COEFFICIENT MULTIPLIERS OF MIXED NORM SPACES

MIROLJUB JEVTIĆ AND IVAN JOVANOVIĆ

ABSTRACT. We give a simple characterization of coefficient multipliers from the mixed norm space $H^{p,q,\alpha}$, $2 \le p \le \infty$, into $H^{u,\nu,\beta}$, $0 < u \le 2$, which includes the main results of Wojtaszczyk in [5]. We also calculate multipliers from the Hardy space H^p , $2 \le p \le \infty$, into H^q , $0 < q \le 2$.

1. **Introduction.** If $0 , <math>0 < q \le \infty$, $0 < \alpha < \infty$, a function *f*, holomorphic in the unit disc, is said to *belong to the mixed norm space* $H^{p,q,\alpha}$ if

$$\begin{split} \|f\|_{p,q,\alpha}^q &= \int_0^1 (1-\varrho)^{q\alpha-1} M_p(\varrho,f)^q \, d\varrho < \infty, \quad (0 < q < \infty), \\ \|f\|_{p,\infty,\alpha} &= \sup_{0 < \varrho < 1} (1-\varrho)^\alpha M_p(\varrho,f) < \infty, \quad (q = \infty). \end{split}$$

As usual,

$$M_p(\varrho, f) = \left(\frac{1}{2\pi} \int_0^{2\pi} |f(\varrho e^{it})|^p dt\right)^{1/p}, \quad (0
$$M_{\infty}(\varrho, f) = \max_{0 \le t \le 2\pi} |f(\varrho e^{it})|.$$$$

A complex sequence $\{a_n\}$ is of class $\ell(p,q), 0 < p, q \le \infty$, if

$$\|\{a_n\}\|_{p,q}^q = \sum_{n=0}^{\infty} \Bigl(\sum_{k\in I_n} |a_k|^p\Bigr)^{q/p} < \infty,$$

where $I_0 = \{0\}$, $I_n = \{k \in N : 2^{n-1} \le k < 2^n\}$, n = 1, 2, ... In the case where p or q is infinite, replace the corresponding sum by a supremum. Note that $\ell^p = \ell(p, p)$.

The class $\ell(p, q, \alpha)$, $\alpha \in R$, consists of all sequences $\{a_n\}$ for which $||\{a_n\}||_{p,q,\alpha} = ||\{(n+1)^{\alpha}a_n\}||_{p,q} < \infty$.

For two given vector spaces A, B of sequences, we denote by (A, B) the space of "multipliers" from A to B. More precisely, $(A, B) = \{\{\lambda_n\} : \{\lambda_n a_n\} \in B \text{ for every } \{a_n\} \in A\}$. We regard spaces of analytic functions, such as $H^{p,q,\alpha}$, as being sequence spaces (Taylor coefficients).

In [5] P. Wojtaszczyk described the multipliers from $H^{\infty,\infty,\alpha}$ and $H^{p,p,1/p}$, $2 \le p < \infty$, to $H^{q,q,1/q}$, $0 < q \le 2$, by using the general factorization theorems of Grothendieck, Nikishin and Maurey. In this note we calculate multipliers $(H^{p,q,\alpha}, H^{u,\nu,\beta})$ in the case $2 \le p \le \infty$, $0 < u \le 2$. Our characterization includes the one obtained by Wojtaszczyk but our approach is different and much simpler.

Received by the editors November 5, 1991.

AMS subject classification: Primary: 30B10; secondary: 30H05.

[©] Canadian Mathematical Society 1993.

THEOREM 1. If $2 \le p \le \infty$, $0 < u \le 2$, then $(H^{p,q,\alpha}, H^{u,v,\beta}) = \ell(\infty, q \circ v, \alpha - \beta)$, where $\frac{1}{q \circ v} = \frac{1}{v} - \frac{1}{q}$, if $0 < v < q \le \infty$, and $q \circ v = \infty$, if $q \le v$.

2. **Preliminaries.** A sequence space *A* is said to be *solid*, if whenever it contains $\{a_n\}$ it also contains all sequences $\{b_n\}$ with $|b_n| \le |a_n|$. For any sequence space *A* there is a largest solid subspace *s*(*A*), contained within it, and a smallest solid superspace *S*(*A*), containing it ([2]). In [2] it is also proved that if *X* is any solid space and *A* any vector space of sequences then

(2.1)
$$(A, X) = (S(A), X),$$

(2.2)
$$(X,A) = (X,s(A)).$$

To make use of (2.1) and (2.2) we need to determine $s(H^{\infty,q,\alpha})$, $s(H^{p,q,\alpha})$, $0 , and <math>S(H^{p,q,\alpha})$, $2 \le p \le \infty$. We will use the following lemma:

LEMMA 2.1 ([4]). Let $0 < \alpha < \infty$ and $a_k \ge 0, k = 0, 1, 2, ...$

i) If $0 < q < \infty$ there is a positive constant $A_{q,\alpha}$ such that

$$A_{q,\alpha}^{-1} \|\{a_k\}\|_{1,q,-\alpha} \le \left(\int_0^1 (1-\varrho)^{q\alpha-1} \left(\sum_{k=0}^\infty a_k \varrho^k\right)^q d\varrho\right)^{1/q} \le A_{q,\alpha} \|\{a_k\}\|_{1,q,-\alpha}.$$

ii) There is a positive constant B_{α} such that

$$B_{\alpha}^{-1} \sup_{k\geq 0} 2^{-k\alpha} a_k \leq \sup_{0<\varrho<1} (1-\varrho)^{\alpha} \sum_{k=0}^{\infty} a_k \varrho^{2^k} \leq B_{\alpha} \sup_{k\geq 0} 2^{-k\alpha} a_k.$$

LEMMA 2.2. $s(H^{\infty,q,\alpha}) = \ell(1, q, -\alpha).$

PROOF. Let $\{a_k\} \in \ell(1, q, -\alpha), \{b_k\} \in \ell^{\infty}$ and $f(z) = \sum_k a_k b_k z^k$. Since $M_{\infty}(\varrho, f) \leq C \sum_k |a_k| \varrho^k$ we have $||f||_{\infty,q,\alpha} \leq C ||\{a_k\}||_{1,q,-\alpha}$, by Lemma 2.1. (We use *C* to denote various constants which may vary from line to line). Thus, $\{a_k\} \in (\ell^{\infty}, H^{\infty,q,\alpha}) = s(H^{\infty,q,\alpha})$, by Lemma 2 ([2]).

Conversely, let $\{a_k\} \in s(H^{\infty,q,\alpha})$. Then $f(z) = \sum_k |a_k| z^k$ belongs to $H^{\infty,q,\alpha}$. Since $M_{\infty}(\varrho, f) = \sum_k |a_k| \varrho^k$, we have $\infty > ||f||_{\infty,q,\alpha} \ge C ||\{a_k\}||_{1,q,-\alpha}$, by Lemma 2.1.

Using Khintchine's inequality ([6], p. 213) as in [1] (Lemma 2, p. 58), it may be easily proved that

(2.3)
$$s(H^{p,q,\alpha}) = H^{2,q,\alpha} \text{ for } 0$$

Observe that $H^{2,q,\alpha} = \ell(2,q,-\alpha)$, by Lemma 2.1.

LEMMA 2.3 ([4]). $S(H^{p,q,\alpha}) = \ell(2, q, -\alpha)$ for $p \ge 2$.

As a final preliminary result we need

LEMMA 2.4. Let $0 < p, q, u, v \le \infty, 0 < \alpha, \beta < \infty$. Then $(\ell(p, q, \alpha), \ell(u, v, \beta)) = \ell(p \circ u, q \circ v, -\alpha + \beta)$.

The lemma follows easily from its special case $(\ell(p,q), \ell(u,v)) = \ell(p \circ u, q \circ v)$ (see [3]).

284

3. **Proof of Theorem 1.** Let $\lambda \in (H^{p,q,\alpha}, H^{u,v,\beta})$. Since $s(H^{\infty,q,\alpha}) \subset H^{p,q,\alpha}$, we have $\lambda \in (s(H^{\infty,q,\alpha}), H^{u,v,\beta}) = (\ell(1,q,-\alpha), H^{u,v,\beta})$, by Lemma 2.2. Obviously, $\ell(1,q,-\alpha)$ is a solid space. Hence, using (2.2), (2.3) and Lemma 2.4 we find that $\lambda \in (\ell(1,q,-\alpha), \ell(2,v,-\beta)) = \ell(\infty,q \circ v, \alpha - \beta)$.

Conversely, let $\lambda \in \ell(\infty, q \circ v, \alpha - \beta)$. By Lemma 2.4 and Lemma 2.3 $\lambda \in (\ell(2, q, -\alpha), \ell(2, v, -\beta)) = (S(H^{p,q,\alpha}), \ell(2, v, -\beta)) = (H^{p,q,\alpha}, \ell(2, v, -\beta))$, by (2.1) since $\ell(2, v, -\beta)$ is a solid space. By (2.3) we have $\ell(2, v, -\beta) = s(H^{u,v,\beta})$. Thus, $\lambda \in (H^{p,q,\alpha}, s(H^{u,v,\beta})) \subset (H^{p,q,\alpha}, H^{u,v,\beta})$.

4. Multipliers of H^p space. For $0 , by <math>H^p$ we denote the Hardy space. It is easy to see that $s(H^{\infty}) = \ell^1$. An application of Khintchine's inequality shows that $s(H^p) = \ell^2, 0 .$

As a consequence of Theorem K ([4]), due to Kisliakov, we have $S(H^p) = \ell^2$, $2 \le p \le \infty$. Now, using the same method as in §3. We can find multipliers from Hardy space H^p , $2 \le p \le \infty$, into H^q , $0 < q \le 2$.

THEOREM 2. If $2 \le p \le \infty$ and $0 < q \le 2$, then $(H^p, H^q) = \ell^{\infty}$.

We omit details.

REFERENCES

- 1. P. Ahern and M. Jevtić, Duality and multipliers for mixed norm spaces, Mich. Math. J. 30(1983), 53-64.
- J. M. Anderson and A. L. Shields, *Coefficient multipliers of Bloch functions*, Trans. Amer. Math. Soc. (2) 224(1976), 255–265.
- **3.** M. Jevtić and M. Pavlović, On multipliers from H^p to ℓ^q , 0 < q < p < 1, Arch. Math. **56**(1991), 174–180.
- **4.** M. Mateljević and M. Pavlović, L^p-behaviour of the integral means of analytic functions, Studia Math. **77**(1984), 219–237.
- 5. P. Wojtaszczyk, On multipliers into Bergman spaces and Nevanlinna class, Canad. Math. Bull. (2) 33 (1990), 151–161.
- 6. A. Zygmund, Trigonometric series I, Cambridge University Press, 1959.

Matematički fakultet Studentski trg 16 11000 Beograd Yugoslavia

Filozofski fakultet—Matematika Ćirila i Metodija 2 18000 Niš Yugoslavia