(υ̃) ∼
Q̃(B)

gl

Q̃(C)
gl

υ̃p′/(p′+1), for υ̃ � 1, (4.6b)
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x

y

y = b

y =
 a x

y =
 m ε

 (a, b, x)

ε ↗

0.2 0.40

2

4

6

Q̃gl

δ = 0.09
δ = 0.10
δ = 0.11
δ = 0.12

(×10–4)(b)

(a)

υ̃ p′/(p′ + 1)

Figure 6. Approximation of the relation υ̃ �→ Q̃gl(υ̃) for the (RC1) friction law combined with the NA model.
(a) Smooth version of the x �→ max(ax, b) function. The free parameter ε controls the sharpness of the
transition between the lines y = b and y = a x. (b) Relation between υ̃ and Q̃gl for the NA effective-pressure
model. The circles correspond to the values of Q̃gl obtained numerically, and the lines correspond to (4.8) with
ε = 3.383.

with
Q̃(C)

gl ≡ Q̃gl(1A, n, 0, 1, δ) and Q̃(B)
gl ≡ Q̃gl(1A, n, p′, 1, δ), (4.7)

that is, the values of Q̃gl for the Coulomb and Budd friction laws.
The transition between the limit cases υ̃ � 1 and υ̃ � 1 can be observed numerically

(figure 6(b), circles). These considerations justify the use of the following function as the
fitted curve:

Q̃gl(υ̃) ≈ mε(Q̃
(B)
gl , Q̃(C)

gl , υ̃p′/( p′+1)), (4.8)

see figure 6(a), where x �→ mε(a, b, x) is a smoothed version of the x �→ max(ax, b)

function defined by

mε(a, b, x) = (a/ε) log[exp(ε(x − b/a)) + 1] + b. (4.9)

The free parameter ε can be tuned to get the best fit, using for example a least-square fit
to the dataset {(υ̃(1), Q̃(1)

gl ), . . . , (υ̃(N), Q̃(N)
gl )}. As shown in figure 6(b), this approximation

gives satisfactory results.
The dependency of Q̃gl on δ can also be obtained. As before, because we expect the flux

condition to be similar to the Coulomb and Budd cases for υ̃ � 1 and υ̃ � 1, respectively,
we expect that the flux conditions depend on δ in the following way:⎧⎨

⎩
qgl = Q̌gl(υ̌)(δ/8)n−1(2ρg)nC−1Ahn+2

gl , υ̌ ≡ (δ/8)1−nυ̃,

qgl = Q̌gl(υ̌)(δ/8)n(2ρg)n[C(1 − c)]−1A hn+2
gl , υ̌ ≡ (δ/8)−nυ̃,

(4.10a)

(4.10b)

for the NA and NB models, respectively. Approximating the relation υ̌ �→ Q̌gl(υ̌) with the
same function as before, i.e. considering

Q̌gl(υ̌) ≈ mε(Q̌
(B)
gl , Q̌(C)

gl , υ̌p′/( p′+1)), (4.11)

with
Q̌(C)

gl ≡ Q̌gl(1A, n, 0, 1) and Q̌(B)
gl ≡ Q̌gl(1A, n, p′, 1), (4.12)
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δ = 0.11

δ = 0.12
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(NB)
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Budd

Coulomb
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Q̌gl

υ̌ p′/( p′ + 1) υ̌ p′/( p′ + 1)

Figure 7. Relation between υ̌ and Q̌gl for the (RC1) friction law combined with the NA and
NB effective-pressure models. The circles correspond to values obtained numerically, and the continuous lines
correspond to the approximations described in table 1.

Friction law Effective pressure Q̌gl(υ̌) Free parameter

(RC1)
NA (1A = 1) mε(Q̌

(B)
gl , Q̌(C)

gl , υ̌p′/( p′+1)) ε = 3.383

NB (1A = 0) mε(Q̌
(B)
gl , Q̌(C)

gl , υ̌p′/( p′+1)) ε = 3.043

Table 1. Functions υ̌ �→ Q̌gl(υ̌) used in the flux condition of the (RC1) friction law.

we obtain satisfactory results compared with the original dataset (figure 7). Table 1
summarises the approximation used to include the dependency with respect to the
parameter u0.

5. Effect of α, β and γ

In the derivation of flux conditions for the Budd friction law, as well as hybrid friction
laws, we considered an unbuttressed marine ice sheet with scales that are such that
α = 1, γ = 1 and |β| � 1. Those assumptions have proved useful, as they allowed us to
simplify the problem, leading to explicit expressions for the flux conditions. In particular,
they lead to a constant flux in the boundary layer and a negligible bedrock slope in
the momentum-balance equation. Originally, these assumptions were made for marine
ice-sheet systems, in particular by Schoof (2007b) and Tsai et al. (2015), whose work is the
starting point of this article. Nonetheless, recent studies have challenged these hypotheses.
Specifically, Sergienko & Wingham (2022) have shown that considering other scales, in
which previously neglected terms are included, leads to a more complex relation between
the grounding-line flux and the ice thickness at the grounding line. A corollary is that
the marine ice-sheet instability, which amounts to saying that grounding lines which are
located on regions with up-sloping beds are unstable, does not generally apply.

The role of this section is not to repeat the same analysis as the one presented in
Sergienko & Wingham (2022), but rather to see how, starting from our original flux
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Grounding-line flux conditions for marine ice-sheet systems

conditions that follow the scaling presented in Schoof (2007b) and Tsai et al. (2015),
we can derive correction factors. These factors allow us to quantify the impact of a
deviation from the original scaling (i.e. the effect of our hypotheses), and to correct the flux
conditions accordingly. Eventually, we will still obtain similar results as the ones presented
in Sergienko & Wingham (2022), although we here focus on explicit expressions of the
flux conditions.

To discuss these hypotheses, we consider the Budd friction law, and we structure this
section in several stages. First, we consider the case of a Budd friction law which is
such that the divergence of membrane stress can be neglected. This is the case if the
friction stress does not vanish at the grounding line and if γ ∼ 1 so that essentially friction
balances gravity. The analysis is then simplified because we obtain an algebraic equation
for the grounding-line flux qgl. We identify two dimensionless groups, denoted α/αc and
β/βc, which allow us to quantify the effect of the neglected terms in the derivation of the
flux condition on the ratio qgl/qgl,c, where qgl,c is a reference flux, corresponding to the
flux derived in § 3. We also provide new explicit expressions for the flux conditions which
are valid in the cases where α/αc and β/βc are not small. Then, we consider the case of a
Budd friction law which is such that the friction stress does vanish at the grounding line.
The previous developments can no longer be used, as the divergence of membrane stress
plays an important role near the grounding line. Instead, we rely on solutions of a problem
involving a dynamical system and an unknown parameter Q̃gl, similarly to what was done
in §§ 3 and 4, to extend the validity of the flux conditions. We also comment on the case
of a friction stress which does not vanish at the grounding line, but for which γ � 1 so
that we do not expect a simple balance between friction stress and gravity stress.

5.1. Non-vanishing friction law with γ ∼ 1: negligible membrane-stress divergence
Let us consider a general Budd friction law τb = CNq|u|p−1u for which the divergence of
membrane stress can be neglected in the momentum-balance equation, so that no boundary
layer is needed close to the grounding line to obtain the flux condition (i.e. for which
Q̌gl ≈ 1 in the flux conditions that have been derived). To fulfil this condition, we consider
a case where the effective pressure at the grounding line, Ngl, is non-zero, so that the
friction stress does not vanish, and where we have γ ∼ 1, so that the friction stress indeed
balances the gravity stress. The NB effective-pressure model falls into the category of
effective-pressure models that are such that Ngl /= 0. In that case, the combination of the
mass-balance equation, the momentum-balance equation and the grounding-line boundary
condition yields the following algebraic equation at the grounding line:

CNq
glq

p+1
gl + ρgqglh

p+1
gl

(
db
dx

)
gl

= ρg
(

1
4
ρ

(
1 − ρ

ρw

)
g
)n

Ahn+p+3
gl − ρghp+2

gl a. (5.1)

A similar expression can be found in Schoof (2007a,b) and in Sergienko & Wingham
(2022). If a and (db/dx)gl cannot be neglected, then no expression relating the
grounding-line flux qgl to the grounding-line thickness hgl that is both exact and explicit
can be obtained. We note that (5.1) can be written as

qgl

qgl,c

((
qgl

qgl,c

)p

+ β

βc

)
= 1 − α

αc
, (5.2)

in which qgl,c is a reference flux, given by

qgl,c =
(ρg

C

)1/(p+1)

N−q/(p+1)
gl

(
1
4
ρ

(
1 − ρ

ρw

)
g
)n/(p+1)

A1/(p+1)h(n+p+3)/(p+1)
gl . (5.3)
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In the case where the friction stress is non-zero at the grounding line, this reference flux is
equal to the flux that would be obtained if a and (db/dx)gl could be neglected in (5.1), i.e.
this is the expression of the flux that we have derived in § 3. The ratios α/αc and β/βc are
defined as

α

αc
= a(

1
4
ρ

(
1 − ρ

ρw

)
g
)n

Ahn+1
gl

and
β

βc
=

(db/dx)gl qgl,ch−1
gl(

1
4
ρ

(
1 − ρ

ρw

)
g
)n

Ahn+1
gl

. (5.4)

These ratios provide a way to quantify the impact of the hypotheses made to derive the
flux conditions on these flux expressions, more precisely the discrepancy with respect to
the reference flux value qgl,c. This difference will be small if α/αc and β/βc are both
small. We note that the denominators in (5.4) are proportional to the strain rate at the
grounding line, so α/αc and β/βc can respectively be interpreted as a normalised measure
of the variation of ice velocity associated with the net mass accumulation rate and the
bedrock slope. These ratios can also be written with respect to the dimensionless numbers
introduced in § 2: we have

α

αc
= α

(
ε

δ/8

)n ( hgl

[h]

)−n

and
β

βc
= βγ −1/(p+1)

(
ε

δ/8

)np/(p+1) ( hgl

[h]

)−( p+q−np+1)/(p+1)

,

(5.5)

so in the limit of ε → 0, the ratios α/αc and β/βc must tend towards zero. However, that
limit is never reached in practice. Equation (5.4) then allows us to compute, quantitatively,
the importance of a, (db/dx)gl and C on the derivation of flux conditions, as a function of
the original dimensional variables. Analogously, (5.4) allows us to assess the importance
of α, β and γ on the validity of our flux conditions.

The dimensionless ratios α/αc and β/βc can also be used to derive new flux conditions
which are approximately valid in the case where those ratios are not small. Indeed, we can
formally write that

qgl = Q̌gl

(ρg
C

)1/(p+1)

N−q/(p+1)
gl

(
1
4
ρ

(
1 − ρ

ρw

)
g
)n/(p+1)

A1/(p+1)h(n+p+3)/(p+1)
gl ,

(5.6)

where Q̌gl = Q̌gl(α/αc, β/βc) is a correction factor. Note that, by construction, Q̌gl =
qgl/qgl,c. The expression of Q̌gl can be approximated by considering the algebraic equation
(5.2). On the one hand, this equation can be solved numerically for several fixed values
of α/αc and β/βc (figure 8a). The number of acceptable solutions of (5.2), i.e. of real
and strictly positive solutions values for Q̌gl, depends on the value of α/αc. In fact,
α/αc = 1 plays the role of a bifurcation point. Indeed, for α/αc < 1, there is exactly one
acceptable solution Q̌gl. It is also found that in that case, Q̌gl decreases with both α/αc and
β/βc. For α/αc = 1, there is exactly one acceptable solution, provided that β/βc < 0;
otherwise, there is no solution. For α/αc > 1, we observe a folding of the solution
branch β/βc �→ Q̃gl(α/αc, β/βc), which becomes multi-valued for β/βc < (β/βc)∗, and
for which there is no solution for β/βc > (β/βc)∗. The critical value (β/βc)∗ is given by(

β

βc

)
∗

= −( p + 1)p−p/(p+1)

(
α

αc
− 1

)p/(p+1)

. (5.7)
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On the other hand, (5.2) can be solved approximately based on asymptotic analysis.
Specifically, the following asymptotic expressions hold. For α/αc < 1,

Q̌gl ∼
(

1 − α

αc

)1/(p+1)

− 1
p + 1

(
1 − α

αc

)(p−1)/(p+1)
β

βc
, for

∣∣∣∣ β

βc

∣∣∣∣ � 1, (5.8)

Q̌gl ∼
(

− β

βc

)1/p

, for
β

βc
< 0 and

∣∣∣∣ β

βc

∣∣∣∣ � 1, (5.9)

Q̌gl ∼
(

1 − α

αc

)(
β

βc

)−1

, for
β

βc
> 0 and

∣∣∣∣ β

βc

∣∣∣∣ � 1. (5.10)

For α/αc = 1, Q̌gl = (−β/βc)
1/p, provided that β/βc < 0. For α/αc > 1, the upper and

lower solution branches obey the following relations:

Q̌gl ∼
(

− β

βc

)1/p

, for
β

βc
< 0 and

∣∣∣∣ β

βc

∣∣∣∣ � 1, (5.11)

Q̌gl ∼
(

1 − α

αc

)(
β

βc

)−1

, for
β

βc
< 0 and

∣∣∣∣ β

βc

∣∣∣∣ � 1. (5.12)

It can be expected that the lower solution branch is seldom reached in practice as it
corresponds to relatively large values of a (as α/αc > 1) but to relatively small values
of the flux qgl (as Q̌gl � 1). Combining these expressions together, a closed-form formula
can be obtained to approximate the value of Q̌gl. Assuming that we are in the case where
there is a least one solution for Q̌gl, i.e. considering the case α/αc < 1 or β/βc < (β/βc)∗,
we suggest the following expression (figure 8(b), dashed line):

Q̌gl ≈
⎧⎨
⎩(1 − α/αc)

1/(p+1) − 1
p + 1

(1 − α/αc)
(p−1)/(p+1)β/βc + (−β/βc)

1/p, for β/βc < 0,

(1 − α/αc)
1/(p+1)[1 + (1 − α/αc)

−p/(p+1)β/βc]−1, for β/βc ≥ 0.

(5.13)

This expression can then be used to obtain the new flux condition (5.6), which is still
approximately valid for values of α/αc and β/βc which are not small.

5.2. Vanishing friction law: non-negligible membrane-stress divergence
We now consider the case where the divergence of membrane stress cannot be neglected
in the momentum-balance equation. Specifically, we consider the Budd friction law
combined with the NA effective-pressure model. In that case Ngl = 0, so it does not make
sense to use the reference flux qgl,c defined in (5.3). Instead, we define it as

qgl,c =
(

1 − ρ/ρw

8

)n/(p+1)

(ρg)−(q−1)/(p+1)(2ρg)n/(p+1)C−1/(p+1)A1/(p+1)h(n+( p−q)+3)/(p+1)
gl .

(5.14)

Note that, in contrast to the previous subsection, this is not the expression of the flux that
was derived in § 3. It is rather a reference flux that is used to define β/βc, without any
specific physical interpretation. Again, we include the effect of the assumptions into a
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Figure 8. Effect of α/αc and β/βc on Q̌gl, for a non-vanishing Budd friction law with p = 1/3. The coloured
continuous lines are obtained by solving numerically (5.2). The dashed black line is obtained using (5.13).
(a) Various values of α/αc and (b) zoom on the case α/αc = 0.25.

prefactor Q̌gl such that

qgl = Q̌gl

(
1 − ρ/ρw

8

)(n−q)/(p+1)

(ρg)−(q−1)/(p+1)(2ρg)n/(p+1)C−1/(p+1)

× A1/(p+1)h(n+( p−q)+3)/(p+1)
gl , (5.15)

with Q̌gl = Q̌gl(α/αc, β/βc). The previous discussion holds if the divergence of membrane
stress can be neglected in the momentum-balance equation. In general, and in particular for
the Budd friction law with the NA effective-pressure model, that is not the case. Still, we
can follow a strategy similar to the one used in § 4 to derive the flux conditions of hybrid
friction laws to take into account the effect of α/αc and β/βc: we can treat these ratios
as parameters of the problem, and consider a mapping of the form (α̃, β̃) �→ Q̃gl(α̃, β̃).
More precisely, if we keep the terms associated with the net mass accumulation rate and
the bedrock slope in the derivation of the flux condition described in § 3, we obtain the
following system of equations, in place of (3.7):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dŨ

dX̃
= −|W̃|n−1W̃, for 0 < X̃ < Q̃gl/α̃,

dW̃

dX̃
= −1

4
Ũ

Q̃gl − α̃X̃

(
Q̃gl − α̃X̃

Ũ
− 1A

〈
1 + β̃

1 − δ
X̃

〉)q

× |Ũ|p−1Ũ − |W̃|n+1

Ũ
+ α̃

W̃

Q̃gl − α̃X̃
− 1

4
α̃

Ũ

+ (Q̃gl − α̃X̃)|W̃|n−1W̃

4Ũ2
− β̃

4
, for 0 < X̃ < Q̃gl/α̃,

(Ũ, W̃) = (Q̃gl, δ/8), at X̃ = 0,

Ũ = 0, at X̃ = Q̃gl/α̃,

(5.16a)

(5.16b)

(5.16c)

(5.16d)
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Figure 9. Effect of α/αc and β/βc on Q̌gl, for the Budd friction law with the effective-pressure model NA,
n = 1/3, p = 1/3, q = 1, and δ = 0.1. The coloured continuous lines are obtained by finding the values of Q̃gl
that yield a solution to (5.16). The dashed black line is obtained using (5.18). (a) Various values of α/αc and
(b) zoom on the case α/αc = 0.25.

with

α̃ =
(

δ

8

)n
α

αc
and β̃ =

(
δ

8

)np/(p+1)
β

βc
. (5.17)

This system of equations is fundamentally different from (3.7). Indeed, it is formally
equivalent to the initial system of equations presented in § 2, for unbuttressed ice sheets,
since no additional assumption has been made. By contrast, the system of (3.7) used in § 3
to obtain the flux conditions was only valid within the boundary layer near the grounding
line and in the limit of ε → 0. The system (5.16) is also more complex in two respects.
On the one hand, the dynamical system defined by (5.16a) and (5.16b) is non-autonomous,
since X̃ appears in the definition of dW̃/dX̃. On the other hand, this system depends on
the additional parameters α̃ and β̃. Because β̃ is proportional to the bedrock slope db/dx
which depends on the x coordinate, in general, β̃ = β̃(X̃).

However, the analysis can be simplified by considering linear bed geometries, so that β̃

is constant. Let us fix the values of both α̃ and β̃. The system of (5.16) is then a parametric
system which only possesses solutions for specific values of Q̃gl. Despite the differences
that have been mentioned, we have found that the shooting method introduced in § 3 and
described in Appendix B was still applicable to the system (5.16). We can thus obtain these
particular values Q̃gl. Then, we convert the mapping (α̃, β̃) �→ Q̃gl(α̃, β̃) back the mapping
(α/αc, β/βc) �→ Q̌gl(α/αc, β/βc) by using (5.17) and Q̃gl = (δ/8)(n−q)/( p+1)Q̌gl, which
was derived in § 3. We have represented the effect of α/αc and β/βc on Q̌gl in figure 9(a)
using the aforementioned numerical method.

In contrast to the case of non-vanishing friction laws, it is not easy to derive asymptotic
expressions for Q̌gl for large or small values of β/βc, as one has to solve (5.16), which is
significantly more complex than an algebraic equation. Instead, we parametrise Q̌gl using
a curve-fitting approach with simple expressions. We suggest the following expression
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(figure 9(b), dashed line):

Q̌gl ≈
{

Q̌0
gl(1 − 3.72 β/βc), for β/βc < 0,

Q̌0
gl[1 + 17.76(1 − α/αc)

−1β/βc]−1, for β/βc ≥ 0,
(5.18)

with Q̌0
gl ≡ Q̌gl|(α/αc,β/βc)=(0,0) = 0.71.

5.3. Non-vanishing friction law with γ � 1
Sergienko & Wingham (2019) have considered flux conditions for the Weertman friction
law in a regime of low basal and gravity stress. Specifically, they considered ε ∼ δ ∼
γ � 1, leading to the divergence of membrane stress being of the same order as the
friction stress, but much smaller than the gravity stress. This is a different regime from
ours: in § 3 we have assumed that γ ∼ 1 and considered a scaling that is such that the
divergence of membrane stress, the friction stress and the gravity stress have the same
order of magnitude.

They have obtained, as a zeroth-order solution, the following expression:

qgl

(
db
dx

)
gl

+ a(1 − δ)hgl =
(

1
4
ρg
(

1 − ρ

ρw

))n

A[(1 − δ)hgl]n+2. (5.19)

In the limit δ � 1, this equation becomes

qgl =

⎡
⎢⎢⎣1 − a(

1
4
ρ

(
1 − ρ

ρw

)
g
)n

Ahn+1
gl

⎤
⎥⎥⎦
⎡
⎢⎢⎣ (db/dx)gl(

1
4
ρ

(
1 − ρ

ρw

)
g
)n

Ahn+2
gl

⎤
⎥⎥⎦

−1

. (5.20)

This is exactly our equations (5.10) and (5.12), i.e. this flux condition can be associated
with the regime |β/βc| � 1 of a Budd friction law which does not vanish at the grounding
line and in which the membrane-stress divergence is negligible. This scaling can be
motivated by (5.5): |β/βc| ∝ γ −1/( p+1).

6. Verification with numerical experiments

In this section, we verify the obtained flux conditions. First, we present the set-up used
for the numerical experiments. Then, we verify the flux conditions derived in §§ 3 and 4.
Finally, we investigate numerically the effect of α, β and γ , and we confirm the results
obtained in § 5.

6.1. Set-up
The values chosen for the physical parameters are typical for numerical experiments with
marine ice sheets, and are similar to the ones presented in Pattyn et al. (2012). We take
n = 3, ρ = 900 kg m−3, ρw = 1000 kg m−3 and g = 9.8 m s−2. Glen’s viscosity
parameter is set to A = 4.9 × 10−25 Pa−3 s−1, and the net mass accumulation rate is set
to a = 9.51 × 10−9 m s−1. In terms of the friction laws, we consider the (W), (C), (B),
(T), (RC1) and (RC2) friction laws with p = 1/3 and q = 1, and with both the NA and
the NB effective-pressure models. The friction coefficient for the (W) friction law is set
to C = 7.624 × 106 Pa m−1/3 s1/3. For the other friction laws, the friction coefficient will
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Figure 10. Bed profiles considered in the numerical experiments. (a) Polynomial bed, (b) linear bed and
(c) linear bed with oscillations.

be specified for each specific numerical experiment. The hydrology parameter c is set to
0.96. Three bed elevation profiles are considered (figure 10). The first one is a polynomial
bed that will be used to compare the flux conditions in an idealised configuration. The
second one depends linearly on x and will be used to check the effect of the bed slope
(and thus of β) on the flux conditions. The third one is similar to the linear one, but an
oscillatory signal has been added on top of it. It will be used to investigate the effect of
local variability in the bedrock profile.

Results are obtained either from the flux conditions themselves, or from the numerical
solution of the initial problem ((2.1)–(2.6)). For the spatial discretisation, we use an
in-house finite-element code. The mesh is uniform with a constant element size of 180 m.

6.2. Flux conditions for the Budd and hybrid friction laws
The first experiment compares the flux conditions obtained in §§ 3 and 4 with results
of numerical simulations. It mimics the experiment 3 of the Marine Ice Sheet Model
Intercomparison Project (Pattyn et al. 2012), which is a benchmark for the comparison of
marine ice-sheet flowline models. We considered the polynomial bed profile (figure 10a),
fixed all the parameters to their reference values, except for the ice rheology parameter
A which is varied. For each particular value of A, a steady-state ice-sheet solution
was obtained and the grounding-line position was retrieved. On the one hand, this
position was obtained numerically, thanks to the finite-element solution. On the other
hand, we computed the grounding-line position from the flux conditions: from the
mass-conservation equation, we have the global balance

qgl(hgl) = a xgl, (6.1)

where we have written qgl = qgl(hgl) to emphasise the dependency on the grounding-line
ice thickness. The flotation condition hgl = −(ρw/ρ)b(xgl) then allowed us to obtain an
algebraic equation for xgl:

qgl(−(ρw/ρ)b(xgl)) = a xgl. (6.2)

We solved this nonlinear equation using a Newton–Raphson procedure.
It remains to choose the values of the friction coefficients for all the friction laws except

for the Weertman one. This is quite delicate, because the friction coefficients associated
with different friction laws are not necessarily comparable to one another; in particular,
they do not have the same dimensions. For the Weertman friction law, (6.2) has a solution
xgl ≈ 800 km for A = 10−25 Pa−3 s−1. We then chose the friction coefficients C for the
Coulomb friction law and the Budd friction law so as to obtain this solution as well.
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Friction law Effective pressure C

(W) (p = 1/3) / 7.624 × 106 Pa m−1/3 s1/3

(C) NA (1A = 1) 1.316 × 100 —
(C) NB (1A = 0) 6.634 × 10−1 —
(B) (p = 1/3, q = 1) NA (1A = 1) 6.116 × 101 m−1/3 s1/3

(B) (p = 1/3, q = 1) NB (1A = 0) 3.018 × 101 m−1/3 s1/3

(RC1) (p = 1/3) NA (1A = 1) 1.316 × 100 —
(RC1) (p = 1/3) NB (1A = 0) 6.634 × 10−1 —
(RC2) (p = 1/3) NA (1A = 1) 1.316 × 100 —
(RC2) (p = 1/3) NB (1A = 0) 6.634 × 10−1 —
(T) (p = 1/3) NA (1A = 1) 1.316 × 100 —
(T) (p = 1/3) NB (1A = 0) 6.634 × 10−1 —

Table 2. Numerical values of the friction coefficients used for the verification of the flux conditions.

Friction law Effective pressure Additional parameter

(RC1) (p = 1/3) NA (1A = 1) & NB (1A = 0) u0 = 10−5 m s−1

(RC2) (p = 1/3) NA (1A = 1) & NB (1A = 0) A−p
s = 7.624 × 106 Pa m−1/3 s1/3

(T) (p = 1/3) NA (1A = 1) & NB (1A = 0) A−p
s = 7.624 × 106 Pa m−1/3 s1/3

Table 3. Numerical values of the additional friction parameters As and u0 used for the verification of the flux
conditions.

The obtained friction parameters are shown in table 2. For the hybrid friction laws, we
considered the same friction coefficient C as the one obtained for the Coulomb friction
law because the Coulomb friction law is a limit case of the hybrid friction laws. The
coefficient As was chosen such that A−p

s had the same value as the Weertman friction
coefficient, again by identification of the hybrid friction law as a Weertman friction law.
Finally, we considered u0 = 10−5 m s−1, which is a typical value for the velocity in marine
ice sheets. All these values are summarised in tables 2 and 3.

The results are shown in figure 11. The grounding-line positions obtained using the flux
conditions match the results from the numerical simulations. We note that the physical
parameters and the bed profile considered in this numerical experiment are consistent with
the assumptions made during the derivation of the flux conditions, namely, the net mass
accumulation rate and the bedrock slopes are not too large, and the friction coefficient is
not too small. With respect to the discussion of § 5, the experiments have been conducted
in a regime for which α/αc and β/βc are small.

As a side note, it can be observed that the curves all have the same shape, which
could suggest that the choice of friction laws actually has little impact on the mechanical
equilibrium of marine ice sheets, and in particular on flux conditions. However, this
similarity is not the result of the impact of friction laws but rather stems from the
methodology used. The flux conditions associated with different friction laws differ in
two aspects: the exponent on the grounding-line thickness, and the dependence of the
factor that multiplies this thickness with respect to the physical parameters (A, C, . . .).
The considered bedrock does not show a strong variability, so that the exponent on top of
the grounding-line thickness has a limited effect. Moreover, by construction, the friction
coefficients were chosen uniformly and in such a way that the curves pass through the same
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Figure 11. Comparison of the evolution of the grounding-line position with respect to A for the different
friction laws and effective-pressure models, using the flux condition (lines) and results of a finite-element
discretisation of the original problem (circles, crosses). The results for the NA and NB effective-pressure models
are respectively shown in blue and in green.

point, which effectively leads to a similar factor in front of the grounding-line thickness.
This explains the similarity between the curves shown in figure 11. In practice, however,
the friction coefficients are not uniform, but, rather, are tuned spatially so as to obtain a
similar thickness and velocity profile compared with some observations. This results in
very different dynamics. We refer interested readers to Brondex et al. (2017) where these
differences are discussed.

6.3. Effect of α, β and γ

We now conduct a series of numerical experiments to determine numerically the situations
in which the assumptions made to derive the flux conditions in § 3 are not valid, and to
confirm that the new expressions, namely (5.6) and (5.15) combined respectively with
the corrections factors defined in (5.13) and (5.18), can be applied to correct these flux
conditions. Practically, we check that they lead to the same grounding-line flux value as
the numerical results. We call the flux conditions derived in § 5 ‘enriched’ flux conditions.
First, we consider the linear bed profile (figure 10b), whose elevation is given by b(x) =
b0 + b1(x/L) with b0 = 720 m, b1 = −900 m and L = 750 km. We vary three physical
parameters: the net mass accumulation rate a, the bedrock slope db/dx and the friction
coefficient C. The goal is to reach a regime in which α/αc and β/βc are not small so
that the flux conditions derived in § 3 are not valid anymore. Then, we consider the more
realistic ‘rough’ bedrock profile, as well as different values for the friction coefficient.
We always consider the Budd friction law with both the NA and NB effective-pressure
models. We choose a reference friction coefficient of CA

0 = 1.73 m−1/3 s1/3 in the first
case and CB

0 = 43.22 m−1/3s1/3 in the second case. These values where chosen such that
CA

0 ρghgl ≈ CB
0 (1 − c)ρghgl ≈ 7.624 × 106 Pa m−1/3s1/3 for hgl = 500 m.
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Figure 12. Comparison between the fluxes qgl,fc obtained thanks to the flux conditions derived in § 3 (circles)
and thanks to the enriched flux conditions (crosses), and the grounding-line fluxes qgl obtained numerically,
when a/a0, (db/dx)/(db/dx)0 and C/C0 are varied (first line). Ratios α/αc and β/βc corresponding to each
numerical solution (second line). We have considered the Budd friction law with the NA (blue) and the
NB (green) effective-pressure models.

First, we consider the reference physical parameters previously introduced, and we
modify the values of a, db/dx and C in the following way. We first consider a, and vary
its value within the interval a0 ≤ a ≤ 10a0, where a0 is the reference value introduced
in the set-up subsection. For each fixed value of a, we let the ice sheet evolve until
it reaches a steady state. This leads to a collection of grounding-line fluxes, which are
compared with the grounding-line fluxes that would have been obtained thanks to our
flux conditions. For the NA effective-pressure model, we use (5.15) combined with (5.18),
while for the NB effective-pressure model, we use (5.6) combined with (5.13). We then
perform a similar procedure for db/dx and C, which are respectively varied in the ranges
10(db/dx)0 ≤ db/dx ≤ (db/dx)0 and 0.5 × 10−1C0 ≤ C ≤ C0, with (db/dx)0 = b1/L. In
this former case, only the slope of the linear bed is varied; the value b(0) = b0 is left
unchanged. By increasing the value of a, of |db/dx| and reducing the value of C, we
attempt to reach a regime in which α/αc and β/βc cannot be neglected. The results
are shown in figure 12. It can be observed that, for the parameters considered, the ratio
qgl,fc/qgl stays close to one when the NB effective-pressure model is used, even when we
use the flux condition derived in § 3. By contrast, this ratio departs significantly from
one when the slope or the friction parameter are varied in a simulation in which the NA
effective-pressure model is considered. That is not the case if we use the enriched flux
conditions, as those lead to a ratio that is always close to one.

In practice, we expect a relatively variable bedrock elevation; hence, a linear
configuration might not be appropriate. To investigate the impact of this bedrock
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Figure 13. Effect of local variability in the geometry profile on the ratio between the fluxes qgl,fc obtained
based on the flux conditions derived in § 3 (circles) and on the enriched flux conditions (crosses), and the flux
qgl obtained numerically. We have considered the Budd friction law with the NA (blue) and the NB (green)
effective-pressure models; (a) Lo = 100 km, (b) Lo = 200 km and (c) Lo = 300 km.

variability, we consider the bedrock profile shown in figure 10(c). Its elevation is given
by b(x) = b0 + b1(x/L) + b2 sin(2πx/Lo), where b0, b1 and L have the same values as
before, b2 = 300 m, and where Lo is varied between 100 and 300 km. The physical
parameters are the same as the ones used previously when varying the net mass
accumulation rate a. We observe in figure 13 similar findings compared with the previous
numerical experiment. Firstly, the ratio qgl,fc/qgl calculated using the flux conditions
derived in § 3 deviates further from a unit value as the bedrock has a larger slope variation.
Secondly, the effect is much more pronounced in the case of the NA effective-pressure
model. Lastly, the use of corrective factors in flux conditions enables satisfactory results,
namely a qgl,fc/qgl ratio that remains close to unity.

7. Discussion

In this section, we briefly discuss the flux conditions that we have derived in §§ 3 and 4.
Then, we comment on the limitations of these conditions by addressing both the analysis
provided in § 5 and some modelling assumptions.

7.1. Specifications of the obtained flux conditions

7.1.1. Dependence on the effective-pressure model
The flux conditions associated with the two effective-pressure models that we have
considered are similar. Their only differences concern the coefficient c, which only appears
with the effective-pressure model NB, the dependency with respect to δ, and the value of
the numerical prefactor Q̌gl. In particular, for the friction laws covered in this article, we
found that Q̌gl is generally smaller for the NA model, compared with the NB model.

7.1.2. Dependence on the physical parameters for the Budd friction law
The grounding-line flux depends on A and C in the following way: qgl ∝ (A/C)1/( p+1).
We remark that the exponent q, which is associated with the effective pressure, does not
intervene. In particular, this leads to the same dependency with respect to these parameters
for the Weertman friction law (p = 1/3) and the Budd friction law (p = 1/3, q = 1).
For the NB effective-pressure model, the grounding-line flux depends on c through qgl ∝
(1 − c)q/( p+1). This time, both p and q impact this dependency.
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Figure 14. Grounding-line flux expressed as a function of the grounding-line position, using the flux
conditions derived in §§ 3 and 4. The grounding-line thickness was linked to the grounding-line position thanks
to the flotation condition hgl = −(ρw/ρ)b(xgl). The results are displayed for the (C), (B) and (RC1) friction
laws using similar physical parameters and the bedrock profile of figure 10(a).

7.1.3. Dependence on the additional parameter for hybrid friction laws
In a similar way to the hybrid friction laws which allow us to switch from one friction law
to another depending on an additional parameter, the associated flux conditions allow us to
transition between different states. For example, the (RC1) friction law is an intermediate
friction law between the (C) and (B) friction law, and the additional parameter u0 controls
the tendency of that law (figure 14).

Another point concerns the behaviour close to the grounding line. Let us consider a
friction law that vanishes at the grounding line but that is different from the Coulomb
friction law, for example the (RC1) friction law. Close to the grounding line, both friction
laws will be similar so that one could consider the flux condition derived by Tsai et al.
(2015) for the Coulomb friction law, even if it was not developed for this particular friction
law. Our approach allows us to assess this idea quantitatively. As shown in figure 7, there
is a transition in the plots, from a constant value of Q̌gl to an approximately linear curve.
The Coulomb behaviour precisely corresponds to this first constant part. We therefore
deduce that the Coulomb flux condition can be considered if the additional parameter, υ̌,
is sufficiently small. For example, for the NA effective-pressure model, it is necessary that

υ̌p′/( p′+1) � 0.1. (7.1)

Physically, this means that the viscous boundary layer is included inside the region in
which the friction law essentially behaves like a Coulomb friction law. It must be noted
that the parameter u0 is critical in that context because it controls the width of the region
in which friction has a Coulomb-like behaviour.

7.1.4. Dependence on the grounding-line thickness
Another result of our derivation concerns the stability of marine ice sheets. It is often
assumed that if qg depends on hg with a relatively large exponent κ , then the stable
equilibrium positions will be more stable with respect to external perturbations while the
unstable ones will be more unstable with respect to external perturbations (Schoof 2012;
Tsai et al. 2015). This exponent can be computed for the friction laws covered in this
article. If n = 3, p = 1/3 and q = 1, then κ varies within [4, 5], depending on the friction
law considered (figure 15). Furthermore, the hybrid friction laws effectively behave as
power laws for limiting values of the additional parameter, u0 or As, so that the exponent κ
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κ
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Figure 15. Effective exponent κ associated with a flux condition of the form qg ∝ hκ
g for the friction laws

covered in this article with n = 3, p = 1/3 and q = 1. For hybrid friction laws the exponent κ takes different
values whether u0 and As are either very small or very large.

transitions between multiple values. For instance, κ switches from 4.75 to 5 for the (RC2)
and (T) friction laws.

7.2. Limitations

7.2.1. Effect of α, β and γ

From the mathematical analyses and the numerical simulations described in §§ 5 and 6,
we conclude that accounting for the net mass accumulation rate and the bedrock slope
can have a significant impact on the flux conditions, so that correction factors may be
necessary. The impact is more significant when using a friction law such that friction stress
vanishes at the grounding line than when using a friction law such that friction stress does
not vanish at the grounding line. For both types of friction laws, the impact of the net mass
accumulation rate and the bedrock slope on the flux condition increases with a decrease in
the friction coefficient.

7.2.2. Two-dimensional geometry and steady-state assumptions
Another important assumption that was made concerns the geometry: in our derivation,
we have used a one-dimensional flowline model that is in a steady state. This leads to
modelling errors associated with (i) the effect of lateral drag and (ii) the conservation of
the flux along a streamline and over time. As described in § 2, lateral drag can only be taken
into account in a flowline model by a parametrisation. The effect of this parametrisation
on grounding-line flux conditions has been studied in Schoof et al. (2017), Haseloff &
Sergienko (2018) and Reese, Winkelmann & Gudmundsson (2018). We also refer the
interested reader to Gudmundsson et al. (2012), Gudmundsson (2013) and Pegler (2016,
2018a,b) for numerical and theoretical studies of the stability of buttressed ice sheets. The
flowline assumption is important, as it leads to an invariant flux near the grounding line, i.e.
the flux is spatially constant in that area. In practice, that will not be the case for channels
that are widening or narrowing. Furthermore, it is unrealistic to assume that ice streams
are independent of the transverse bed variability (Sergienko 2012); it can be expected that
streamlines are condensed in areas where the friction induced by the bed roughness is
limited.

In parallel, the steady-state assumption guarantees that all the unknown fields, and in
particular the grounding-line flux, are constant over time. If the ice sheet was not in a
stationary configuration, then the only equation that would need to be modified is the
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mass-balance equation. It would be changed to

∂h
∂t

+ ∂

∂x
(uh) = a, (7.2)

that is, the same equation as the one we have used, provided we replace the net mass
accumulation by an effective accumulation rate given by aeff = a − ∂h/∂t. It follows that
if the geometry is changing sufficiently slowly such that ∂h/∂t is much lower than a, then
flux conditions still make sense. Clearly, this conclusion also assumes that the physical
parameters, which were previously regarded as constant, evolve over time scales that are
sufficiently large compared with the dynamics of the problem under consideration here.
In general, however, that is not the case, and the time dynamics requires an analysis of
its own, see e.g. Schoof (2007a,b), Haseloff & Sergienko (2022), Sergienko & Wingham
(2022) and Sergienko & Haseloff (2023). Nonetheless, we speculate that flux conditions
can still be applied with an effective accumulation rate as defined above when there is
no grounding-line boundary layer, similarly to what is observed, e.g. in Sergienko &
Wingham (2022).

8. Conclusion

In this article, we generalised the flux conditions of marine ice-sheet systems. We showed
that the methodology of Schoof (2007b) and Tsai et al. (2015) can be extended to the
general Budd friction law and for two different effective-pressure models, leading to the
following expressions:

qgl = Q̌gl

(
1 − ρ/ρw

8

)(n−q)/(p+1)

(ρg)−(q−1)/(p+1)(2ρg)n/(p+1)

× C−1/(p+1)A1/(p+1)h(n+( p−q)+3)/(p+1)
gl , (8.1a)

qgl = Q̌gl

(
1 − ρ/ρw

8

)n/(p+1)

(ρg)−(q−1)/(p+1)(2ρg)n/(p+1)

× [C(1 − c)q]−1/(p+1)A1/(p+1)h(n+( p−q)+3)/(p+1)
gl . (8.1b)

Our flux conditions generalise and reconcile these previous works as we recover their flux
conditions as special cases. We also extended the flux conditions to hybrid friction laws.
This was achieved through the use of regularised functions which depend on a limited
number of parameters that can be tuned easily. Furthermore, we provided justifications
for several properties of an equivalent dynamical system associated with the leading-order
solution to our problem. A numerical strategy was proposed for the computation of a
numerical factor appearing in the flux condition. Finally, the validity of the assumptions
made during the derivation was discussed, and a correction factor was proposed to extend
the domain of validity of the flux conditions, in particular in the context of rough bedrocks
and low friction coefficients.

The flux conditions can be separated in two classes, depending on the combination of
friction and effective-pressure models. The first class is associated with a non-vanishing
friction stress at the grounding line, and the dynamical behaviour of the ice sheet near
the grounding line is then qualitatively similar to the one obtained with a Weertman
friction law. Therefore, the derivation of the flux condition is simpler because the
divergence of membrane stress can be neglected. On the other hand, the second class is
more complex, with a combination of friction stress, gravity stress, and membrane-stress
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divergence contributing significantly to the mechanical equilibrium near the grounding
line. The effective-pressure model considered is also important because for a fixed friction
law a system could be categorised depending on the effective-pressure model used.

The present work could be pursued in several directions. Firstly, the effective-pressure
models considered are very simple. More realistically, a dynamic hydrology model should
be coupled to the ice-sheet model, similar to, e.g. Hewitt (2013). The study of a flux
condition associated with a steady state may no longer be adequate in this case, since recent
research has shown the presence of oscillatory phenomena for such systems (Robel et al.
2013; Robel, Schoof & Tziperman 2016). Still, a boundary-layer analysis that includes the
time evolution for such systems would be interesting.

Another direction for future work concerns the use of flux conditions. While they have
allowed us to improve our theoretical understanding of marine ice sheets, they are also
typically used in ice-sheet codes with coarse meshes that do not allow for resolving the
fine details near the grounding line. Assessing their usage, with regards to the latest
developments in flux conditions, is a possible research direction. Jointly, it is possible
to view this problem through another viewpoint. In a coarse mesh, the unknowns of the
problem are macroscopic variables, which represent in a certain sense a local average of
phenomena not explicitly solved. The governing equations, and in particular any potential
flux condition, must then obey modified equations that take this averaging process into
account. To the best of our knowledge, such a multiscale approach has been little applied
in glaciology – a notable exception being Schoof (2003) – and the standard rather consists
in adding ad hoc parametrisations.

Finally, it would be interesting to investigate the mechanical behaviour of ice sheets
near their grounding line with models that are more involved than the shallow-shelf
approximation, e.g. the Blatter–Pattyn model (Pattyn 2003) or the L1L2 model (Schoof
& Hindmarsh 2010).

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2023.760.
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Appendix A. Analysis of the leading-order dynamical system: vanishing friction at
the grounding line

A.1. Problem formulation
The problem consists in finding X �→ (ξ(X ), Ψ (X )) and Qgl such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dξ

dX = −1
2
Qglξ

2c1+1, for X > 0,

dΨ

dX = −c2 Qglξ
2c1Ψ − 1

4
|Ψ |−n−1Ψ (1 − ξ2) + 1

4
, for X > 0,

(ξ, Ψ ) = (1,Q−1
gl δ/8), at X = 0,

(ξ, Ψ ) → (0, 1), as X → +∞.

(A1a)

(A1b)

(A1c)

(A1d)

We consider the Budd friction law with a linear dependence with respect to the effective
pressure (q = 1), so that c1 > 0 and 0 < c2 < 1.

A.2. Principle of the analysis
Compared with the case of non-vanishing friction at the grounding line, we remark that
the dynamical system defined by (A1a) and (A1b) depends on Qgl. It is characterised by
the following differential equation:

dΨ

dξ
= 2 c2

Ψ

ξ
+ 1

2
1
Qgl

1
ξ2c1+1 (|Ψ |−n−1Ψ (1 − ξ2) − 1). (A2)

The only fixed point of this dynamical system is the point (ξ, Ψ ) = (0, 1). A linearisation
close to this point reveals the presence of an unstable manifold associated with the vertical
axis ξ = 0, and a centre manifold. A solution to the system of (A1) must therefore go
through this manifold, which is unique (similarly to what is described in the appendix of
Schoof 2011). It is characterised by the following behaviour, close to the fixed point:

Ψ c ∼ 1 − 1
n
ξ2, as ξ → 0, ∀Qgl > 0, (A3)

in which Ψ c = Ψ c(ξ ;Qgl) is the Ψ coordinate of the centre manifold at position ξ and for
a value Qgl.

To show the existence and uniqueness of the system of (A1), the mapping D is defined
as follows:

Qgl �→ D(Qgl) = Ψ c(1;Qgl) − (δ/8)Q−1. (A4)

The problem then consists in showing that D admits exactly one root. To do so, we rely
on a series of intermediary properties associated with the centre manifold as well as the
dynamical system defined by (A1a) and (A1b):⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ψ c ≥ (1 − ξ2)1/n, for ξ ∈ [0, 1], ∀Qgl > 0,

∂Ψ c/∂Qgl ≥ 0, for ξ ∈ [0, 1], ∀Qgl > 0,

Ψ c > 0, for ξ ∈ [0, 1], ∀Qgl > 0,

dΨ/dξ |Ψ =1 < 0, for ξ ∈ (0, 1], for Qgl = δ/8.

(A5a)

(A5b)

(A5c)

(A5d)

These properties allow us to show that D has the desired behaviour: it is a continuous,
strictly monotonic function which takes both positive and negative values. Indeed, D is
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a continuous mapping, because the flow of the dynamical system defined by (A1a) and
(A1b) is continuous over (ξ, Ψ ) ∈ (0, 1] × (0, +∞), and Qgl impacts these equations in
a smooth manner. Furthermore, from (A5b),

dD
dQgl

(Qgl) = ∂Ψ c

∂Qgl
(1;Qgl) + δ

8
1
Q2

gl
≥ δ

8
1
Qgl

> 0, ∀Qgl > 0. (A6)

From (A5b) and (A5c),

Ψ c(1;Qgl) > 0 and
∂Ψ c

∂Qgl
(1;Qgl) ≥ 0, ∀Qgl > 0. (A7)

In particular, this implies that limQgl→+∞ Ψ c(1;Qgl) > 0; hence, limQgl→+∞
D(Qgl) > 0. Finally, fix Qgl = δ/8. From (A3), an orbit associated with the centre
manifold is below the Ψ = 1 line for sufficiently small values of ξ . Furthermore, it
cannot cross this line because (A5d) prevents it. Therefore, Ψ c(1; δ/8) < 1, which yields
D(δ/8) < 0.

A.3. Derivation of the intermediary properties
The form of the centre manifold close to the fixed point is obtained with an ansatz of the
form Ψ c(ξ) = 1 + Cξη. Balancing the leading powers in ξ closed to the fixed point leads
to C = −1/n and η = 2, as announced. In can be deduced from (A3) that

∂Ψ c

∂ξ
∼ −2

n
ξ and

∂Ψ c

∂Qgl
→ 0, as ξ → 0, ∀Qgl > 0. (A8)

Furthermore, close to the fixed point, Ψ c > 0. From (A2), dΨ/dξ → +∞ as Ψ → 0 for
any fixed ξ ∈ (0, 1) and Qgl > 0. Therefore, the centre manifold cannot cross the Ψ = 0
line, and

Ψ c ≥ 0, ξ ∈ [0, 1], ∀Qgl > 0. (A9)

We now derive the properties (A5a)–(A5d). Fix Qgl > 0. Using (A8), ∂Ψ c/∂ξ < 0
for sufficiently small values of ξ . Then, (A2) yields (Ψ c)−n(1 − ξ2) − 1 < 0, sufficiently
close to the fixed point. Furthermore,

dΨ

dξ

∣∣∣∣
Ψ =(1−ξ2)1/n

= 2c2
Ψ

ξ
> 0, for ξ ∈ (0, 1]. (A10)

This implies that the centre manifold, which is initially above the curve Ψ = (1 − ξ2)1/n,
cannot cross it, hence (A5a) is verified.

Using (A2), we compute

∂

∂ξ

∂Ψ c

∂Qgl
= −1

2
1
Q2

gl

|Ψ c|−n−1Ψ c(1 − ξ2) − 1
ξ2c1+1 +

[
2c2

ξ
− 1

2
n
Qgl

|Ψ c|−n−2Ψ c(1 − ξ2)

ξ2c1+1

]
∂Ψ c

∂Qgl
,

(A11)

where we have assumed that we can interchange the partial derivatives. For ξ →
0, ∂Ψ c/∂Qgl → 0 using (A8). Based on (A5a), this implies that ∂(∂Ψ c/∂Qgl)/∂ξ ≥ 0
as ξ → 0. Hence, ∂Ψ c/∂Qgl is initially equal to zero, and does not decrease with ξ for
sufficiently small values of ξ . Furthermore, it will always be non-negative because if
∂Ψ c/∂Qgl = 0, then ∂(∂Ψ c/∂Qgl)/∂ξ ≥ 0 from (A11). This yields (A5b).
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ξ

ξ   2c2 
(δ/8) ξ2c1

ξ   1–2 ξ2

ξ0

Figure 16. Schematic representation of functions of ξ in order to determine the sign of f (ξ). Note that c1 > 1
and 0 < c2 < 1.

From (A9), Ψ c ≥ 0 for ξ ∈ [0, 1]. From the previous discussion, the centre manifold
cannot cross the Ψ = 0 line for ξ ∈ (0, 1). Therefore, to show that Ψ c > 0 for ξ ∈ [0, 1],
we only have to discuss the case Ψ c = 0 at ξ = 1. To do so, we show that the point
(ξ, Ψ ) = (1, 0) is not accessible. Because dΨ/dξ is ill-defined if Ψ = 0, we switch back
to the (Ũ, W̃) variables, and to the system of (3.7). The point (ξ, Ψ ) = (1, 0) corresponds
to the point (Ũ, W̃) = (Q̃gl, 0). By looking at the flow near that point, we conclude that
this point is a degenerate spiral. Hence, it cannot be reached from an orbit that comes from
the domain (Ũ, W̃) ∈ [0, Q̃gl) × (0, +∞). This point is not accessible by the orbit that we
consider, and Ψ c > 0 for ξ = 1. This leads to (A5c).

Finally, evaluating (A2) at Ψ = 1 and for Qgl = δ/8 yields

dΨ

dξ

∣∣∣∣
Ψ =1

= 1
ξ1+c1

(
δ

8

)−1 [
2c2

(
δ

8

)
ξ2c1 − 1

2
ξ2
]

≡ 1
ξ1+c1

(
δ

8

)−1

f (ξ). (A12a)

The terms defining the function f depend on ξ as in figure 16. We have

f (1) = 2c2

(
δ

8

)
− 1

2
<

δ

4
− 1

2
< 0 (A13)

because δ ≤ 1 as ρ, ρw > 0. This means that ξ0, the strictly positive point where f (ξ0) = 0,
is such that ξ0 > 1. Therefore, f (ξ) < 0 for ξ ∈ (0, 1], and dΨ /dξ |Ψ =1 < 0 for ξ ∈ (0, 1].
This corresponds to (A5d).

Appendix B. Numerical solving strategy for finding Q̃gl

To determine the numerical prefactor Q̃gl (or, equivalently, Q̌gl) appearing in the system
of (3.7) and in the flux conditions (3.9a) and (3.9b), we propose the following numerical
strategy. Consider the phase plane associated with the dynamical system defined by (3.7a)
and (3.7b) (figure 17). For any Q̃gl, the first quadrant of the phase plane is split into two
regions that are separated by an orbit that goes towards the origin; one region above it and
the other one below it. The solution sought is the trajectory that, starting from the boundary
condition at X̃ = 0, that is, (3.7c), reaches the origin for X̃ → +∞ when following the flow
defined by (3.7a) and (3.7b).

If Q̃gl is too large, then a trajectory that starts from the boundary condition at X̃ =
0 is in the lower region of the phase plane and never reaches the origin; on the other
hand, if Q̃gl is too small, then the trajectory stays in the upper part of the phase plane.
The numerical approach to find a solution can then be described. Let us assume that we
have two values Q̃gl,− and Q̃gl,+, associated respectively with a trajectory that stays in
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Ũ/Q̃gl

0.2 0.4 0.6 0.8 1.0
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Figure 17. Form of the phase plane associated with the dynamical system defined by (3.7a)–(3.7b), for
different values of Q̃gl, where Q̃gl,∗ is associated with a solution to (3.7). The blue curves represent the
trajectories that go through (Ũ, W̃) = (Q̃gl, δ/8). (a) Q̃gl > Q̃gl,∗, (b) Q̃gl = Q̃gl,∗ and (c) Q̃gl < Q̃gl,∗.

Friction law Effective pressure n δ Q̃gl Q̌gl

Weertman ( p = 1/3) / 3 0.1 5.25 × 10−5 1.00
Coulomb NA (1A = 1) 3 0.1 9.63 × 10−5 0.62
Coulomb NB (1A = 0) 3 0.1 1.92 × 10−6 0.98
Budd ( p = 1/3, q = 1) NA (1A = 1) 3 0.1 9.95 × 10−4 0.71
Budd ( p = 1/3, q = 1) NB (1A = 0) 3 0.1 5.18 × 10−5 0.99

Table 4. Examples of values of Q̃gl and Q̌gl for combinations of (1A, n, p, q, δ) associated with several friction
laws of interest. The values of Q̃gl have been computed using the described numerical method. The values
of Q̌gl have been computed according to Q̌gl = Δ−rQ̃gl with r = (n − 1Aq)/( p + 1). Because q = 0 for the
Weertman friction law, the associated problem does not depend on the type of effective-pressure model.

the lower part and in the upper part of the phase plane, similarly to figures 17(a) and
17(c). A bisection-like method can then be applied: the trajectory associated with Q̃gl =
(Q̃gl,− + Q̃gl,+)/2 can be computed, and if it is in the lower part (respectively upper part)
of the phase plane, then it replaces Q̃gl,− (respectively Q̃gl,+). Eventually, Q̃gl will converge
towards the correct value Q̃gl,∗ which is associated with the solution to (3.7). It follows that
the corresponding trajectory is the one that separates the phase plane in two (figure 17b).
We note that a similar approach has been used in Hindmarsh (2012), to tackle a different
but related problem. Table 4 shows results, i.e. the values of Q̃gl, for combinations of the
parameters (1A, n, p, q, δ) that correspond to several friction laws of interest.

REFERENCES

BRONDEX, J., GAGLIARDINI, O., GILLET-CHAULET, F. & DURAND, G. 2017 Sensitivity of grounding line
dynamics to the choice of the friction law. J. Glaciol. 63 (241), 854–866.

BUDD, W.F., KEAGE, P.L. & BLUNDY, N.A. 1979 Empirical studies of ice sliding. J. Glaciol. 23 (89),
157–170.

BUELER, E. & BROWN, J. 2009 Shallow shelf approximation as a ‘sliding law’ in a thermomechanically
coupled ice sheet model. J. Geophys. Res. 114 (F3).

BUELER, E. & VAN PELT, W. 2015 Mass-conserving subglacial hydrology in the parallel ice sheet model
version 0.6. Geosci. Model Develop. 8 (6), 1613–1635.

FLOWERS, G.E. 2015 Modelling water flow under glaciers and ice sheets. Proc. R. Soc. A: Math. Phys. Engng
Sci. 471 (2176), 20140907.

975 A6-39

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

76
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.760


T. Gregov, F. Pattyn and M. Arnst

GAGLIARDINI, O., COHEN, D., RÅBACK, P. & ZWINGER, T. 2007 Finite-element modeling of subglacial
cavities and related friction law. J. Geophys. Res. 112 (F2).

GUDMUNDSSON, G.H. 2013 Ice-shelf buttressing and the stability of marine ice sheets. Cryosphere 7 (2),
647–655.

GUDMUNDSSON, G.H., KRUG, J., DURAND, G., FAVIER, L. & GAGLIARDINI, O. 2012 The stability of
grounding lines on retrograde slopes. Cryosphere 6 (6), 1497–1505.

HASELOFF, M. & SERGIENKO, O.V. 2018 The effect of buttressing on grounding line dynamics. J. Glaciol.
64 (245), 417–431.

HASELOFF, M. & SERGIENKO, O.V. 2022 Effects of calving and submarine melting on steady states and
stability of buttressed marine ice sheets. J. Glaciol. 68 (272), 1149–1166.

HEWITT, I.J. 2013 Seasonal changes in ice sheet motion due to melt water lubrication. Earth Planet. Sci. Lett.
371–372, 16–25.

HINDMARSH, R.C.A. 2012 An observationally validated theory of viscous flow dynamics at the ice-shelf
calving front. J. Glaciol. 58 (208), 375–387.

MACAYEAL, D.R. 1989 Large-scale ice flow over a viscous basal sediment: theory and application to ice
stream B, Antarctica. J. Geophys. Res.: Solid Earth 94 (B4), 4071–4087.

MARTIN, M.A., WINKELMANN, R., HASELOFF, M., ALBRECHT, T., BUELER, E., KHROULEV, C. &
LEVERMANN, A. 2011 The potsdam parallel ice sheet model (PISM-PIK) – part 2: dynamic equilibrium
simulation of the Antarctic ice sheet. Cryosphere 5 (3), 727–740.

MINCHEW, B. & JOUGHIN, I. 2020 Toward a universal glacier slip law. Science 368 (6486), 29–30.
MORLAND, L.W. 1987 Unconfined ice-shelf flow. In Dynamics of the West Antarctic Ice Sheet, pp. 99–116.

Springer.
PATTYN, F. 2003 A new three-dimensional higher-order thermomechanical ice sheet model: basic sensitivity,

ice stream development, and ice flow across subglacial lakes. J. Geophys. Res. 108 (B8).
PATTYN, F., et al. 2012 Results of the marine ice sheet model intercomparison project, MISMIP. Cryosphere

6 (3), 573–588.
PEGLER, S.S. 2016 The dynamics of confined extensional flows. J. Fluid Mech. 804, 24–57.
PEGLER, S.S. 2018a Marine ice sheet dynamics: the impacts of ice-shelf buttressing. J. Fluid Mech.

857, 605–647.
PEGLER, S.S. 2018b Suppression of marine ice sheet instability. J. Fluid Mech. 857, 648–680.
REESE, R., WINKELMANN, R. & GUDMUNDSSON, G.H. 2018 Grounding-line flux formula applied as a

flux condition in numerical simulations fails for buttressed Antarctic ice streams. Cryosphere 12 (10),
3229–3242.

ROBEL, A.A., DEGIULI, E., SCHOOF, C. & TZIPERMAN, E. 2013 Dynamics of ice stream temporal
variability: modes, scales, and hysteresis. J. Geophys. Res.: Earth Surf. 118 (2), 925–936.

ROBEL, A.A., SCHOOF, C. & TZIPERMAN, E. 2016 Persistence and variability of ice-stream grounding lines
on retrograde bed slopes. Cryosphere 10 (4), 1883–1896.

SCHOOF, C. 2003 The effect of basal topography on ice sheet dynamics. Contin. Mech. Thermodyn. 15 (3),
295–307.

SCHOOF, C. 2005 The effect of cavitation on glacier sliding. Proc. R. Soc. A: Math. Phys. Engng Sci.
461 (2055), 609–627.

SCHOOF, C. 2007a Ice sheet grounding line dynamics: steady states, stability, and hysteresis. J. Geophys. Res.
112 (F3).

SCHOOF, C. 2007b Marine ice-sheet dynamics. Part 1. The case of rapid sliding. J. Fluid Mech. 573, 27–55.
SCHOOF, C. 2010 Coulomb friction and other sliding laws in a higher order glacier flow model. Math. Models

Meth. Appl. Sci. 20 (01), 157–189.
SCHOOF, C. 2011 Marine ice sheet dynamics. Part 2. A Stokes flow contact problem. J. Fluid Mech.

679, 122–155.
SCHOOF, C. 2012 Marine ice sheet stability. J. Fluid Mech. 698, 62–72.
SCHOOF, C., DAVIS, A.D. & POPA, T.V. 2017 Boundary layer models for calving marine outlet glaciers.

Cryosphere 11 (5), 2283–2303.
SCHOOF, C. & HINDMARSH, R.C.A. 2010 Thin-film flows with wall slip: an asymptotic analysis of higher

order glacier flow models. Q. J. Mech. Appl. Maths 63 (1), 73–114.
SERGIENKO, O.V. 2012 The effects of transverse bed topography variations in ice-flow models. J. Geophys.

Res.: Earth Surf. 117 (F3).
SERGIENKO, O.V. 2022a Marine outlet glacier dynamics, steady states and steady-state stability. J. Glaciol.

68 (271), 946–960.
SERGIENKO, O.V. 2022b No general stability conditions for marine ice-sheet grounding lines in the presence

of feedbacks. Nat. Commun. 13 (1), 2265.

975 A6-40

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

76
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.760


Grounding-line flux conditions for marine ice-sheet systems

SERGIENKO, O.V. & HASELOFF, M. 2023 ‘Stable’ and ‘unstable’ are not useful descriptions of marine ice
sheets in the Earth’s climate system. J. Glaciol. 69 (277), 1483–1499.

SERGIENKO, O.V. & WINGHAM, D.J. 2019 Grounding line stability in a regime of low driving and basal
stresses. J. Glaciol. 65 (253), 833–849.

SERGIENKO, O.V. & WINGHAM, D.J. 2022 Bed topography and marine ice-sheet stability. J. Glaciol.
68 (267), 124–138.

TSAI, V.C., STEWART, A.L. & THOMPSON, A.F. 2015 Marine ice-sheet profiles and stability under Coulomb
basal conditions. J. Glaciol. 61 (226), 205–215.

WEERTMAN, J. 1957 On the sliding of glaciers. J. Glaciol. 3 (21), 33–38.
WERDER, M.A., HEWITT, I.J., SCHOOF, C.G. & FLOWERS, G.E. 2013 Modeling channelized and

distributed subglacial drainage in two dimensions. J. Geophys. Res.: Earth Surf. 118 (4), 2140–2158.
ZOET, L.K. & IVERSON, N.R. 2015 Experimental determination of a double-valued drag relationship for

glacier sliding. J. Glaciol. 61 (225), 1–7.
ZOET, L.K. & IVERSON, N.R. 2020 A slip law for glaciers on deformable beds. Science 368 (6486), 76–78.

975 A6-41

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

76
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.760

	1 Introduction
	2 Problem formulation
	2.1 Governing equations
	2.1.1 Multi-domain formulation
	2.1.2 Boundary conditions

	2.2 Friction laws
	2.2.1 Power-law friction laws
	2.2.2 Coulomb friction law
	2.2.3 Hybrid friction laws
	2.2.4 Summary
	2.2.5 Effective pressure

	2.3 Dimensionless formulation
	2.4 Flux conditions

	3 Generalisation to the Budd friction law
	3.1 Derivation of the flux condition
	3.1.1 Equivalent dynamical system for the boundary-layer problem
	3.1.2 Flux condition
	3.1.3 Impact of the relative ice--water density difference

	3.2 Analysis of the leading-order dynamical system
	3.2.1 Strategy
	3.2.2 Non-vanishing friction at the grounding line
	3.2.3 Vanishing friction at the grounding line

	3.3 Existence of a boundary layer

	4 Generalisation to hybrid friction laws
	5 Effect of ,  and 
	5.1 Non-vanishing friction law with 1: negligible membrane-stress divergence
	5.2 Vanishing friction law: non-negligible membrane-stress divergence
	5.3 Non-vanishing friction law with 1

	6 Verification with numerical experiments
	6.1 Set-up
	6.2 Flux conditions for the Budd and hybrid friction laws
	6.3 Effect of ,  and 

	7 Discussion
	7.1 Specifications of the obtained flux conditions
	7.1.1 Dependence on the effective-pressure model
	7.1.2 Dependence on the physical parameters for the Budd friction law
	7.1.3 Dependence on the additional parameter for hybrid friction laws
	7.1.4 Dependence on the grounding-line thickness

	7.2 Limitations
	7.2.1 Effect of ,  and 
	7.2.2 Two-dimensional geometry and steady-state assumptions


	8 Conclusion
	Appendix A. Analysis of the leading-order dynamical system: vanishing friction at the grounding line
	A.1 Problem formulation
	A.2 Principle of the analysis
	A.3 Derivation of the intermediary properties

	Appendix B. Numerical solving strategy for finding 
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


