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ABSTRACT: Density profiles of most globular clusters are well fitted 
by a King (1966) model. The evolution of a King model in the tidal 
gravitational field of the Galaxy is first discussed. If the 
concentration parameter c (= log(rt/rc)) is small enough, the evolution 
is nearly along the King model sequence and c becomes larger. When c 
becomes large enough (about 2.1), gravothermal instability sets in. 
The basic properties of gravothermal instability is next discussed. 
The stability criterion and its interpretation are given. Globular 
clusters consist of stars with disparate masses, so that finally the 
evolution of multi-component clusters is discussed. Acceleration of 
evolution in multi-component clusters and equipartition of the kinetic 
energies among components are discussed, and conclusions and future 
problems are given. 

1. INTRODUCTION 

Spitzer (1985) made an excellent review of this field at IAU 
Symposium No. 113 at Princeton and relatively little progress has been 
made in this field since then. In this paper I will review precollapse 
evolution from a somewhat different point of view. 

Globular clusters are bounded by the gravitational field of the 
galaxy. Their radii are determined by the balance of the gravitational 
force of the Galaxy and their own gravitational force. Most clusters 
are well fitted by a King (1966) model. The model is characterized by 
a parameter c (» log(rt/rc)), where r t is the tidal radius and r c is the 
core radius. 

If c is smaller than the critical value (about 2.1), clusters 
evolve due to evaporation of stars from the tidal radii and if c is 
larger than the critical value, clusters evolve due to gravothermal 
instability (Katz 1980, Wiyanto et al. 1985). In the former case the 
central density becomes higher and higher and c becomes larger. In 
this stage the evolution is nearly along the King sequence. At 
late-time epochs the evolution is due to gravothermal instability. 

2. EVOLUTION DUE TO EVAPORATION OF STARS FROM THE TIDAL RADIUS 

If c is smaller than the critical value, the evolution is 
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governed by the escape of stars from the cluster. Wiyanto et al. 
(1985) calculated the evolution of a King model by numerical 
integration of isotropized Fokker-Planck equation and found that 
evolution is nearly along a King sequence if c is small enough (Fig. 
1) . When c becomes about 2.1, gravothermal instability takes place and 
evolution is accelerated. They also show that the rate of evaporation 
of stars is constant in time and in good agreement with King's (1966) 
prediction. 
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Fig. 1. Comparison of the k-(rt/rc) relation of the simulations of 
Wiyanto et al. (1985) to that of King's (1966) sequence, where k is 
defined by Ε = - (k+l/2)GM2/rt and Ε is the total energy of the 
cluster. The broken curve denotes King's sequence. Solid curves 
denote the evolutionary sequence obtained by the simulations. The 
curve between the two cross marks is for model A, which is started from 
a stable configuration. The curve between the two square marks is for 
model B, which is started from a nearly marginally stable 
configuration. A nearly horizontal curve in the middle of the figure 
is for model C, which is started from an unstable configuration. 
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Chernoff, Kochanek and Shapiro (1986) investigated the effect of 
tidal heating due to giant molecular clouds and to passage through the 
galactic plane. They showed that passage through the galactic plane is 
dominant and that small concentrated clusters are disrupted and those 
with large concentrations are accelerated toward a gravothermal 
instability. Both processes may occur within the Hubble time for any 
concentration parameter. For further details, see Chernoff and Shapiro 
(1987). 

3. EVOLUTION DUE TO GRAVOTHERMAL INSTABILITY 

If c is larger than 2.1 (Katz 1980), globular clusters evolve due 
to gravothermal instability. Originally gravothermal instability was 
investigated under the assumption that clusters are strictly isothermal 
and therefore bounded by spherical walls (Antonov 1962, Lynden-Bell and 
Wood 1968, Hachisu and Sugimoto 1978). Lynden-Bell and Wood (1968) 
examined the gravothermal instability by considering linear series 
(Fig. 2). The character of instability changes at the turning point of 
E-v-diagram, where ν is the dimensionless central potential. The 
validity of a linear series to investigate stability is verified by 
Inagaki and Hachisu (1978), Yoshizawa et al. (1978) and Katz (1978). 
Hachisu and Sugimoto (1978) formulated the problem of stability by 
using a Green's function. They expressed the variation of the 
temperature ST in terms of the variation of the entropy: 

Fig. 2. Energy-ν relation for isothermal clusters. The central 
potential ν has a one-to-one relation with the density contrast. The 
first turning point corresponds to the density contrast of 709. The 
cluster is unstable for larger values of v. 
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S In T(M)=\ F{M.M')SeiM')dM' (1) r |q γ γ γ γ 

where 5s is the variation of the specific entropy. Therefore F 
corresponds to the inverse specific heat. The meaning of equation (1) 
is as follows: If we transport heat inside a cluster, it is 
represented by the variation of the entropy distribution. The cluster 
may reach then a new hydrostatic equilibrium and the temperature 
distribution is changed, and F may be calculated. The second order 
variation of the entropy is expressed as 

I M Γ AT 

dMr J dMr 'F(Mr,Mr')S s(Mr) S s(Mr ') (2) 

Equation (2) shows that if the inverse specific heat tensor F is 
negative, the second order variation of the entropy is positive, i.e., 
instability. The Green's function F is shown for the stable case, 
marginally stable case and for the unstable case in Fig. 3. In the 
stable case the region of negative specific heat is small but it grows 
as the cluster becomes more unstable. Hachisu and Sugimoto (1978) also 
calculated the eigenvalues and eigenfunctions which maximize 52S. They 
are shown in Figs. 4 and 5, respectively. Fig. 4 shows that the 
fundamental mode becomes unstable at the first turning point of Fig. 2 
and the second mode becomes unstable at the second turning point and so 
on. Thus the cluster is unstable if the density contrast is larger 
than 709. Fig. 5 shows that if the cluster is unstable, SS and 6 Ί take 
the opposite sign, which is consistent with equations (1) and (2). 

Evolution after gravothermal instability was first examined by 
Larson (1970) by using moment equations of the Fokker-Planck equation. 
Detailed numerical calculation by numerical integration of the 
isotropized Fokker-Planck equation was done by Cohn (1980), who showed 
that evolution takes place homologously (Fig. 6). Homologous evolution 
after gravothermal instability was examined in detail by Lynden-Bell 
and Eggleton (1980). They adopted a conductive gas model following 
Hachisu et al. (1978), by using modified conductivity: 

Κ - 6GC log Ν p/v 

The usual expression for conductivity for plasmas is inadequate for 
stellar systems because it increases as the relaxation time becomes 
larger. Thus Lynden-Bell and Eggleton adopted a expression for 
conductivity such that the conductivity decreases as the relaxation 
time increases. According to their results, the central quantities of 
the cluster change as follows : 
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Fig. 3b. The same as Fig. 3a but for a marginally stable system with a 
density contrast of 709. 
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log D 

Fig 4. The eigen value λ is shown against the density contrast D for 
the fundamental mode (0) as well as higher harmonics (1, 2 ). The 
condition for gravothermal instability is λ > 0. 
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where p c is the central density, vc the central velocity dispersion, rc 

the core radius and M c is the core mass. From equation (3) we see that 
the central density diverges when t-t^. Another remarkable point is 
that the logarithmic density gradient din pr/dln r is -2.21 in 
Lynden-Bell and Eggleton's model, which is very close to Cohn's (1980) 
value -2.23, though they adopted a conductive gas model. 

4. EVOLUTION OF MULTI-COMPONENT CLUSTERS 

Globular clusters consist of stars with different masses. In 
this subsection, we consider the effect of disparate masses in globular 
clusters. The main extent of disparate masses is to greatly accelerate 
the cluster evolution. Let us consider the simplest multi-component 
cluster, i.e., two-component cluster. Inagaki (1985) carried out 
numerical integrations of the one-dimensional Fokker-Planck equation 
and showed that the evolution time scale is about ten times faster than 
the single component cluster (Table I). 

Another feature of the two-component cluster is destabilization 
due to mass-segregation instability (Spitzer 1969). 
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Fig. 5a. Eigenfunctions of the fundamental mode are shown in arbitrary 
units against the Lagrangian mass coordinate φ = Mj./M for the case of a 
stable system with D - 24.2 and λ - -0.11. σ, θ, and χ are 
dimensionless entropy, temperature and radius, respectively. 
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Fig. 5b. The same as Fig. 5a 
but for the marginally stable 
system with D - 709 and λ - 0 

Fig 5c. The same as Fig. 5a 
but for the case of an unstable 
system with D - 1.41 χ 10 6 

and λ - 0.2. 

TABLE I 

The time (in the unit of t r h) required for the complete collapse 

in two - component clusters with m1/m2 - 5. 

π4/ιη2 0.001 0.005 0.014 0.072 0.30 

t„ 14.8 10.8 4.2 1.7 1.9 
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Fig.6. Cohn's (1980) calculation of a single component cluster. 
Homologous evolution of the cluster is seen from the figure. 

Spitzer (1969) showed that if 

S = (Mj/ltyim^)- 1 5 (7) 

is larger than 0.16, equipartition between the more massive component 
and the less massive component is impossible. The stability of 
isothermal two-component clusters was analyzed by Yoshizawa et al. 
(1978). The curve of marginal stability is shown in Fig. 7. They 
showed that the states of marginal stability lie for large range of the 
density contrast: the cluster can be unstable even if the density 
contrast is 19 which is much smaller than 709 for a single component 
system. In Fig. 7 some stabilization effect is seen, i.e., the 
isothermal cluster with m^ - 10 and Μ2/Μχ = 0.003 is stable if p c / p ^ < 
5012. This stabilization can be understood as follows. Fig. 7 shows 
that p2(0)/Pi(0) is constant (- 8) along the marginally stable states 
near this model. This means that the development of the halo does not 
affect the stability or that the stability is determined by the state 
of the core. In other words, the stability is caused by the exchange 
of energy between components in the core. However, if the halo becomes 
too extended (for example, density contrast of the less massive massive 
component exceeds 709), the less massive component becomes unstable as 
a single component cluster. The density contrast at this stage is 
about p2(0)/Pi(Q) times 709 so that it is significantly larger than 709. 
In this sense, the stabilization in a two-component cluster is 
deceptive. 
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Another interesting point is whether equipartition of kinetic 
energies between different components may be achieved. Inagaki and 
Wiyanto ( 1 9 8 4 ) and Inagaki ( 1 9 8 5 ) made numerical integration of 
isotropized Fokker-Planck equation and confirmed Spitzer's prediction. 
Inagaki and Saslaw ( 1 9 8 5 ) further made simulations of fifteen component 
clusters and found that equipartition is impossible if the mass 
spectrum is shallower than dM α m"6 dm. This conclusion should be 
compared with Vishniac's ( 1 9 7 8 ) result that equipartition is possible 
if the mass spectrum is steeper than dM α m*"2-5 dm, although this assumed 
a homologous density profile for each mass component, which is never 
realized. 

Fig. 7 . Curves of fixed M/Mj (solid curves) and of the marginal 
stability (dashed curve) in the ( 1 + λ) _ 1-ζ 0 diagram for the case of μ = 
1 0 , where λ a'p2(0)/p1(0) and μ = m2/m1. Note that not only each curve 
of a fixed M J / M J but also each line of a constant λ crosses the curve of 
the marginal stability criterion only once. The left side of the 
marginal stability curve is the stable region. The density contrast 
p(0)/p(z Q) between the center and the surface is monotonically 
increasing with increasing z Q along the curve of a fixed M ^ / M ^ The 
value of the critical density contrast at which the cluster becomes 
marginally stable is shown along the curve of the marginal stability. 
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5. CONCLUSIONS AND FUTURE PROBLEMS 

The basic processes in precollapse phase are: 
1) Overflow from the tidal radius 
2) Tidal shock 
3) Gravothermal instability 
4) Multi-mass effects, i.e., acceleration of evolution, mass-
segregation instability, and lack of equipartition. 

All these processes have now been investigated in detail. The 
primary future problem is to construct realistic models of globular 
clusters including the above mentioned effects and to see whether most 
clusters collapse in Hubble time and are currently in post-collapse 
phase. 
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DISCUSSION 

DJORGOVSKI: Since the mass contrast accelerates the collapse so much, 
it is possible to contemplate core collapse in dwarf ellipticals; for 
example, M 32 has the surface brightness profile which is a slope -1.2 
power law for radii < 30". Do you think that it is possible that M 32 
is collapsing now, or that it is a PCC galaxy? 

INAGAKI: If the half-mass relaxation time of M 32 is smaller than 
several billion years, it is quite possible that M 32 is a PCC galaxy. 
However, a tentative calculation shows that the half-mass relaxtion 
time of M 32 is of the order of the Hubble time. Therefore it is 
unlikely that M 32 is a PCC galaxy. The power-law density profile of 
M 32 may be created by some other mechanism. 

LEE, H. M. : How much mass is lost due to the high velocity tail of 
Maxwellian velocity distributions (estimated); and how much is lost due 
to the conductive flux through the tidal boundary? 

INAGAKI: Since we did not take account of close encounters and put the 
value of distribution function zero at the energy corresponding to the 
tidal radius, no mass is lost due to high velocity tail of Maxwellian 
distribution. 
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