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ALBANESE VARIETIES OF CYCLIC COVERS OF THE
PROJECTIVE PLANE AND ORBIFOLD PENCILS

E. ARTAL BARTOLO, J. I. COGOLLUDO-AGUSTÍN and

A. LIBGOBER

Abstract. The paper studies a relation between fundamental group of the

complement to a plane singular curve and the orbifold pencils containing it.

The main tool is the use of Albanese varieties of cyclic covers ramified along

such curves. Our results give sufficient conditions for a plane singular curve

to belong to an orbifold pencil, that is, a pencil of plane curves with multiple

fibers inducing a map onto an orbifold curve whose orbifold fundamental group

is nontrivial. We construct an example of a cyclic cover of the projective plane

which is an abelian surface isomorphic to the Jacobian of a curve of genus 2

illustrating the extent to which these conditions are necessary.

Introduction

There is an interesting correspondence between the fundamental groups

of the complement to plane algebraic curves and the structure of the

pencils, possibly with multiple fibers which one can associate with such

curves. For example, if a plane curve C is composed of a pencil, that is,

C =
⋃s
i=0 Ci where Ci are zeros of sections ti in a 2-dimensional subspace

L of H0(P2,O(d)), then for each P ∈XC := P2 \ C there is a well-defined

element tP ∈ P(L) such that tP (P ) = 0 and the correspondence P → tP
gives a holomorphic map XC → P(L) \ {Ti}si=0, where Ti are the points

of P(L) corresponding to the sections ti. This map induces a surjection

π1(XC)→ π1(P(L) \ {Ti}si=0) and hence π1(XC) has a free group on s

generators as its quotient.

In a similar vein, the existence of pencils with multiple fibers containing

C (see Section 1.3) may have implications for the fundamental group even

if C is irreducible. For example, suppose that an irreducible curve C ⊂ P2
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belongs in a pencil having two multiple fibers of multiplicities 2 and 3,

that is, the equation F of C can be presented as F = f2 + g3 where f, g

are homogeneous polynomials. Then the rational map π : P2 99K P1 given

by π([x : y : z]) = [f2 : g3] induces a regular map of XC := P2 \ C onto P1 \
{(1,−1)}. This map can also be viewed as an orbifold map whose source is

XC with a trivial orbifold structure and whose target is the orbifold C2,3

which is an affine line with two orbifold points with stabilizers of orders 2

and 3. Such a dominant map yields a surjection of the fundamental group

π1(X) onto the orbifold fundamental group (cf. [4], [12, Proposition 2.7])

for which one has πorb
1 (C2,3) = Z2 ∗ Z3 (isomorphic to PSL2(Z)). In the rest

of the paper we call a map between orbifolds having a one-dimensional

target an orbifold pencil. The classically studied pencils (whether rational

or irrational) are a special case of orbifold pencils.

Previous work [12, 5, 6] has shown that sometimes the relation between

the fundamental group of a curve complement XC and its orbifold pencils

can be reversed, namely, the structure of the fundamental group provides

information on the existence of (rational) orbifold pencils on XC but the

relation between fundamental groups and orbifold pencils has several aspects

not appearing in the context of ordinary pencils. If a curve has only nodes

and ordinary cusps as its singularities (or more generally, singularities called

in [12] δ-essential) then the positivity of the rank of the abelianization of

the commutator π1(XC)′/π1(XC)′′ implies the existence of orbifold maps on

XC (see Section 1 for more precise statements).

In the present paper we consider the correspondence between orbifold

pencils and fundamental groups of possibly reducible curves C which may

have singularities much more general than ordinary cusps and nodes. Our

main result (see Theorem 4) describes a sufficient condition for the existence

of orbifold pencils on P2 containing C in terms of the fundamental group

π1(XC) of its complement. Let us describe the results of the paper in more

detail.

As in the case of curves with nodes and cusps only, it is convenient to

state our results in terms of the Alexander invariants and the characters of

the fundamental group. The statements also use the local Albanese varieties

of singularities (cf. Section 1). Recall (see more details in Section 1.1) that

there is a notion of Alexander polynomial ∆C,π ∈ Z[t, t−1] associated with

a given surjection π : π1(XC)→ Γ onto a cyclic group. Such a polynomial

depends only on the quotient of π1(XC) by the commutator of Kerπ and

it contains information about the cohomology of rank one local systems on
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XC , namely, for χ ∈Hom(Γ, C∗) one has H1(XC , χ) 6= 0 if and only if, for

a generator γ of Γ, ξ = χ(γ) is a root of ∆C,π. A root ξ of the Alexander

polynomial ∆C,π can also be described as an eigenvalue of the covering

transformation τC acting on H1(VC , C) where VC is a smooth model of

the cyclic cover of P2 of degree deg C branched over C (cf. [17]). Note

that since H1(VC , C) is a birational invariant, the eigenvalues of τC are

independent of a choice of the smooth model VC . An alternative description

of the multiplicity of the root ξ can be given as the superabundance of the

linear system of plane curves described in terms of the degree and the local

type of the singularities of C. We refer to [18] for details.

The Alexander polynomial is affected by the local types of the singulari-

ties of C as was shown in [17]. For the statement of our main results we will

need the following more precise version of this relation which will be proved

in Section 2.

Theorem 1. Let C be a plane curve with arbitrary singularities and let

χ be a character of finite order N > 0 of the fundamental group π1(XC).

Assume that χ is ramified along each irreducible component of C. Assume

also that H1(XC , χ) 6= 0. Then there exists a singularity P ∈ C with local

equation fP (x, y) = 0 for which the following property holds.

Denote by BP a Milnor ball about P and let χP be the character of

π1(BP \ C) which is the composition

π1(BP \ C)→ π1(XC)
χ→ C∗

where the left map is induced by the inclusion BP \ C ↪→XC . Then the

corresponding map:

(T1) H1(XC , χ)→H1(BP \ C, χP )

has a nontrivial image (in particular H1(BP \ C, χP ) 6= 0).

The orbifold pencils on P2 which we attach to the curve C are obtained

from irrational pencils on VC and are constructed using the Albanese map

VC →Alb(VC). Albanese varieties of cyclic covers of P2 were considered

classically for covers of small degree (cf. [10, 7, 9] for a modern exposition).

The work of Comessatti [10, 9] studies the irregular 3-cyclic coverings of

the plane, and he finds examples both for Albanese dimensions 1 and 2. In

the latter case, he constructs an example (also found in [7] and thoroughly

explained in [9]) such that the cyclic cover is the product of two copies of a
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192 E. ARTAL, J. I. COGOLLUDO AND A. LIBGOBER

special elliptic curve. Bagnera and deFranchis take another viewpoint: they

study rational cyclic quotients of abelian surfaces. However, as presented in

Theorem 1, our focus is on C and its algebraic/topological properties such

as cohomology conditions on its complement.

Note that we obtain an explicit model of such quotients in Theorem 3.3;

the ramification curve is described and we derived geometric properties of

this curve from this fact. Our construction depends on the relation between

Alb(VC) and the invariants of singularities of C described in [16]. There

are also simple cases where such irrational orbifold pencils come up in a

straightforward way. This is the case when Alb(VC) is an elliptic curve, or

analogously, for curves whose local Alexander polynomial equals t2 − t+ 1.

More generally we have the following corollary.

Corollary 2. (cf. Theorem 4) Let C, χ be as in Theorem 1 and let

V χ
C be a smooth projective model of the cyclic cover associated with the

kernel of χ. Assume that the Albanese dimension of V χ
C is equal to one

(see Theorem 3.1 for explicit examples). Then C is an element of a global

quotient orbifold pencil such that χ is the pullback of a character of the

orbifold fundamental group of the target of this orbifold pencil.

We want to relax the assumption on Albanese dimension in the Corollary 2

and assume only that one has a one-dimensional image in one of the isogeny

χ-equivariant factor of Alb(VC). In what follows, we will describe how,

under some restriction on the analytic type of the singularities of C, we

may identify the abelian varieties which are the isogeny χ-equivariant factors

of Alb(VC) projection onto which may lead to construction of an orbifold

pencil.

This restriction on the analytic type of singularities is given in terms

of the local Albanese varieties, introduced in [12] associated with plane

curve singularities (cf. Section 1 for definition). A local Albanese variety is

equipped with an automorphism, that is, a Z-action coming from the action

of the semisimple part of the local monodromy on the homology of the

Milnor fiber. The relation between local Albanese varieties of singularities

and global information about C comes from canonical maps of each local

Albanese variety into Alb(VC). The sum of these maps over all singularities

of C surjects onto Alb(VC) (cf. [16]). These maps from the local Albanese

varieties of the singularities of C are Z-equivariant with respect to the just

mentioned monodromy action and the action of the (cyclic) covering group

of VC .
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Before stating the main result of this paper (Theorem 4) we shall give

sufficient conditions for the existence of orbifold pencils in case C has a

Ap−1-singular point satisfying the conditions of Theorem 1, for which fewer

technical assumptions need to be made.

Theorem 3. Let C, χ, P , and V χ
C be as in Theorem 1 and Corollary 2

above. Assume that C has at P an Ap−1-singularity,p an odd prime, and in

particular, the local Albanese variety AlbP is the Jacobian of the curve D of

genus g := p−1
2 . Let albχ,D : V χ

C → Jac(D) be the composition of the Albanese

map V χ
C →Alb(V χ

C ) with the projection on its isogeny component Jac(D).

If the image of albχ,D has dimension one, then there is a pencil V χ
C →D

inducing an orbifold pencil

(T3) XC 99KD/Im χ

onto the global quotient of D by the canonical action of Im χ on D.

Moreover the character χ is the pullback on π1(XC) of a character of

πorb
1 (D/Im χ) via the pencil (T3).

Now we are ready to state the main result of the paper with milder

restrictions on the singularities of C than those required in Theorem 3. The

purpose is again to show the existence of global orbifold pencils.

Theorem 4. Let C, χ, N and P be as in Theorem 1. Let V χ
C be a

smooth projective model of the cyclic branched cover of P2 associated with

the kernel of χ and let τχC be the map induced by the deck transformation on

H1(V χ
C , C).

(1) Assume that the local Albanese variety AlbP of the singularity P has

an isogeny component Jχ satisfying the following:

(a) The action of Im χ on AlbP induces an action on Jχ and the

map Jχ→Alb(V χ
C ) induced by the (Im χ)-equivariant map AlbP →

Alb(V χ
C ) has a finite kernel.

(b) Jχ is the Jacobian of a curve D such that D is a quotient of an

exceptional curve D of positive genus in a resolution of the sin-

gularity zN = fP (x, y), that is, D =D/∆(D, χ) where ∆(D, χ)⊆
Im χ is a (possibly trivial) subgroup of the covering group Im χ, the

latter being considered as an automorphism group of D.

Let albχ,D be the composition of the Albanese map V χ
C →Alb(V χ

C ) with

the projection on the factor Jχ = Jac(D). If the dimension of the image
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of albχ,D is one, then there exists a pencil

V χ
C →D

inducing an orbifold pencil

(T4) XC 99KDorb
Im χ

where Dorb
Im χ =D/(Im χ/∆(D, χ)) is the global quotient orbifold

obtained via the induced action of (Im χ/∆(D, χ)) on D. For such an

orbifold pencil (T4) the character χ is the pullback on π1(XC) of a

character of πorb
1 (Dorb

Im χ) via (T4).

(2) If AlbP is simple (i.e., is not isogenous to a product of abelian varieties

of positive dimension) then the assumptions (a) and (b) in (1) are

automatically satisfied.

Note that assumption (1)(a) means that Jχ is an (Im χ)-equivariant

isogeny component of Alb(V χ
C ). In particular, it implies that the tangent

space to Jχ at the identity is contained in the χ-eigenspace of τχC acting on

the tangent space of Alb(V χ
C ) at the identity.

The conditions for the existence of orbifold pencils given by this theorem

have the following converse showing that the existence of an orbifold pencil

having the curve C as a member, implies that the Albanese variety of the

corresponding cyclic cover splits up to isogeny. Some factors of this splitting

are the Jacobians of the curves with the orbifold associated with the pencils

being the global quotients of these curves.

More precisely (see Section 1.3 for definitions related to orbifold pencils)

one has the following theorem.

Theorem 5. Suppose that C belongs to a global quotient orbifold pencil

π (cf. Definition 1.7) of target P1 with orbifold points of multiplicities

m̄= (m1, . . . , ms) so that π induces a homomorphism π1(XC)→ πorb
1 (P1

m̄).

Assume also that there is ρ ∈ Charπorb
1 (P1

m̄) such that χ= π∗(ρ) and also

that the orbifold P1
m̄ is a global quotient of a curve Σ. Then Alb(V χ

C ) admits

an (Im χ)-equivariant surjection onto Jac(Σ) and hence one has an (Im χ)-

equivariant isogeny Alb(V χ
C )∼ Jac(Σ)×A for an abelian (Im χ)-variety A.

More generally, if there is a finite number φ1, . . . , φn of global quotient

orbifold pencils as above with targets (P1
m̄, ρ) (ρ ∈ Charπorb

1 (P1
m̄) which are

Q-strongly independent, then Alb(V χ
C ) admits an (Im χ)-surjection onto

Jac(Σ)n, that is there is an equivariant isogeny, Alb(V χ
C )∼ Jac(Σ)n ×A

for an abelian (Im χ)-variety A.
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The proofs of Theorems 1, 3, 4 and 5 are presented in Section 2. In

Section 3 we consider applications of Theorem 4. First we discuss an example

of a curve C with A2g-singularities, that is, whose singularities are locally

isomorphic to u2 + v2g+1 = 0, which belongs to an orbifold pencil. For the

curves described in Theorem 3.1, all roots of the Alexander polynomial

correspond to orbifold pencils on the complement. The Albanese variety of

the canonical cyclic cover VC is the Jacobian of a certain curve of genus g

(described as a Belyi cover). In Theorem 3.3 we give an example of a curve

for which the Albanese variety is the same as one of those in Theorem 3.1

(for the particular case of g = 2), but whose characters corresponding to

the roots of the Alexander polynomial cannot be obtained as pullback via

orbifold maps. The difference between the curves in Theorems 3.1 and 3.3

comes from the difference in the Albanese maps of the corresponding cyclic

covers, namely, the images of the Albanese maps have different dimensions.

The curve given in explicit way described in Theorem 3.3 is particularly

interesting, since its canonical cyclic cover has as a minimal model an abelian

surface (specifically the Jacobian of a curve of genus 2 cf. also [9]). This

construction of an abelian surface via cyclic coverings branched over curves

given by explicit equation can be of independent interest. Finally, in Theo-

rem 3.5 we present a family of curves contained in more than one orbifold

pencil and for which the Albanese dimension is maximal, that is, two.

§1. Preliminaries

1.1 Alexander polynomials (cf. [17])

Let C be a plane curve with irreducible components C0, C1, . . . , Cr where

Fi(x, y, z) = 0 is a reduced equation of Ci of degree di. Then H1(XC , Z) is an

abelian group of rank r isomorphic to Zr+1/(d0, . . . , dr)Z. This isomorphism

is given by

γ 7→
(

1

2π
√
−1

∫
γ

dFi
Fi

)r
i=0

.

Fix a surjection π : π1(XC)→ Γ onto a cyclic group Γ. Note that π

can be factored through H1(XC , Z) and hence induces a homomor-

phism Zr+1/(d0, . . . , dr)Z→ Γ. Let K = ker π. Consider the exact sequence

0→K/K ′→ π1(XC)/K ′→ Γ→ 0 and the corresponding action of Γ on

K/K ′ ⊗ C. The Alexander polynomial ∆C,π(t) of C (relative to the sur-

jection π) is the characteristic polynomial associated with the action of Γ

on the vector space K/K ′ ⊗ C. Note that dimK/K ′ ⊗ C<∞ (cf. [17]),

∆C,π has integer coefficients and in the case of irreducible C is independent,
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196 E. ARTAL, J. I. COGOLLUDO AND A. LIBGOBER

for all the previous choices, as an element in C[t, t−1] modulo units. In the

latter case, if Γ = Z/dZ, then K/K ′ is the abelianization of the commutator

of π1(XC).

Zeros of the Alexander polynomial can be described in terms of the

cohomology of local systems as follows. Note that, since π1(XC)/K ′ is

abelian, π factors through a character, say χ. Let ξ ∈ C∗, (1, . . . , 1) ∈
Zr+1/(d0, . . . , dr)Z =H1(XC , Z) be a generator of Im χ ∈ C∗; one has:

(1.1) ∆C,π(ξ) = 0⇐⇒ dimH1(XC , χ)> 0 (cf. [14, 19].

The Alexander polynomial is restricted by the local type of singularities

and the degree of C as follows. Each singularity P ∈ C, has associated its

local Alexander polynomial ∆P
C , or equivalently the characteristic polyno-

mial of the local monodromy acting on the Milnor fiber of the singularity

(cf. [21]). Then one has the divisibility relation (cf. [17])

(1.2) ∆C(t)|
∏
P

∆P
C(t).

Moreover the roots of the Alexander polynomial are roots of unity of the

degree deg C.

Example 1.1. Let C be a curve whose singularities are topologically

equivalent to the A2g-singularity with local equation u2 = v2g+1. Since

the characteristic polynomial of the monodromy for such singularity is
t2g+1+1
t+1 the Alexander polynomial of C is trivial unless 2(2g + 1)| deg C

and moreover it is equal to
(
t2g+1+1
t+1

)s
for some s> 0.

1.2 Local Albanese varieties and singularities of CM-type

Let f = 0 be a germ of an isolated (i.e., reduced) plane curve singularity

at the origin. Let Mf be the Milnor fiber of f , that is, the intersection

of a sufficiently small ball Bε about the origin and the hypersurface

f = t, 0< |t| � ε. The cohomology of Mf (more generally, the cohomology

of the Milnor fiber of an isolated hypersurface singularity) supports the limit

mixed Hodge structure. It was constructed by Steenbrink and we refer to

[24] for its study. Here we only note that it depends on the family of germs

f = t, rather than its specific member. We recall the following properties of

this mixed Hodge structure used below:

(1) It has weight 2 and the weight filtration is associated with the unipo-

tent part of the monodromy Tu in the decomposition into unipotent
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and semisimple parts of T = TsTu, the monodromy operator acting

on H1(Mf , C).

(2) The size of Jordan blocks of the monodromy operator is at most 2 and

equals rkW0. Moreover,

rk GrW2 − rkW0 = r − 1,

where r is the number of branches of f = 0.

(3) The Hodge filtration is invariant under the action of the semisimple

part of the monodromy. Note that by the Monodromy Theorem the

order of Ts is finite (cf. [24]).

(4) Let Lf be the link of the singularity zn = f where n is the order of the

automorphism Ts. Then

(1.3) GrW1 H1(Mf ) = GrW3 H2(Lf )(1)

(where H(1) is the Tate twist of a Hodge structure H, cf. [16,

Proposition 3.1]).

Definition 1.2. The local Albanese variety of the germ f is defined as

the abelian variety (Gr0
F H

1(Mf ))∗/H1(Mf , Z), with polarization induced

by the intersection form on H1(Mf , Z). Equivalently, the local Albanese is

the abelian part of the semiabelian variety associated by Deligne (cf. [13])

to the 1-motif in the case of the mixed Hodge structure dual to the limit

mixed Hodge structure discussed above.

The above definition is rather technical but it admits a simpler description

in terms of the resolution of the singularity zn = f discussed above. Let

B̃→B be an embedded log-resolution of the germ f = 0, Vn→B be the

projection of the germ of the singularity zn = f onto B. The singularities

of the normalization of the fiber product S = Vn ×B B̃ are cyclic quotient

singularities and their (minimal) resolution S̃ provides a resolution of the

singularity of the germ zn = f (cf. [20]). In this resolution the boundary of

the tubular neighborhood of the exceptional locus can be identified with

the link Lf in (1.3). Moreover H1(Lf ) (and by duality H2(Lf )) can be

identified in an appropriate way with
⊕

H1(Ei) where Ei runs through the

set of exceptional curves in S̃ having a positive genus. More precisely, we

have the following theorem.

Theorem 1.3. (cf. [16, Theorem 3.11]) Let f(x, y) = 0 be a singularity

with a semisimple monodromy and let N be the order of the monodromy
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198 E. ARTAL, J. I. COGOLLUDO AND A. LIBGOBER

operator. The Albanese variety of the germ f(x, y) = 0 is isogenous to

a product of Jacobians of the exceptional curves of positive genus for a

resolution of

(1.4) zN = f(x, y).

The latter description suggests an approach to defining the local Albanese

for the nonreduced case, that is, as the product of the Jacobians of curves

of positive genus in the resolution of the singularities of the germ zn = f .

Finally recall the following definition.

Definition 1.4. (cf. [16, Definition 3.4]) A plane curve singularity has

a CM-type if its local Albanese variety is isogenous to a product of simple

abelian varieties of CM-type.

We refer to [23] for basic information regarding abelian varieties of CM-

type. Unibranched singularities and singularities for which the characteristic

polynomial of the monodromy operator has no multiple roots provide many

examples of singularities of CM-type (cf. [16]).

Example 1.5. Let (C, P ) be a simple curve singularity of type A2g,

with local equation y2 − x2g+1 = 0. The local Albanese variety is associated

to the surface singularity y2 − x2g+1 = z2(2g+1). For any resolution of this

surface singularity, there is only one nonrational irreducible component DA2g

of its exceptional divisor, which is a Belyi cover of the unique branching

component of the minimal resolution of (C, P ), ramified at the three

intersection points with the other components, with ramification indices

2, 2g + 1, 2(2g + 1), whose genus is g.

1.3 Orbifold pencils

Definition 1.6. Let X be a quasi-projective manifold and S be an

orbicurve (one-dimensional orbifold). A holomorphic map φ between X and

the underlying S complex curve we shall call an orbifold pencil if the index of

each orbifold point p divides the multiplicity of each connected component

of the fiber φ∗(p) over p.

We will concentrate our attention on orbifold pencils of curve comple-

ments. Let C ⊂ P2 be a plane curve (not necessarily irreducible) and let XC

denote its complement. Consider an orbifold pencil φ :XC → S, where S

is a rational orbifold curve (that is, its compactification is P1) given by a

finite number of orbifold points, say Pi, i= 1, . . . , s, with orbifold structure
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of order mi ∈ Z>0 ∪ {∞}, i= 1, . . . , s (i.e., near which the orbifold chart is

the chart given by a disk with the standard action of the cyclic group of

order mi). For convenience, mi =∞ means that Pi has been removed from

S, namely, S = P1 \ {Pi |mi =∞}. In the future we will denote S simply

by P1
m̄, where m̄ := (m1, . . . , ms).

Definition 1.7. In the situation as above, we say that C belongs to an

orbifold pencil of type m̄. Moreover, the orbifold pencil φ will be called a

global quotient orbifold pencil if there exists a morphism Φ :XG→ Σ, where

XG is a quasi-projective manifold endowed with an action of a finite group

G and Σ a curve which makes the diagram

(1.5)

commutative, for which the vertical arrows are the models for the quotients

by the action of G.

If in addition, there is a character χ ∈ Char(XC) and a character

ρ ∈ Charorb(P1
m̄) such that χ= ρ ◦ π, and XG (resp. Σ) is the covering of

XC (resp. P1
m̄) associated with the character χ (resp. ρ), then we say (C, χ)

belongs to a global quotient orbifold pencil with target (P1
m̄, ρ).

Oftentimes, the set of global quotient orbifold pencils—up to the obvious

equivalence by automorphisms of the target—is infinite (see [12, 5]). A very

useful (cf. Theorem 3.5 below) property to determine the different nature

of such orbifold pencils is given by the following.

Definition 1.8. Global quotient orbifold pencils φi : (XC , χ)→
(P1
m̄, ρ), i= 1, . . . , n are called independent if the induced maps Φi :XG→

Σ define Z[G]-independent morphisms of modules

(1.6) Φi∗ :H1(XG, Z)→H1(Σ, Z),

that is, independent elements of the Z[G]-module HomZ[G](H1(XG, Z),

H1(Σ, Z)).

In addition, if

(1.7)
⊕

Φi∗ :H1(XG, Z)→H1(Σ, Z)n
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is surjective we say that the pencils φi are strongly independent. If the

previous morphism (1.7) is considered with coefficients over Q, then we

will use the term Q-strongly independent.

§2. Proof of Theorems 1, 3, 4 and 5

Proof of Theorem 1. We shall use notations set up in the Introduction

and in Section 1 and consider the Alexander polynomial ∆C,χ(t) of C relative

to the homomorphism χ : π1(XC)→ Γ⊂ C∗ where Γ = Im χ is the group of

Nth roots of unity by hypothesis. Let ξ ∈ C∗ be a primitive Nth root of

unity. Since H1(XC , χ) 6= 0 one has ∆C,χ(ξ) = 0 (cf. (1.1)). Let Sχ := {P ∈
Sing(C) |H1(BP \ C, χP ) 6= 0}; because of (1.2), this set is nonempty.

For each P ∈ Sχ, consider the unbranched covering of EP :=BP \ C
corresponding to the surjection π1(EP )→ Γ and denote it by (ẼP )Γ. Then

the restriction of the cyclic cover of BP given by the equation (1.4) on

EP is equivalent to (ẼP )Γ→ EP . The proof of the Divisibility Theorem

(cf. [17, 16]) also shows that there is a surjection
⊕

P∈Sχ H1((ẼP )Γ,Q)ξ→
H1(V χ

C ,Q)ξ, where the subindex ξ stands for the ξ-eigenspace of the

corresponding deck transformations. Hence one can take as P in (1) any

singular point in Sχ for which the map H1((ẼP )Γ,Q)ξ→H1(V χ
C ,Q)ξ has a

nontrivial image.

Remark 2.1. In fact H1(BP \ C, χP ) 6= 0 is not enough to ensure that

the map (T1) in Theorem 1 has a nontrivial image. For instance, consider

C a sextic curve with seven ordinary cusps. It is well known (already to

O. Zariski, cf. [3, 17, 12] for more recent discussions) that there is a conic

passing through six out of the seven cusps. The Alexander polynomial of

C is t2 − t+ 1, which coincides with the local Alexander polynomials of its

singularities. However, if χ is a character of order 6, the map

H1(XC , χ)→H1(BP \ C, χP )

is not trivial if and only if P is one of the six cusps on the conic.

Proof of Theorem 4. Now let us assume that P is a singularity satisfying

Theorem 4 and consider a resolution of the associated surface singularity

VP = {zN = fP (x, y)}, where N is the order of the character χ and fP
is a local equation of C near P . Recall that such a resolution can be

obtained (Jung’s method cf. [20]) by normalizing a pullback of an embedded

resolution of the singularity at P .
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It follows from the A’Campo formula (cf. [1]), or from discussion in

Section 1.2, that ξ is the root of the characteristic polynomial of the

transformation induced on homology by the action z 7→ ξz on a resolution of

singularities of the surface VP and restricted to one of the curves of positive

genus in the resolution of the singularity VP . Denote such a curve by D.

Jung’s procedure implies that, D is an irreducible component of a Γ-cover

of a rational curve (namely an exceptional divisor of the resolution of P ). By

Theorem 1.3 (i.e., [16, Theorem 3.11]) there is an isogeny component of the

Jacobian of D (possibly a direct sum of several simple components) which

is also an isogeny component of Alb(V χ
C ). If this component is an (Im χ)-

invariant Jacobian of a curve D, that is, if the assumption (b) in Theorem 4

is fulfilled, then by Torelli’s Theorem Im χ acts on D as well (unfaithfully

if D 6=D). Note that Theorem 4 allows nonreduced curves f = 0, which are

excluded in the statement of Theorem 1.3.

As a consequence of Jung’s method, the resolutions of zn = f and

zn = fred, where fred is the product of irreducible factors of f , are both

obtained by pullback and normalization of the same embedded resolution of

the curve fred = 0. In particular, the conclusions of Theorem 4(1) still hold

in the nonreduced case, whereas D depends on the ramification data of the

cyclic cover VP .

Returning to the proof of the existence of an orbifold pencil satisfying (1),

suppose that the composition of the Albanese map and the projection onto

Jac(D) has a 1-dimensional image W . Let σ :D→D be the quotient map.

Consider the diagram

(2.1)

This diagram shows that the image of D in Jac(D) coincides with the image

of D and hence it is contained in W . The assumption that dim Im albχ,D = 1

hence yields that Im albχ =D (up to a translation). Moreover the map

V χ
C →D is Γ-equivariant and hence it induces the orbifold pencil as

described in Theorem 4(1).
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If Jac(D) is a simple abelian variety, then Jχ = Jac(D) as it follows

from the discussion above. This yields (2) which concludes the proof of

Theorem 4.

Proof of Theorem 3. To derive this proof from Theorem 4 we have

to verify that its hypotheses are satisfied. For A2g-singularities, one has

AlbP = Jac(D), where D is a covering of the branching component of

the minimal resolution of the singularity. Note that under the hypothesis

p= 2g + 1 is prime, Jac(D) is simple (cf. [23, Example 4.8(1)]). Using The-

orem 4(2), the result follows.

Proof of Theorem 5. Recall that πorb
1 (P1

m̄) = π1(P1 \ {Pi}si=1)/〈γmii 〉si=1

where γi are meridians about the points Pi in π1(P1 \ {Pi}si=1). Consider

the composition λρ

π1(P1 \ {Pi}si=1)
λ−→ πorb

1 (P1
m̄)

ρ−→ C∗.

Following the notation introduced in Definition 1.7, consider the natural

surjection morphism Λ : π1(P2 \ (C ∪
⋃s
i=1 Di))→ π1(XC). Note that the

meridians about the components Di generate the normal subgroup ker Λ.

Since they are taken by π onto mith powers of (eventually powers of)

meridians about Pi, the surjection π is induced by π1(P2 \ (C ∪
⋃s
i=1 Di))→

π1(P1 \ {Pi}si=1). Hence we have the following commutative diagram:

(2.2)

Since χ= π∗(ρ), the character χ is the composition π1(XC)
π−→

πorb
1 (P1

m̄)
ρ−→ C∗, one has Π(ker(Λ ◦ χ))⊆ ker(λ ◦ ρ). Hence diagram (2.2)

shows that π induces the map of covering spaces

(2.3)

(
P2 \

(
C ∪

s⋃
i=1

Di

))
Λ◦χ

−→
(
P1 \ {Pi}si=1

)
λρ

corresponding to the subgroups K := ker(Λ ◦ χ) and Kρ := ker(λρ) respec-

tively. The extension of the map (2.3) to a smooth compactification of(
P2 \ (C ∪

⋃s
i=1 Di)

)
Λ◦χ and then to a resolution of its base points yields
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a map of a birational model of V χ
C to Σ; recall that the orbifold P1

m̄ is a

global quotient of a Riemann surface Σ. And hence we have also a map

Alb(V χ
C )→ Jac(Σ). The Poincaré Reducibility Theorem yields an isogeny

between Alb(V χ
C ) and Jac(Σ)×A.

In the case of n > 1 pencils φ1, . . . , φn, we obtain a corresponding map

for each φi and hence a map Alb(V χ
C )→ Jac(Σ)n. By Definition 1.8, the

corresponding map of H1 is surjective and hence, as above, the Poincaré

Reducibility Theorem yields the claimed isogeny.

§3. Curves with A2g-singularities

The purpose of this section is to justify the lengthy statements of the main

theorems by highlighting both their power and their subtleties through a

series of examples. Simplifying the statements would only cause a more

coarse description of the actual connection between characteristic varieties

and orbifold pencils.

In what follows we present three essentially different types of situations:

the pivotal example is shown in Theorem 3.3, where dim Im alb = 2,

Alb(V χ2

C2
) is a simple abelian variety, which is the Jacobian of a curve,

and hence the image alb projected onto the isogeny factors of Alb(V χ2

C2
)

is never a curve. Therefore the conditions of Theorem 4 are not satisfied.

Moreover, (C2, χ2) does not contain a global orbifold pencil (see [4]).

Another remarkable fact is that V χ2

C2
is birational to an abelian surface of

CM-type corresponding to the cyclotomic field Q(ζ5). The cyclic quotients

of these abelian surfaces have been studied by Bagnera and deFranchis [7];

this curve is the ramification divisor of one of such quotients.

On the other hand in Theorem 3.1 a curve C1 is exhibited (for k = 1 and

g = 2) whose Alb(V χ1

C1
) coincides with Alb(V χ2

C2
), however dim Im alb = 1,

which implies, by Theorem 3, the existence of a global orbifold pencil

containing (C1, χ1). Finally, in Theorem 3.5, dim Im alb = 2, as for C2.

However Alb(V χ3

C3
) decomposes (up to isogeny) as a product of three simple

Jacobians of curves and the image alb projected onto these factors is always

1-dimensional. By Theorem 3 this implies the existence of three independent

global orbifold pencils containing (C3, χ3).

Theorem 3.1. Let C1 be an irreducible curve in P2 given by the

equation

(3.1) f2g+1
2k + f2

(2g+1)k = 0,
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where fi is a generic homogeneous polynomial of degree i. Let χ1 be the

character of π1(P2 \ C1) sending the generator of H1(P2 \ C1) = Z2k(2g+1)

to a primitive root of unity of degree 2(2g + 1). Consider V χ1

C1
the cyclic

covering of order 2(2g + 1) of P2 ramified along C1. Let DA2g be the curve of

genus g which is the cyclic Belyi cover of P1
(2,2g+1,2(2g+1)) of degree 2(2g + 1).

Then Alb(V χ1

C1
)∼ Jac(DA2g) and the Albanese dimension of V χ1

C1
is 1.

Remark 3.2. These curves were studied by Oka in [22] and the pencil

provided by Theorem 3 is the one generated by f2g+1
2k and f2

(2g+1)k. Also

note that Jac(DA2g) is the local Albanese variety of any singularity of C1,

see Example 1.5.

Proof. The curve (3.1) has 2k2(2g + 1) singularities each locally equiv-

alent to u2 = v2g+1 forming scheme theoretical (for generic f2k, f(2g+1)k)

complete intersection B given by f2k = f(2g+1)k = 0. The Example 1.1

provides a general form of its Alexander polynomial and a calculation using

[18] shows that s= 1, that is, it is t2g+1+1
t+1 .

Consider the pencil of curves of degree 2k(2g + 1) given by:

(3.2) πC1 : [x0 : x1 : x2] 7→ [f2k(x0, x1, x2)2g+1 : f2g+1(x0, x1, x2)2k]

yielding a regular map P2 \ B → P1. We shall view this as an orbifold

pencil with target P1
2,2g+1. Since πC1(C1) = p ∈ P1, this map induces another

orbifold map P2 \ C1→ P1
2,2g+1 \ {p} by restriction. Note that the inclusion

P1
2,2g+1 \ {p} ↪→ P1

2,2g+1,2(2g+1) is a dominant map. The latter orbifold is a

global orbifold quotient by the action of cyclic group Z2(2g+1) of a cyclic

Belyi cover Σ having genus g (the value of the genus follows for example

from the Riemann–Hurwitz formula). Moreover the pencil (3.2) lifts to the

regular map π̃C1 : V χ1

C1
→ Σ. It follows from [17] that dimH1(V χ1

C1
) = 2g.

Hence the induced map ΠC1 : Alb(V χ1

C1
)→ Jac(Σ) is an isogeny and one has

the commutative diagram:

(3.3)

VC1

π̃C1−→ Σ

↓ ↓

Alb(V χ1

C1
)

Π̃C1→ Jac(Σ)

where the vertical arrows are the Albanese map and the canonical embed-

ding of Σ into its Jacobian. This implies that the Albanese image of V χ1

C1
is

one-dimensional.
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Figure 1.

Local resolution at P 0.

Theorem 3.3. Let C2 be the union of a self-dual quintic C0 with 3 A4-

singularities and the line L which is tangent to C0 at one of its singularities,

say P 0. Consider χ2 any character of order 10 that ramifies along C0 + 5L

(the coefficients represent the ramification indices). Then

(1) The canonical class of the minimal model of V χ2

C2
is trivial.

(2) dimH1(V χ2

C2
, C) = 4. In particular, this minimal model is an abelian

surface.

(3) This abelian surface is isomorphic to the Jac(DA4) which is a simple

abelian variety and hence its Albanese dimension is 2.

Proof. In order to prove part (1), we will construct the 10th-cyclic cover

of P2 associated with χ2. Note that KP2 =−3H =−3
5C0. Denote by P̂2 the

resulting surface (see Figure 2) after blowing up the singular points of C0 to

obtain a normal crossing divisor and then blowing down the preimage of L.

To understand this, we will briefly describe the local resolution of the

singularity at P 0 shown in Figure 1. The subindices of E0
i indicate the

order of appearance of the exceptional divisors. Since the first two blow-ups

occur on infinitely near smooth points of L, its self-intersection drops by 2.

However, these first two infinitely near points are not smooth on C0, but of

multiplicity 2. Since two more blow-ups on infinitely near smooth points of

C0 are required to resolve the singularity, the self-intersection of C0 drops

by 2 · (2)2 + 2 · (1)2 = 10.

We denote by P± the other singular points of type A4. Note that Figure 1

(excluding the germ of L) also describes a resolution of P± in C0. For

the corresponding exceptional divisors we replace the superscript 0 by ±
accordingly. Analogously as mentioned above, the self-intersection of C0

drops by 10 at each point.
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Figure 2.

Surface P̂2.

By Bézout’s Theorem, L intersects C0 at another point. Since its self-

intersection after the blow-ups is −1 and it intersects only C0 and E0
2 , we

can blow it down keeping the normal crossing property. The self-intersection

of both E0
2 and C0 increases by 1. The resulting surface is P̂2 and the involved

divisors are shown in Figure 2. By the Projection Formula we obtain

KP̂2 =−3
5C0 − 1

5(E+
1 + E−1 + E0

1 + 2E+
2 + 2E−2 + 2E0

2).

The self-intersections of the divisors are shown in parenthesis unless

(E•i )2 = (E+
i )2. Since we have blown up 12 points and blown down one

exceptional divisor, one can compute the Euler characteristic as follows:

χ(P̂2) = χ(P2) + 12− 1 = 14.

An alternative way to obtain a surface birationally equivalent to V χ2

C2
is to

consider the 10th-cyclic cover of P̂2 ramified along the total transform of

C0 + 5L, that is,

R := C0 + 7E0
1 + 14E0

2 + 15E0
3 + 30E0

4 + 2E±1 + 4E±2 + 5E±3 + 10E±4

≡ C0 + 7E0
1 + 4E0

2 + 5E0
3 + 2E±1 + 4E±2 + 5E±3 mod 10Pic(P̂2),

where E±i = E+
i + E−i . It is easier to factor such covering as the composition

of a double cover π2 and a 5th-fold cover π5.
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Figure 3.

Surface X.

The double cover of P̂2 is ramified along

R2 := C0 + E±3 + E0
3 + E0

1 ≡R mod 2Pic(P̂2)

and will be denoted by X. The dual graph of the total transform π∗2(R) in

X is shown in Figure 3.

In order to compute the self-intersection of each divisor one has to apply

the intersection theory formulas for covers (cf. [8, Chapter II. Section 10]).

Note that

KX =−1
5c0 + 3

5e
0
1 − 2

5e
0
2 + e0

3 − 1
5e
±±
1 − 2

5e
±±
2 + e±3 ,

where e±±i denotes the sum e++
i + e+−

i + e−+
i + e−−i .

By Riemann–Hurwitz, the Euler characteristic of X can be obtained as

χ(X) = 2(χ(P̂2)− χ(R2)) + χ(π∗2(R2)) = 2(14− 10) + 10 = 18.

After blowing down the divisors e0
1, e0

3, e+
3 , and e−3 one obtains the surface

Y , where

KY =−1
5(c0 + 2e0

2 + e±±1 + 2e±±2 ) and χ(Y ) = 14.

Finally one needs to perform the 5:1 cover of Y ramified along R5 :=

c0 + 2e0
2 + e±±1 + 2e±±2 , which incidentally is the support of KY . Note that

this divisor has 5 connected components, namely, e++
1 + 2e++

2 , e+−
1 + 2e+−

2 ,

e−+
1 + 2e−+

2 , e−−1 + 2e−−2 , and c0 + 2e0
2, each with the same combinatorial

structure as shown at the bottom of Figure 4. The appropriate ramified cover

on e++
1 + 2e++

2 is shown in Figure 4. Next to each irreducible component

a list of numbers is shown: the first one being the self-intersection of
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Figure 4.

Surface Y .

the component, the second one being its multiplicity in the corresponding

canonical Q-divisor (KY or KZ), and the third one (where applicable) being

the ramification index. The components ε++
i are the strict transforms of e++

i

by the 5:1 cover, while the remaining components a++ and b++ project onto

the double point. Note that the support of KZ is in the preimage of R5.

After blowing down all components, one obtains a smooth surface Ẑ with

trivial canonical divisor, which is in particular the minimal model of V χ2

C2
.

Using Riemann–Hurwitz once again, one obtains

χ(Ẑ) = 5(χ(Y )− χ(R5)) + 5 = 5(14− 5 · 3) + 5 = 0.

From the Kodaira classification (see [8, Table 10]) the minimal model is

a torus and hence it is an abelian surface.

For part (2), note that the degree of the Alexander polynomial of C2

associated with χ2 (see [5, Section 2.2]) is t4 − t3 + t2 − t+ 1 [4, Theorem

4.5]. Since dim Alb(V χ2

C2
) = 1

2 deg ∆C2,χ2(t) = 2, the result follows.

Remark 3.4. Note that Jac(A4) is a simple abelian variety. This follows

from discussion in [16] yielding that CM-field in this case is Q(ζ5) and

explicit description of the CM-type there. More generally, for the singularity

type xp + yq, where p, q are different prime numbers, recall that Arnold–

Steenbrink’s spectrum provides the CM-type for the local Albanese variety

(cf. [16]), whose explicit description is well known. One can apply Shimura–

Taniyama conditions for primitivity of a CM-type (cf. [23]) to verify that

the local Albanese variety is simple in this case. In particular, Theorem 4(2)

can be applied to those plane curve singularities.

In general, however, local Albanese variety has several isogeny compo-

nents. In the case of unibranched curves they all are Jacobians of Belyi
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cyclic covers (cf. [16]) and hence are the components of Jacobians of Fermat

curves. We refer for additional information regarding these Jacobians to [15]

and [2].

Theorem 3.5. Let C3 be an irreducible curve in P2 given by the

equation

(3.4) x2m
0 + x2m

1 + x2m
2 − 2(xm0 x

m
1 + xm1 x

m
2 + xm2 x

m
0 ) = 0,

where m is an odd number, say m= 2g + 1. Consider V χ3

C3
the cyclic covering

of order 2m of P2 ramified along C3. Let DA2g be as above. Then Alb(V χ3

C3
)

is isogenous to Jac(DA2g)
3 and the Albanese dimension of V χ3

C3
is 2.

Proof. The pencils of curves

Λi = {Fi,[α:β] | [α : β] ∈ P1},

(where Fi,[α:β] = {α(xjxk)
m + β(xmj + xmk − xmi )2 = 0} and {i, j, k}=

{0, 1, 2}) induce orbifold morphisms from P2 onto the compact

orbifold P1
([1:0],2),([0:1],m). Since C3 = Fi,[−4:1] they also define (by restriction)

orbifold morphisms φi : P2 \ C3→ P1
2,m,2m defined as

[x0 : x1 : x2]
φi7→ [xmj x

m
k : (xmj + xmk − xmi )2].

If one shows that these morphisms are strongly independent, then by

Theorem 5, they define a surjective morphism Alb(V χ3

C3
)→ Jac(DA2g)

3. Note

that DA2g is a curve of genus g. Moreover, the Alexander polynomial of

C3 associated with χ3 is the classical Alexander polynomial since C3 is

irreducible, which is ∆C3(t) =
(
t2g+1
t+1

)3
(see [11]). Thus

dim Alb(V χ3

C3
) = 1

2 deg ∆C3(t) = 3g

and then Alb(V χ3

C3
)∼ Jac(DA2g)

3 by dimension reasons.

For the last part, consider (φ1 × φ2) : P2 \ C3→ (P1
2,m,2m)2. Note that the

preimage of a generic point is the intersection of two generic members of

the pencils Λ1 and Λ2 and hence the morphism is finite. The same applies

to (Φ1 × Φ2) : V χ3

C3
→ Σ2. By the standard properties of the Albanese map,

alb(Φ1 × Φ2) : Alb(V χ3

C3
)→ Jac(DA2g)

2 is surjective. Since the Albanese map

of V χ3

C3
factors through alb(Φ1 × Φ2), the result follows.
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It remains to show that the global quotient orbifold pencils φ0, φ1,

and φ2 are strongly independent, in other words, that the morphisms

Φi,∗ :H1(V χ3

C3
)→H1(Σ), i= 0, 1, 2, obtained from (3.5),

(3.5)

are Z[µ2m]-independent (µ2m ⊂ C∗ the cyclic group of 2m-roots of unity)

and that
⊕2

i=0 Φi,∗ :H1(V χ3

C3
)→H1(Σ)3 is surjective (see Definition 1.8).

Note that the base points of the pencils can be described as follows: let

{i, j, k}= {0, 1, 2} and consider

∆i := {xi = 0} ∩Qj = {xi = 0} ∩Qk,

Qi := {xmj + xmk − xmi = 0}. The 2m base points of Λi are ∆j ∪∆k.

In order to understand V χ3

C3
we will first consider a resolution of the base

points of the pencil Λi. This is shown in Figure 5, where ˜̀
P (resp. C̃3, and

Q̃i) represents the strict preimage of `P , the axis containing P (resp. C3, and

the Fermat curve Qi). The notation [k] next to an irreducible component E

indicates the image by χ3 of a meridian γ around the irreducible component

E as follows:

χ3(γ) = e
k
m
π
√
−1.

Unbranched components, that is, [k] = [0], are shown in dashed lines.

In other words V χ3

C3
is the cyclic covering of order 2m ramified along the

locus

C3 +
∑
P∈∆

(2E1,P + 4E2,P + · · ·+ (2g − 2)Eg−1,P + 2gEg,P +mEg+1,P ),

where ∆ =
⋃2
i=0 ∆i. To resolve each Λi it would be enough to blow up over

∆j ∪∆k, but this way the same surface works for the three pencils.

In particular, note that V χ3

C3
will contain curves ΣP which are the cyclic

covering of Eg+2,P ramified at 3 points of ramification indices 1, m− 1,

and m. It is easy to check that the orders of χ3 at the meridians of these

points are 2m, m, and 2 respectively. Hence ΣP = Σ is the curve of genus g

which is the Belyi cover DA2g of P1
2,m,2m.
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Figure 5.

Resolution of the base point of the pencil Λi.

Moreover, if P ∈∆k, then Φi|ΣP : ΣP → Σ and Φj |ΣP : ΣP → Σ are iso-

morphisms since Eg+2,P in Figure 5 is a dicritical section of Λi and Λj ,

whereas Φk|ΣP : ΣP → Σ is a constant map. This immediately implies the

result as follows. Consider three indeterminacy points distributed among

the axes, for instance P0 := [0 : 1 : 1], P1 := [1 : 0 : 1], and P2 := [1 : 1 : 0]. By

the previous considerations nontrivial meridians γi ∈H1(ΣPi)
∼=H1(Σ) exist

considered as cycles in H1(V χ3

C3
) via the inclusion and such that

Φj(γi) =

{
γ if i 6= j

0 if j = i,

where γ ∈H1(Σ) is a nontrivial cycle. If Φi,∗ were dependent morphisms,

then there should exist coefficients α0, α1, α2 ∈ Z[µ2m] such that

α0Φ0,∗ + α1Φ1,∗ + α2Φ2,∗ ≡ 0,

but using the cycle γ0 one obtains that α1 =−α2, analogously, using γ1

(resp. γ2) one obtains α0 =−α2 (resp. α0 =−α1). Therefore α1 = α0 =

α2 = α and 2α= 0 in Z[µ2m], which implies α= 0. The fact that the map⊕2
i=0 Φi,∗ :H1(V χ3

C3
)→H1(Σ)3 is surjective follows from the existence of the

dicritical sections Eg+2,Pi and the induced isomorphisms Φj |ΣPi : ΣPi → Σ

for j 6= i described above.
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