Asymptotics applied to nonlinear boundary-value problems

E.N. Dancer

Abstract

We announce results of Landesman-Lazer type for boundary-value problems for ordinary differential equations. Details will appear elsewhere.

We announce results for boundary-value problems. We look for solutions of

$$
\begin{equation*}
L u(t)=g(u(t))-f(t) \tag{1}
\end{equation*}
$$

on $[0, \pi]$, where $f \in L^{\infty}[0, \pi], g: R \rightarrow R$ is smooth, and $L u=a(t) u^{\prime \prime}+b(t) u^{\prime}+c(t) u$ is a regular differential operator with smooth coefficients incorporating either Dirichlet or periodic boundary conditions such that $N(L)$, the kernel of L, is non-trivial. (In the case of periodic boundary conditions, we assume that a, b, and c are periodic.) Our results show the importance of asymptotics in the study of these problems.

Suppose that $h \in N(L) \backslash\{0\}$ and $k \in N\left(L^{*}\right)$ such that $\int_{0}^{\pi} k^{2}=1$, and let $R_{1}=\left\{f \in L^{\infty}[0, \pi]:(1)\right.$ has a solution $\}$.

1. Non self-adjoint problems

We assume periodic boundary conditions, and assume that $\int_{0}^{\pi} a^{-1} b \neq 0$ and h has a zero in $[0, \pi]$. (The other cases behave like the self-

Received 6 October 1977.
adjoint case.) Then h spans $N(L)$. We let

$$
E_{0}=\left\{v \in L^{\infty}[0, \pi]:(v, k\rangle=0\right\}
$$

where (,) denotes the usual scalar product. Assume that $\lim _{y \rightarrow \pm \infty} g(y)=I^{ \pm}$exist (and are finite) and that $I^{-}<g(y)<I^{+}$for all $y \rightarrow \pm \infty$
y. Let

$$
\begin{aligned}
& \mu_{1}=\int_{h>0} k, \mu_{2}=\int_{h<0} k, \beta_{1}=I^{-} \int_{0}^{\pi} k^{+}+I^{+} \int_{0}^{\pi} k^{-}, \\
& \left.\beta_{2}=I^{+} \int_{0}^{\pi} k^{+}+I^{-} \int_{0}^{\pi} k^{-} \text {(where } k^{+}=\sup \{k, 0\} \text { and } k^{-}=k-k^{+}\right), \\
& A_{1}=\left\{\alpha \in R:\left(I^{+} \mu_{1}+I^{-} \mu_{2}-\alpha\right)\left(I^{-} \mu_{1}+I^{+} \mu_{2}-\alpha\right) \leq 0\right\}, A_{2}=\operatorname{int} A_{1},
\end{aligned}
$$

and $A_{3}(v)=\left\{\alpha \in R: v+\alpha k \in R_{1}\right\}$. We find that $A_{1} \subset\left(\beta_{1}, \beta_{2}\right)$ (since h and k have no common zero). There are examples where $A_{2}=\emptyset$ (that is, is empty). However, $A_{1} \neq \emptyset$ and $A_{2} \neq \emptyset$ if L is "nearly selfadjoint".

THEOREM 1. (i) If $v \in E_{0}$, then $A_{3}(v) \neq \varnothing$, and

$$
A_{2} \subseteq A_{3}(v) \subset\left(\beta_{1}, \beta_{2}\right)
$$

(ii) $B_{2}=\sup \left\{\alpha: \alpha \in A(v), v \in E_{0}\right\}$ and

$$
\beta_{I}=\inf \left\{\alpha: \alpha \in A(v), v \in E_{0}\right\}
$$

(iii) $A_{3}(v) \backslash A_{1}$ is relatively closed in $\left(B_{1}, B_{2}\right) \backslash A_{1}$.
(iv) If $L u_{n}=g\left(u_{n}\right)-f_{n},\left\{f_{n}\right\}$ is bounded (in $\left.L^{\infty}[0, \pi]\right)$ and $\left\langle u_{n}, h\right\rangle \rightarrow \infty$ as $n \rightarrow \infty$, then $\left\langle f_{n}, k\right\rangle \rightarrow I^{+} \mu_{1}+I^{-} \mu_{2}$ as $n \rightarrow \infty$. (A similar result holds if $\left\langle u_{n}, h\right\rangle \rightarrow-\infty$.)

The result is proved by standard arguments. Part (ii) is proved by constructing suitable u_{n} so that $g\left(u_{n}\right)-L u_{n}$ has the required property. If $\sup \left\{\left|g^{\prime}(y)\right|: y \in R\right\}$ is sufficiently small, it can be shown that $A_{3}(v)$ is an interval. A version of Theorem 1 holds much more generally.
(In the case of a multi-dimensional kernel, we define A_{2} by requiring that an appropriate degree be non-zero.)

Theorem 1 suggests that, unlike the self-adjoint case, it is impossible to obtain a simple formula for R_{l}. A natural question is whether $A_{1} \subseteq A_{3}(v)$. In general this is false, since there is an example where $A_{3}(v)=A_{2}$ for some $v \in E_{0}$. We need the following lemma.

LEMMA 1. (i) If $v \in E_{0}$, there is a connected set T of solutions of

$$
\begin{equation*}
L u=P g(u)-v \tag{2}
\end{equation*}
$$

(where $P w=w-(w, k\rangle k)$ such that $\{\langle u, h\rangle: u \in T\}=R$.
(ii) If $g^{\prime}(y) \rightarrow 0$ as $|y| \rightarrow \infty$, then there is a $K>0$ such that, for each α with $|\alpha| \geq K$, (2) has a unique solution $\alpha h+\Delta(\alpha)$ with $\langle\Delta(\alpha), h\rangle=0$ and the mapping $\alpha \rightarrow \Delta(\alpha)$ is smooth.

The first part is proved by a standard degree argument while the second is proved by combining the argument in the example in [1] with the implicit function theorem.

Assume now that $g^{\prime}(y) \rightarrow 0$ as $|y| \rightarrow \infty$. By combining a study of the asymptotic behaviour of $t^{\prime}(\alpha)$ as $|\alpha| \rightarrow \infty$ (where

$$
\left.t(\alpha)=\int_{0}^{\pi} g(\alpha h+\Delta(\alpha)) k\right)
$$

with Theorem 1 (iv), we can obtain information on $A_{3}(v)$. For example, if $t^{\prime}(\alpha)<0$ for $|\alpha|$ large and $I^{+} \mu_{1}+I^{-} \mu_{2}>I^{-} \mu_{1}+I^{+} \mu_{2}$, then $A_{1} \subseteq$ int $A_{3}(v)$. We illustrate what can be obtained by giving the asymptotic formula for $t^{\prime}(\alpha)$ as $\alpha \rightarrow \infty$ in two cases. If $g^{\prime}(y) \sim|y|^{-\beta}$ as $|y| \rightarrow \infty$, where $\beta<2$, then $t^{\prime}(\alpha) \sim \alpha^{-\beta} \int_{0}^{\pi}|h|^{-\beta} h k$ as $\alpha \rightarrow \infty$. If $y^{s} g^{\prime}(y) \rightarrow 0$ as $|y| \rightarrow \infty$ for some $s>2$ and h has two zeros x_{0}, x_{1} in $[0, \pi]$, then

$$
t^{\prime}(\alpha) \sim \alpha^{-2}\left[\left(\tau_{1}+\tau_{2}\right) \int_{-\infty}^{\infty} g^{\prime}(y) y d y-\left(s_{1} \tau_{1} 1^{+s} 2_{2}\right)^{2}\left(I^{+}-I^{-}\right)\right] .
$$

Here, for $i=0,1, \tau_{i}=\left|h^{\prime}\left(x_{i}\right)\right|^{-1} k\left(x_{i}\right)$ and s_{i} is the value at x_{i} of a solution of $L w=P(r-v)$, where $r(t)=I^{+}$if $h(t) \geq 0$ and $r(t)=I^{-}$otherwise. Note that, in the second case, the asymptotic formula depends on v, while in the first it does not.

We now briefly discuss the case where g is sublinear and $g(y) \operatorname{sgn} y \rightarrow \infty$ as $|y| \rightarrow \infty$. There is an example where g is odd and $g(y)=|y|^{t} \operatorname{sgn} y$ for $|y|$ large (where $0<t<\frac{1}{2}$) but $R_{1} \neq L[0, \pi]$. This contrasts with the self-adjoint case (as in [2]). Sufficient conditions for R_{1} to be $L^{\infty}[0, \pi]$ can easily be found if g has power growth.

Some of the above results can be extended to boundary-value problems for elliptic partial differential equations. It is more difficult to construct counter-examples for this case but it would appear unlikely that this case is better behaved than the case of ordinary differential equations considered above.
2. The case where $g(y) \rightarrow 0$ as $|y| \rightarrow \infty$ and L is self-adjoint

We consider the case where $h(x)>0$ on $(0, \pi)$. We assume Dirichlet boundary conditions. (The other case is much easier.) We say that g is regular if $g^{\prime}(y) \leq 0$ for $|y|$ large.

THEOREM 2. Suppose that $y g(y) \geq 0$ for $|y|$ large and either
(i) $\int_{0}^{\infty} g(y) y d y>0$ and $\int_{-\infty}^{0} g(y) y d y>0$ (where the integrals may be infinite), or
(ii) g is regular, $\int_{-\infty}^{0} g(y) y d y<0$ and $\int_{0}^{\infty} g(y) y d y<0$.

Then there exists $\varepsilon: E_{0} \rightarrow(0, \infty)$ such that $\alpha h+v . \in R_{1}$ if $|\alpha| \leq \varepsilon(v)$.

This is proved by using Lemma $I(i)$ and by estimating $\int_{0}^{\pi} g(\alpha h+\omega(\alpha)) h$ where $|\alpha|$ is large. (Here $\alpha h+\omega(\alpha) \in T$. Note that w may be multivalued.) It is more convenient to study $\int_{0}^{\pi} \alpha^{2} g(\alpha h+\omega(\alpha)) h$. We use changes of variable of the form $u=\alpha h^{\prime}(0) x$.

Theorem 2 still holds if L is not self-adjoint. Moreover, the result readily generalises to elliptic partial differential equations. (We need to assume that $y^{2} g(y) \rightarrow 0$ in case ($i i$).) The methods in §4 of [3] can be used to deduce more precise information on R_{1}.

The above method can be used if h has zeros in $(0, \pi)$. Theorem 2 holds in this case if $\int_{-\infty}^{\infty} g(y) y d y$ diverges. If $\int_{-\infty}^{\infty} g(y) y d y$ converges and g is regular, there exist $a, b \in R$ and a linear map $Z: E_{0} \rightarrow R$ such that $v+\alpha h \in R_{1}$ for $|\alpha| \leq \varepsilon$ (where $\varepsilon>0$) if $(a-Z(v))(b-Z(v))>0 . \quad$ (For example, if $\int_{-\infty}^{\infty} g(y) d y=0$ and $h^{\prime}(0)=-h^{\prime}(\pi)$, this last condition becomes $\left.\int_{-\infty}^{\infty} g(y) y d y \neq 0.\right)$ There is an example where $(a-Z(v))(b-Z(v))<0$ and $v \& R_{1}$. Our methods can be used to obtain results for periodic boundary conditions and to obtain partial results for elliptic partial differential equations when h has interior zeros (mainly when $N(L)$ is one-dimensional). This is much more complicated due to the greater variety of possible behaviour of h near zeros. We must replace $\int_{-\infty}^{\infty} g(y) y d y$ by $\int_{-\infty}^{\infty} g(y)|y|^{1 / m} \operatorname{sgn} y d y$, where $m \geq 1, m$ depends on the behaviour of h near its zeros, m may be arbitrarily large, and $m=1$ in the "generic" case.
3. The case where $g(y)=a \sin y$

We first assume Dirichlet boundary conditions.
THEOREM 3. Assume that $h^{\prime \prime}(x) \neq 0$ whenever $h^{\prime}(x)=0$ and that
there exists an x_{0} such that $h^{\prime}\left(x_{0}\right)=0$ and $h^{\prime}(x) \neq 0$ whenever $x \neq x_{0}$ and $|h(x)|=\left|h\left(x_{0}\right)\right|$. Then there exists $\varepsilon: E_{0}+(0, \pi)$ such that $\alpha h+v \in R_{1}$ if $|\alpha| \leq \varepsilon(v)$. Moreover, if $f \in E_{0}$, (1) has an infinite number of solutions.

As before, we prove this by examining the asymptotic behaviour of $\int_{0}^{\pi} \sin (\alpha h+\omega(\alpha)) h$. It is more convenient to study $\int_{0}^{\pi} \exp (i \alpha h)_{s}(\alpha)$, where $s(\alpha)(x)=\exp (i w(\alpha)(x)) h(x)$. We do this by the method of stationary phase (as in §2.9 of [4]). (Although $s(\alpha)$ depends on $\alpha, s(\alpha),(s(\alpha))^{\prime}(x)$, $(s(\alpha))^{\prime \prime}(x)$ are uniformly bounded and $s(\alpha)$ has a limit as $|\alpha| \rightarrow \infty$.) We find that $\int_{0}^{\pi} \sin (\alpha h+\omega(\alpha)) h$ oscillates and tends to zero as $|\alpha| \rightarrow \infty$. This gives the result.

The above method still applies if the technical assumptions on h are weakened except that there may be a proper subset of E_{0} for which our proof fails. The above method can also be applied to some elliptic partial differential equations in two or three dimensions and to some periodic boundary-value problems when h is non-constant. This last problem behaves a little differently if h is constant. In this case, $L u=g(u)-f$ has an infinite number of solutions for each f in R_{1} and R_{1} is still closed but we do not know if $E_{0} \subseteq$ int R_{1}. (It is possible to obtain partial results. For example, $E_{0} \subseteq R_{1}$ if L is self-adjoint.) If $h(x)>0$ on $(0, \pi)$, the methods of $\S 4$ of [3] can be used to obtain more precise information on R_{1}.

The results in §§2-3 partially answer a problem raised by Fučík in a lecture at Oberwolfach in 1976.

References

[1] E.N. Dancer, "A note on bifurcation from infinity", Quart. J. Math. Oxford Ser. 25 (1974), 81-84.
[2] E.N. Dancer, "On the Dirichlet problem for weakly non-linear elliptic partial differential equations", Proc. Roy. Soc. Edinburgh Sect. A 76 (1977), 283-300.
[3] E.N. Dancer, "On the ranges of certain weakly nonlinear elliptic partial differential equations", J. Math. Pures Appl. (to appear).
[4] A. Erdélyi, Asymptotic expansions (Dover, New York, 1956).

Department of Mathematics,
University of New England,
Armidale,
New South Wales.

