COEFFICIENT MULTIPLIERS OF MIXED NORM SPACES

MIROLJUB JEVTIĆ AND IVAN JOVANOVIĆ

Abstract

We give a simple characterization of coefficient multipliers from the mixed norm space $H^{p, q, \alpha}, 2 \leq p \leq \infty$, into $H^{u, v, \beta}, 0<u \leq 2$, which includes the main results of Wojtaszczyk in [5]. We also calculate multipliers from the Hardy space H^{p}, $2 \leq p \leq \infty$, into $H^{q}, 0<q \leq 2$.

1. Introduction. If $0<p \leq \infty, 0<q \leq \infty, 0<\alpha<\infty$, a function f, holomorphic in the unit disc, is said to belong to the mixed norm space $H^{p, q, \alpha}$ if

$$
\begin{array}{cl}
\|f\|_{p, q, \alpha}^{q}=\int_{0}^{1}(1-\varrho)^{q \alpha-1} M_{p}(\varrho, f)^{q} d \varrho<\infty, & (0<q<\infty), \\
\|f\|_{p, \infty, \alpha}=\sup _{0<\varrho<1}(1-\varrho)^{\alpha} M_{p}(\varrho, f)<\infty, & (q=\infty) .
\end{array}
$$

As usual,

$$
\begin{gathered}
M_{p}(\varrho, f)=\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(\varrho e^{i t}\right)\right|^{p} d t\right)^{1 / p}, \quad(0<p<\infty), \\
M_{\infty}(\varrho, f)=\max _{0 \leq t \leq 2 \pi}\left|f\left(\varrho e^{i t}\right)\right| .
\end{gathered}
$$

A complex sequence $\left\{a_{n}\right\}$ is of class $\ell(p, q), 0<p, q \leq \infty$, if

$$
\left\|\left\{a_{n}\right\}\right\|_{p, q}^{q}=\sum_{n=0}^{\infty}\left(\sum_{k \in I_{n}}\left|a_{k}\right|^{p}\right)^{q / p}<\infty,
$$

where $I_{0}=\{0\}, I_{n}=\left\{k \in N: 2^{n-1} \leq k<2^{n}\right\}, n=1,2, \ldots$. In the case where p or q is infinite, replace the corresponding sum by a supremum. Note that $\ell^{p}=\ell(p, p)$.

The class $\ell(p, q, \alpha), \alpha \in R$, consists of all sequences $\left\{a_{n}\right\}$ for which $\left\|\left\{a_{n}\right\}\right\|_{p, q, \alpha}=$ $\left\|\left\{(n+1)^{\alpha} a_{n}\right\}\right\|_{p, q}<\infty$.

For two given vector spaces A, B of sequences, we denote by (A, B) the space of "multipliers" from A to B. More precisely, $(A, B)=\left\{\left\{\lambda_{n}\right\}:\left\{\lambda_{n} a_{n}\right\} \in B\right.$ for every $\left.\left\{a_{n}\right\} \in A\right\}$. We regard spaces of analytic functions, such as $H^{p, q, \alpha}$, as being sequence spaces (Taylor coefficients).

In [5] P. Wojtaszczyk described the multipliers from $H^{\infty, \infty, \alpha}$ and $H^{p, p, 1 / p}, 2 \leq p<\infty$, to $H^{q, q, 1 / q}, 0<q \leq 2$, by using the general factorization theorems of Grothendieck, Nikishin and Maurey. In this note we calculate multipliers ($H^{p, q, \alpha}, H^{u, v, \beta}$) in the case $2 \leq p \leq \infty, 0<u \leq 2$. Our characterization includes the one obtained by Wojtaszczyk but our approach is different and much simpler.

Received by the editors November 5, 1991.
AMS subject classification: Primary: 30B10; secondary: 30H05.
(C) Canadian Mathematical Society 1993.

Theorem 1. If $2 \leq p \leq \infty, 0<u \leq 2$, then $\left(H^{p, q, \alpha}, H^{u, v, \beta}\right)=\ell(\infty, q \circ v, \alpha-\beta)$, where $\frac{1}{q \circ v}=\frac{1}{v}-\frac{1}{q}$, if $0<v<q \leq \infty$, and $q \circ v=\infty$, if $q \leq v$.
2. Preliminaries. A sequence space A is said to be solid, if whenever it contains $\left\{a_{n}\right\}$ it also contains all sequences $\left\{b_{n}\right\}$ with $\left|b_{n}\right| \leq\left|a_{n}\right|$. For any sequence space A there is a largest solid subspace $s(A)$, contained within it, and a smallest solid superspace $S(A)$, containing it ([2]). In [2] it is also proved that if X is any solid space and A any vector space of sequences then

$$
\begin{align*}
& (A, X)=(S(A), X), \tag{2.1}\\
& (X, A)=(X, s(A)) . \tag{2.2}
\end{align*}
$$

To make use of (2.1) and (2.2) we need to determine $s\left(H^{\infty, q, \alpha}\right), s\left(H^{p, q, \alpha}\right), 0<p \leq 2$, and $S\left(H^{p, q, \alpha}\right), 2 \leq p \leq \infty$. We will use the following lemma:

LEMMA 2.1 ([4]). Let $0<\alpha<\infty$ and $a_{k} \geq 0, k=0,1,2, \ldots$
i) If $0<q<\infty$ there is a positive constant $A_{q, \alpha}$ such that

$$
A_{q, \alpha}^{-1}\left\|\left\{a_{k}\right\}\right\|_{1, q,-\alpha} \leq\left(\int_{0}^{1}(1-\varrho)^{q \alpha-1}\left(\sum_{k=0}^{\infty} a_{k} \varrho^{k}\right)^{q} d \varrho\right)^{1 / q} \leq A_{q, \alpha}\left\|\left\{a_{k}\right\}\right\|_{1, q,-\alpha}
$$

ii) There is a positive constant B_{α} such that

$$
B_{\alpha}^{-1} \sup _{k \geq 0} 2^{-k \alpha} a_{k} \leq \sup _{0<\varrho<1}(1-\varrho)^{\alpha} \sum_{k=0}^{\infty} a_{k} \varrho^{2^{k}} \leq B_{\alpha} \sup _{k \geq 0} 2^{-k \alpha} a_{k}
$$

LEMMA 2.2. $s\left(H^{\infty, q, \alpha}\right)=\ell(1, q,-\alpha)$.
Proof. Let $\left\{a_{k}\right\} \in \ell(1, q,-\alpha),\left\{b_{k}\right\} \in \ell^{\infty}$ and $f(z)=\sum_{k} a_{k} b_{k} z^{k}$. Since $M_{\infty}(\varrho, f) \leq$ $C \sum_{k}\left|a_{k}\right| \varrho^{k}$ we have $\|f\|_{\infty, q, \alpha} \leq C\left\|\left\{a_{k}\right\}\right\|_{1, q,-\alpha}$, by Lemma 2.1. (We use C to denote various constants which may vary from line to line). Thus, $\left\{a_{k}\right\} \in\left(\ell^{\infty}, H^{\infty, q, \alpha}\right)=s\left(H^{\infty, q, \alpha}\right)$, by Lemma 2 ([2]).

Conversely, let $\left\{a_{k}\right\} \in s\left(H^{\infty, q, \alpha}\right)$. Then $f(z)=\sum_{k}\left|a_{k}\right| z^{k}$ belongs to $H^{\infty, q, \alpha}$. Since $M_{\infty}(\varrho, f)=\sum_{k}\left|a_{k}\right| \varrho^{k}$, we have $\infty>\|f\|_{\infty, q, \alpha} \geq C\left\|\left\{a_{k}\right\}\right\|_{1, q,-\alpha}$, by Lemma 2.1.

Using Khintchine's inequality ([6], p. 213) as in [1] (Lemma 2, p. 58), it may be easily proved that

$$
\begin{equation*}
s\left(H^{p, q, \alpha}\right)=H^{2, q, \alpha} \text { for } 0<p \leq 2 \tag{2.3}
\end{equation*}
$$

Observe that $H^{2, q, \alpha}=\ell(2, q,-\alpha)$, by Lemma 2.1.
Lemma 2.3 ([4]). $\quad S\left(H^{p, q, \alpha}\right)=\ell(2, q,-\alpha)$ for $p \geq 2$.
As a final preliminary result we need
Lemma 2.4. Let $0<p, q, u, v \leq \infty, 0<\alpha, \beta<\infty$. Then $(\ell(p, q, \alpha), \ell(u, v, \beta))=$ $\ell(p \circ u, q \circ v,-\alpha+\beta)$.

The lemma follows easily from its special case $(\ell(p, q), \ell(u, v))=\ell(p \circ u, q \circ v)$ (see [3]).
3. Proof of Theorem 1. Let $\lambda \in\left(H^{p, q, \alpha}, H^{u, v, \beta}\right)$. Since $s\left(H^{\infty, q, \alpha}\right) \subset H^{p, q, \alpha}$, we have $\lambda \in\left(s\left(H^{\infty, q, \alpha}\right), H^{u, \nu, \beta}\right)=\left(\ell(1, q,-\alpha), H^{u, v, \beta}\right)$, by Lemma 2.2. Obviously, $\ell(1, q,-\alpha)$ is a solid space. Hence, using (2.2), (2.3) and Lemma 2.4 we find that $\lambda \in$ $(\ell(1, q,-\alpha), \ell(2, v,-\beta))=\ell(\infty, q \circ v, \alpha-\beta)$.

Conversely, let $\lambda \in \ell(\infty, q \circ v, \alpha-\beta)$. By Lemma 2.4 and Lemma $2.3 \lambda \in$ $(\ell(2, q,-\alpha), \ell(2, v,-\beta))=\left(S\left(H^{p, q, \alpha}\right), \ell(2, v,-\beta)\right)=\left(H^{p, q, \alpha}, \ell(2, v,-\beta)\right)$, by (2.1) since $\ell(2, v,-\beta)$ is a solid space. By (2.3) we have $\ell(2, v,-\beta)=s\left(H^{u, v, \beta}\right)$. Thus, $\lambda \in$ $\left(H^{p, q, \alpha}, s\left(H^{u, v, \beta}\right)\right) \subset\left(H^{p, q, \alpha}, H^{u, v, \beta}\right)$.
4. Multipliers of H^{p} space. For $0<p \leq \infty$, by H^{p} we denote the Hardy space. It is easy to see that $s\left(H^{\infty}\right)=\ell^{1}$. An application of Khintchine's inequality shows that $s\left(H^{p}\right)=\ell^{2}, 0<p \leq 2$.

As a consequence of Theorem K ([4]), due to Kisliakov, we have $S\left(H^{p}\right)=\ell^{2}, 2 \leq$ $p \leq \infty$. Now, using the same method as in $\S 3$. We can find multipliers from Hardy space $H^{p}, 2 \leq p \leq \infty$, into $H^{q}, 0<q \leq 2$.

Theorem 2. If $2 \leq p \leq \infty$ and $0<q \leq 2$, then $\left(H^{p}, H^{q}\right)=\ell^{\infty}$.
We omit details.

References

1. P. Ahern and M. Jevtić, Duality and multipliers for mixed norm spaces, Mich. Math. J. 30(1983), 53-64.
2. J. M. Anderson and A. L. Shields, Coefficient multipliers of Bloch functions, Trans. Amer. Math. Soc. (2) 224(1976), 255-265.
3. M. Jevtić and M. Pavlović, On multipliers from H^{p} to $\ell^{q}, 0<q<p<1$, Arch. Math. 56(1991), 174-180.
4. M. Mateljević and M. Pavlović, L^{p}-behaviour of the integral means of analytic functions, Studia Math. 77(1984), 219-237.
5. P. Wojtaszczyk, On multipliers into Bergman spaces and Nevanlinna class, Canad. Math. Bull. (2) 33 (1990), 151-161.
6. A. Zygmund, Trigonometric series I, Cambridge University Press, 1959.

Matematički fakultet
Studentski trg 16
11000 Beograd
Yugoslavia

Filozofski fakultet-Matematika
Ćíila i Metodija 2
18000 Niš
Yugoslavia

