CAMBRIDGE

JOURNALS

JFM ARCHIVE

Journal of Fluid Mechanics Digital Archive 1956–1996

Vital research from the definitive source

The JFM Digital Archive contains every article from the first 40 years of the journal, scanned and digitised to the highest standards.

Please speak to your librarian about gaining access.

journals.cambridge.org/jfm

- 617 The effect of Reynolds number on inertial particle dynamics in isotropic turbulence. Part 1. Simulations without gravitational effects
 P. J. Ireland, A. D. Bragg & L. R. Collins
- 659 The effect of Reynolds number on inertial particle dynamics in isotropic turbulence.Part 2. Simulations with gravitational effectsP. J. Ireland, A. D. Bragg & L. R. Collins
- 712 Merging of two or more plumes arranged around a circleG. G. Rooney

JFM Rapids (online only)

R1 Cloaking a vertical cylinder via homogenization in the mild-slope equation
G. Dupont, S. Guenneau, O. Kimmoun,
B. Molin & S. Enoch

S indicates supplementary data or movies available online.

- 732 Analogies and differences between the stability of an isolated pancake vortex and a columnar vortex in stratified fluidE. Yim & P. Billant
- 767 A kinetic model for particle–surface interaction applied to rain falling on water waves

F. Veron & L. Mieussens

789 CORRIGENDUM

ISSN 0022-1120

Journal of Fluid Mechanics

1 Turbulent patterns made simple? P. Manneville

96

5 Compressibility effects on the structural evolution of transitional high-speed planar wakes

J.-P. Hickey, F. Hussain & X. Wu

- 40 Particle-resolved direct numerical simulation of homogeneous isotropic turbulence modified by small fixed spheres
 A. W. Vreman
- 86 Performance of an ideal turbine in an inviscid shear flow
 S. Draper, T. Nishino, T. A. A. Adcock & P. H. Taylor
- 113 Turbulent energy flux generated by shock/homogeneous-turbulence interaction R. Quadros, K. Sinha & J. Larsson
- S 158 Mechanisms of flow tripping by discrete roughness elements in a swept-wing boundary layer
 H. B. E. Kurz & M. J. Kloker
 - 195 A phenomenological model for fountain-top entrainment
 - A. L. R. Debugne & G. R. Hunt
 - 211 Tracking interface and common curve dynamics for two-fluid flow in porous mediaJ. E. McClure, M. A. Berrill, W. G. Gray & C. T. Miller
 - 233 A squirmer across Reynolds numbersN. G. Chisholm, D. Legendre, E. Lauga &A. S. Khair
 - 257 Highly resolved experimental results of the separated flow in a channel with streamwise periodic constrictions
 C. J. Kähler, S. Scharnowski & C. Cierpka
- S 285 Rivulet flow over a flexible beam P. D. Howell, H. Kim, M. G. Popova &
- Contents continued on inside back cover.

H. A. Stone

- 306 Linear and nonlinear responses to harmonic force in rotating flowX. Wei
- 318 Microstreaming generated by two acoustically induced gas bubblesA. A. Doinikov & A. Bouakaz
- 340 Particle based modelling and simulation of natural sand dynamics in the wave bottom boundary layer
 J. R. Finn, M. Li & S. V. Apte
- 386 Acoustic boundary conditions at an impedance lining in inviscid shear flowD. Khamis & E. J. Brambley
- 417 Cascades and wall-normal fluxes in turbulent channel flows
 A. Cimarelli, E. De Angelis, J. Jiménez & C. M. Casciola
- 437 Direct numerical simulation of the incompressible temporally developing turbulent boundary layer
 M. Kozul, D. Chung & J. P. Monty
- S 473 Cavitation structures formed during the collision of a sphere with an ultra-viscous wetted surface
 M. M. Mansoor, J. O. Marston, J. Uddin, G. Christopher, Z. Zhang &
 - J. Uddin, G. Christopher, Z. Zhang & S. T. Thoroddsen
 - 516 Nonlinear wakes behind a row of elongated roughness elementsM. E. Goldstein, A. Sescu, P. W. Duck & M. Choudhari
 - 558 Quantifying solute spreading and mixing in reservoir rocks using 3-D PET imagingR. Pini, N. T. Vandehey, J. Druhan,J. P. O'Neil & S. M. Benson
 - 588 Streamwise-varying steady transpiration control in turbulent pipe flow
 F. Gómez, H. M. Blackburn, M. Rudman,
 A. S. Sharma & B. J. McKeon

https://doi.org/10.1017/jfm.2016.330 Published online by Cambridge University Press

MIX Paper from responsible sources FSC® C007785

