
J. Fluid Mech. (2022), vol. 937, A28, doi:10.1017/jfm.2022.128

Flow-induced vibration and impact of a cylinder
between two close sidewalls
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The dynamics of a cylinder arranged between two sidewalls in a uniform flow is
experimentally investigated. To investigate the effect of sidewalls on flow-induced
vibration, both circular and square cylinders are considered. The gap between cylinder
and sidewalls is sufficiently small to induce the oscillating cylinder to periodically impact
the walls under certain conditions. The dynamic responses of a circular cylinder change
dramatically depending on whether the cylinder impacts the walls. An impacting circular
cylinder can oscillate with a large amplitude beyond a critical reduced velocity, the
magnitude of which is restricted by the gap distance, whereas a non-impacting circular
cylinder only oscillates in a lock-in region of the reduced velocity. The periodic impact
with the sidewalls, rather than lock-in with vortex shedding, allows the large-amplitude
oscillations of the impacting cylinder to persist. The impacting circular cylinder exhibits
strong hysteresis, which is not observed for the non-impacting cylinder. Furthermore, the
oscillation frequency of the impacting cylinder is proportional to the reduced velocity. The
periodic impact acts to improve the power extracted by a damping mechanism in a broader
range of reduced velocity. Meanwhile, for a square cylinder between sidewalls, oscillation
by galloping is suppressed, and no impacts occur over the entire range of the reduced
velocity. The suppression is caused by shear-layer reattachment on the side surface of the
square cylinder, which is generally observed at a large angle of incidence for an isolated
square cylinder.

Key words: flow–structure interactions, vortex shedding

1. Introduction

Cylindrical structures immersed in a uniform flow are widely used in a variety of
engineering applications, such as heat exchanger tubes, offshore plant risers, bridges and
chimneys. Because such cylindrical structures can be fatigued by flow-induced vibration,
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it is important to understand their vibration characteristics so as to avoid structural
failure. Numerous studies have examined the dynamics and wake patterns of cylinders
undergoing vortex-induced vibration (VIV) (e.g. Williamson & Roshko 1988; Hover,
Techet & Triantafyllou 1998; Khalak & Williamson 1999; Sarpkaya 2004). In many
engineering applications, a cylindrical structure is not alone in the flow, but interacts with
surrounding objects. Thus, there have been many attempts to reveal the VIV response of
a cylinder near other objects and identify the dynamic changes caused by the resulting
interactions. The wake-induced vibration in interactions with an upstream bluff body is
such an example (e.g. Assi et al. 2006; Borazjani & Sotiropoulos 2009; Prasanth & Mittal
2009; Assi, Bearman & Meneghini 2010; Bearman 2011).

Elastically mounted cylinders placed near a plane boundary are also of interest because
of their engineering significance, such as in submarine pipelines near the seafloor (Yang
et al. 2009; Li et al. 2016; Zang & Zhou 2017). Tham et al. (2015) conducted numerical
simulations of the dynamics of a two-dimensional cylinder near a stationary wall parallel
to a free stream at a low Reynolds number of Re = 100. The wall suppresses vortex
shedding from the cylinder, and the oscillation amplitude of the cylinder decreases in most
cases. However, when the wall is sufficiently close to the cylinder, the amplitude increases
in a specific reduced velocity region. In addition, the bandwidths of the initial and lower
branches change according to the gap between the cylinder tip and the stationary wall.
In experiments on the wall effects of the VIV response of elastically mounted cylinders,
Wang, Hao & Tan (2013) observed an increase in the oscillation amplitude for a small
gap ratio between the cylinder and a flat plate placed below the cylinder. Under specific
conditions, the cylinder could impact the wall and bounce regularly. In addition, a cylinder
mounted inside a rectangular plane channel with a narrow clearance has been found to
impact the channel walls (Karlikov, Khomyakov & Sholomovich 2005). Although the
effects of cylinder density and relative clearance on the drag coefficient and the Strouhal
number were examined by Karlikov et al. (2005), the detailed dynamic changes induced
by the clearance and impact were not considered.

Studies of the VIV motion of a cylinder have traditionally focused on reducing
the oscillation amplitude to avoid the mechanical failure of the structure. However,
many recent studies have examined the use of VIV for energy harvesting (Barrero-Gil,
Pindado & Avila 2012; Abdelkefi 2016; Gu et al. 2020). For instance, during VIV, a
piezoelectric sheet connected to the cylinder may be deformed by the oscillation of the
cylinder, with electric power generated by the periodically deformed sheet (Akaydin,
Elvin & Andreopoulos 2012; Dai et al. 2016). Several studies have used the interaction
between harvesters arranged in tandem to enhance the oscillation and power generation
of downstream energy harvesters (Hobbs & Hu 2012; Abdelkefi et al. 2013; Kim,
Bernitsas & Kumar 2013; Zhou & Wang 2018). By changing the cross-sectional shape,
another flow-induced vibration phenomenon known as galloping can be induced. Because
the cylinder maintains a large-oscillation amplitude while galloping, regardless of the
free-stream velocity, the overall energy-harvesting performance can be improved (Yang,
Zhao & Tang 2013; Sun et al. 2019). Zhao & Yang (2018) reported that the galloping
motion of a D-shaped cylinder could be enhanced by the vibration of a base shaker.
Moreover, impact with a side stopper allows more energy to be extracted over a wide
range of the excitation frequency.

Most previous studies of energy harvesting using cylinders have primarily considered
the bending of a beam connected to a cylinder or the mechanical damping of the oscillating
cylinder as the energy-harvesting mechanism. If the cylinder regularly impacts the wall,
it is also possible to devise an energy harvester based on triboelectricity and periodic
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Figure 1. (a) Schematic diagram of experimental set-up, (b) bottom view of the set-up and (c) experimental
parameters.

contact–separation mode (e.g. Fan, Tian & Wang 2012; Bae et al. 2014; Kim et al. 2020).
In this study, with potential energy-harvesting applications in mind, we investigate the
fluid–structure interactions of a cylinder placed between two sidewalls in a uniform free
stream, with a particular focus on the effects of periodic impact between cylinder and
sidewalls. Our experimental set-up is described in § 2. For cases where there is no impact
with the sidewalls, the behaviours of a circular cylinder are examined in § 3.1 to identify
how the gap flow between the circular cylinder and the sidewalls affects the flow-induced
vibration of the cylinder. The change in the dynamics due to periodic impact are analysed
by comparing cases with and without impacts in § 3.2. In § 3.3, a square cylinder is used
to examine the effect of the cross-sectional shape of the cylinder on the flow-induced
vibration. The extracted energy of the cylinder from fluid flow by mechanical damping is
compared in § 3.4. Finally, our results are summarized in § 4.

2. Experimental set-up

Experiments were conducted in a recirculating free-surface water tunnel (figure 1a). The
test section was 0.5 m wide and 1.2 m long, and its depth from the free surface was
0.4 m. The free-stream velocity U ranged from 0.02 to 0.41 m s−1. The spatial uniformity
of the free stream in the test section was checked by particle image velocimetry (PIV)
experiments. The deviation of the free-stream velocity was within 5 % of its mean value.

An aluminium cylinder with diameter D = 5 cm was used for the circular-cylinder
experiments; information about the square-cylinder experiments is given in § 3.3. The
Reynolds number based on the cylinder diameter and the free-stream velocity, Re = UD/ν,
was between 1100 and 23 000. The total length of the cylinder was 65 cm, and its immersed
length in water, L, is 35 cm; the aspect ratio of the immersed cylinder, L/D, is 7. The
cylinder was linked to a top aluminium plate, and the top plate was connected to upper
rigid shafts so that the cylinder could only oscillate in the crosswise direction. To minimize
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friction between the shafts and the top plate, four air bushings (S302001, New Way) were
used. The weight of the oscillating system, including the cylinder, base plate and air
bushings, was 2.54 kg, and the corresponding mass ratio m∗ was about 3.7. The mass
ratio is defined as the ratio of the mass of the entire oscillating platform to the mass
of the displaced fluid for the immersed part. As illustrated in figure 1(b), two springs
were connected from the top plate of the oscillating platform to the fixed base plate, each
having a spring constant of 5.3 N m−1. To estimate the structural damping of the oscillating
platform, a free decay test in air was conducted. The damping ratio ζ was estimated to be
0.01.

Two acrylic sidewalls were aligned parallel to the free stream (figure 1c). The streamwise
length of the sidewalls, w, was set to 40 cm, eight times the cylinder diameter, and their
thickness was 8 mm. To prevent vibration of the walls due to impact, the sidewalls were
fixed at both the top and bottom edges. The walls were sufficiently rigid to endure the
impact of the cylinder without vibration and produce consistent results. In the present
study, we chose the gap distance between the cylinder and the walls, e, to be the main
variable: e/D = 0.3–0.7 for the circular cylinder. Because the circular cylinder does not
impact the sidewalls beyond e/D = 0.7, we did not conduct experiments for gap ratios
greater than e/D = 0.7.

To observe and quantify the oscillations of the cylinder, we photographed the motion of
the cylinder using a high-speed camera (FASTCAM MINI-UX50, Photron Inc.) mounted
below the test section. White tape was attached to the centre of the bottom surface of
the cylinder, and the movement of the tape was tracked to extract the position data of the
cylinder centre over time. The images were taken at 125–500 frames per second, depending
on the oscillation velocity of the cylinder. The resolution of a pixel in the images was
0.2 mm, and it corresponds to Δy/D = 0.004 in dimensionless form; y is the transverse
displacement of the centre of the cylinder.

Furthermore, PIV was conducted to identify the flow structures in the gap between the
cylinder and the wall and in the wake behind the cylinder. Hollow glass particles of 30 μm
in diameter were seeded into the water. A continuous laser (MGL-W-532A, CNI Co.) was
used to illuminate the particles, and image pairs were captured using the same high-speed
camera. The frame rate of the images ranged from 50 to 250 frames per second depending
on the experimental conditions, and the corresponding time step between two images of
a pair was from 20 to 4 ms. PIVview2C software (version 3.6.0, PIVTEC GmbH) was
used to cross-correlate the image pair. For the multi-grid interrogation method, the initial
window size was 32 × 32 pixels, and the final window size was 16 × 16 pixels with an
overlap of 50 %. The vorticity field was calculated from the velocity field using the central
difference scheme.

3. Results and discussion

3.1. Dynamics of a circular cylinder without impact
Before investigating the effects of sidewalls, we first consider the dynamics of an isolated
circular cylinder. The dynamics of an isolated cylinder is generally affected by its end
condition. The amplitude response differs significantly depending on whether an endplate
is attached to the cylinder tip or not, particularly in the lower branch (Morse, Govardhan &
Williamson 2008). With the endplate, the amplitude of the cylinder suddenly decreases
when the cylinder enters the lower branch, and the cylinder maintains an amplitude
of approximately A/D = 0.6. On the other hand, without the endplate, the amplitude
decreases gradually, and the cylinder without the endplate shows larger amplitude than
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Figure 2. Comparison of the dynamics of the isolated cylinder with the experimental results without an
endplate which are reported by Morse et al. (2008). (a) Amplitude response and (b) frequency response with
respect to the reduced frequency Ur.

the cylinder with the endplate in the lower branch. In this study, we chose the tip condition
without the endplate in order to make the cylinder oscillate with large amplitude in a
broader range of the free-stream velocity.

The oscillation amplitude A and frequency f are plotted as a function of reduced velocity
in figure 2, and they are made dimensionless by the diameter D of the cylinder and
the natural frequency fn of the oscillating system, respectively. The reduced velocity is
defined as Ur = U/fnD. In the present study, because we compare the dynamics and
energy-harvesting performance of an impacting cylinder and an isolated cylinder under the
same external flow conditions, the free-stream velocity is used rather than a representative
flow velocity in the gap between the cylinder and the wall in order to consistently define
the reduced velocity for all cases. Several studies have used the oscillating frequency of
the cylinder or vortex shedding frequency to define the reduced velocity. However, because
the cylinder shows significantly different frequency responses depending on whether the
cylinder impacts the sidewalls or not, we made the free-stream velocity dimensionless
using the natural frequency. The natural frequency of the oscillating platform was
measured to be 0.53 Hz by a free decay test in still water. In figure 2(a), the oscillation
amplitude is the averaged distance between the initial centre position of the cylinder and
the peak position of each half-cycle. Because we extracted the frequency from the tracked
centre position of the images, the frequency corresponding to a very small amplitude could
not be measured accurately and is thus omitted in figure 2(b).

In figure 2(a), the isolated cylinder shows a general VIV response. The amplitude
response of the isolated cylinder exhibits a similar trend to that reported by Morse et al.
(2008) without the endplate although there is a little shift in the response. The amplitude
abruptly increases at Ur = 4.1 and reaches a peak value of A/D = 0.95 at Ur = 6.1.
Thereafter, while entering the lower branch, the amplitude gradually decreases, as opposed
to the sharp decrease in the case with the endplate. The cylinder eventually maintains
a small amplitude of less than A/D = 0.2. Because the mass ratio m∗ = 3.7 of this
study is above the critical value reported to be approximately 0.5 in other studies, the
cylinder exhibits two branches, namely an initial branch and a lower branch (Govardhan
& Williamson 2000; Facchinetti, Langre & Biolley 2004; Morse & Williamson 2009). In
figure 2(b), as the cylinder starts to oscillate, the oscillation frequency is similar to the
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Figure 3. Dynamics of the isolated cylinder and the cylinder without impact (e/D = 0.7). (a) Amplitude
response and (b) frequency response with respect to the reduced frequency Ur.

natural frequency of the oscillating system. At the start of the lower branch, the oscillation
frequency departs from the natural frequency. The frequency continues to increase with
the reduced velocity and reaches about 1.2 times the natural frequency outside the lock-in
regime. The converged frequency value is slightly greater than that of Morse et al. (2008)
without the endplate. The difference in the amplitude and frequency between the reference
and the present study may be due to the difference in the cylinder mass ratio. Whereas the
mass ratio m∗ is 3.7 in the present study, it is 9.3 in Morse et al. (2008).

First, we consider the dynamics of a circular cylinder with two sidewalls in the case
where there is no impact between the cylinder and the walls. The case of the cylinder
impacting the walls is covered in § 3.2. In this study, while the circular cylinder impacts
the sidewalls when the gap ratio e/D is less than 0.7, no impact occurs for e/D = 0.7.
To clarify the effects of the sidewalls on the VIV response without impact, we compare
the oscillation amplitude and frequency of the cylinder with e/D = 0.7 with those of an
isolated cylinder. Although two sidewalls are arranged near the cylinder with e/D = 0.7,
the cylinder shows a general VIV response without impact (figure 3). The difference
from the isolated cylinder is the reduction in the oscillation amplitude. Whereas the peak
amplitude of the isolated cylinder is approximately A/D = 0.95, that of the cylinder with
e/D = 0.7 is A/D = 0.61. In fact, the wall effect that reduces the oscillation amplitude
of the cylinder has been reported in previous studies (Yang et al. 2009; Wang et al. 2013;
Tham et al. 2015).

Another notable feature is the shift of the lock-in region. The lock-in region with two
sidewalls shifts to a lower reduced velocity, and the bandwidth of the lock-in region
contracts. Without the sidewalls, the reduced velocity range of lock-in is from Ur = 4.1
to 10.0. However, for the cylinder with e/D = 0.7, the reduced velocity range of the
lock-in region is just Ur = 2.1–5.6. For the isolated cylinder, the peak amplitude appears
at Ur = 6.0, while it appears at Ur = 3.3 with e/D = 0.7. The shift of the lock-in region is
also clearly observed in the frequency response. In figure 3(b), the frequency reaches the
natural frequency when the cylinder attains its peak amplitude. With any further increase
in the reduced velocity, the frequency departs from the natural frequency at a smaller
reduced velocity than that of the isolated cylinder. Thereafter, the frequency converges to
a value of f /fn = 1.2, which is almost the same as the converged frequency of the isolated
cylinder at Ur = 10.0 or higher. That is, the entire amplitude and frequency responses of
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Figure 4. Time responses of transverse displacement and velocity at Ur = 6.1. (a) Displacement and
(b) velocity of the isolated cylinder. (c) Displacement and (d) velocity of the cylinder with e/D = 0.6.

the non-impacting cylinder are similar to those of the isolated cylinder, but all features of
VIV appear at a lower reduced velocity than for the isolated cylinder.

3.2. Dynamics of a circular cylinder with impact
For gap ratios of less than 0.7, the circular cylinder starts to impact the sidewalls and
shows significantly different behaviours. Figures 4(a) and 4(b) show the time responses
of the dimensionless displacement and velocity for the isolated cylinder, respectively,
and figures 4(c) and 4(d) show those for the cylinder with e/D = 0.6. The velocity is
calculated from the displacement data using the forward difference scheme and smoothed
to remove experimental noise. While the displacement and velocity of the isolated cylinder
are approximately sinusoidal, the displacement of the cylinder with e/D = 0.6 has a rather
triangular shape (figure 4c). Moreover, the peak velocity occurs at zero displacement, and
decreases as the cylinder approaches the wall. Because of the impact, the velocity abruptly
becomes zero (figure 4d).

As the reduced velocity increases, the oscillation amplitude increases at a faster rate for
the impacting cylinder than for the isolated cylinder (figure 5a). For the non-impacting
cylinders (figure 3), the oscillation amplitude increases gradually from the initial branch
until it reaches a peak, although the bandwidth of the cylinder with e/D = 0.7 is
narrower than that of the isolated cylinder. However, with impact, the oscillation amplitude
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Figure 5. Dynamics of the isolated cylinder and the cylinder impacting with the sidewalls (e/D = 0.6).
(a) Amplitude response and (b) frequency response with respect to the reduced frequency Ur.

immediately reaches A/D = 0.55 from A/D = 0.07, and the bandwidth of the initial
branch narrows dramatically. Furthermore, the critical velocity at which the oscillation
amplitude exhibits a sharp increase changes. The critical velocity of the impacting cylinder
is Ur = 2.3, which is almost the same as the critical velocity of the cylinder with
e/D = 0.7, whereas the isolated cylinder begins to oscillate at Ur = 4.1.

Above the critical reduced velocity, the cylinder exhibits large-amplitude oscillation and
starts to impact the sidewalls. Because the displacement of the cylinder is limited by the
sidewalls, the cylinder maintains a constant amplitude equivalent to the gap ratio within the
range of large-amplitude oscillations. Notably, the large-amplitude oscillation persists for
the whole reduced velocity range available in our water tunnel. The impacting cylinder
oscillates continuously up to Ur = 15.5, which is 1.5 times greater than the reduced
velocity at which the isolated cylinder stops oscillating.

The oscillation frequency is also dramatically affected by the impact between cylinder
and sidewalls (figure 5b). First, near the critical velocity, the oscillation frequency of
the impacting cylinder is similar to the natural frequency of the oscillating platform,
because the initial oscillation is VIV. For the isolated cylinder, as the reduced velocity
increases, the oscillation frequency does not differ markedly from the natural frequency,
and converges to a specific value. However, the frequency of the impacting cylinder
increases in proportion to the reduced velocity. As a result, the oscillation frequency
in the case of impact is roughly 1.5 times greater than that of the isolated cylinder at
Ur = 6.1, which corresponds to the peak oscillation amplitude of the isolated cylinder.
The frequency increases continuously with the reduced velocity and reaches f /fn = 3.5 at
Ur = 15.5.

Although the cylinder with e/D = 0.6 has a smaller oscillation amplitude than the
isolated cylinder, the oscillation velocity is greater due to the high oscillation frequency.
This fast oscillation of the impacting cylinder may be advantageous from the perspective
of energy harvesting based on the flow-induced vibration of a cylindrical structure,
because the velocity is an important factor in determining energy-harvesting performance.
Moreover, energy-harvesting models using a circular cylinder, which have been considered
in previous studies, have a practical issue whereby the energy harvesters only extract
electrical energy with high efficiency over a limited range of the flow velocity because
the cylinder cannot oscillate outside the lock-in region. However, if our model is applied
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Figure 6. Hysteresis of the amplitude response for (a) the isolated cylinder and (b) the impacting cylinder
with e/D = 0.6.

to energy harvesting, electrical energy could be extracted even outside the lock-in
region of the isolated cylinder, because the impacting cylinder maintains large-amplitude
oscillations at flow velocities above the critical velocity.

In the previous figures, the free-stream velocity was controlled to increase gradually
from zero. With an increase in the free-stream velocity, the cylinder initiates to impact
the walls by VIV. To investigate whether the change in dynamics induced by the periodic
impact can be observed without the initial impact triggered by VIV, we conducted another
set of experiments in which the reduced velocity was decreased from Ur = 15.5 instead
of being increased from Ur = 0 to 15.5. A value of Ur = 15.5 is sufficiently large to be
outside the lock-in regime of the isolated cylinder case. In these experiments, the cylinder
was initially set to be stationary at Ur = 15.5, and then the free-stream velocity was
gradually reduced.

With decreasing reduced velocity, the impacting cylinder shows a strong hysteresis
response (figure 6). For the isolated cylinder (figure 6a), no significant hysteresis is
observed, although the amplitude in the high-reduced-velocity region is slightly different
in the case of increasing reduced velocity than in the case of decreasing reduced velocity
because of the chaotic cylinder response (Cagney & Balabani 2014). However, the
impacting cylinder does not oscillate in the high-reduced-velocity region with decreasing
reduced velocity, whereas the cylinder oscillates continuously with increasing reduced
velocity (figure 6b). For the case of decreasing reduced velocity, oscillations occur
from Ur = 5.0, where the dimensionless amplitude suddenly jumps from A/D = 0.03 to
0.46. Thereafter, with further decreases in the reduced velocity, the amplitude gradually
increases, and the cylinder begins to impact the sidewalls at Ur = 3.9. Below Ur = 3.4, the
cylinder stops impacting the sidewalls, and the oscillation amplitude attenuates until the
cylinder becomes stationary. The response below Ur = 3.9 is the same as for the increasing
reduced velocity. From this observation of hysteresis, we argue that the persistence of the
oscillation of the cylinder at a high reduced velocity is contributed by the reaction force
induced by the impact and the hydrodynamic force induced by the small gap between
cylinder and sidewall during the impact, which is the reason why the cylinder does not
oscillate at a high reduced velocity in the case of decreasing reduced velocity.

As the gap ratio e/D varies from 0.2 to 0.6, the trends of the oscillation amplitude
and frequency curves do not exhibit notable changes (figure 7). In figure 7(a) for the
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Figure 7. Effects of the gap ratio on the dynamics of the impacting cylinders for e/D = 0.2–0.6.
(a) Amplitude response and (b) frequency response with increasing reduced velocity. (c) Amplitude response
and (d) frequency response with decreasing reduced velocity. Note the different Ur range in (d).

case of increasing reduced velocity, because the amplitude of each cylinder is limited
by the gap between the cylinder and the sidewalls, impacting cylinders with larger gap
ratios have a greater amplitude. Furthermore, cylinders with a larger gap ratio begin to
oscillate at a greater critical velocity. For example, while the critical velocity is about
Ur = 2.6 for e/D = 0.6, it is about Ur = 1.6 for e/D = 0.2. For a fixed circular cylinder
confined in a channel, it is well known that, as the blockage ratio increases, the vortex
shedding frequency increases due to the fast gap flow near the cylinder (Griffith et al.
2011). The increase in the Strouhal number St (= fvD/U, where fv denotes the vortex
shedding frequency for a fixed cylinder) causes the lock-in region to shift for a moving
cylinder (Soti & De 2020). We also measured the Strouhal number for a fixed cylinder
between the sidewalls through PIV experiments. The Strouhal number increases gradually
as the gap ratio decreases (figure 8): St = 0.30 at e/D = 0.7 and St = 0.52 at e/D = 0.3.
Such changes in the Strouhal number are responsible for the shift of the critical velocity.
With increased St induced by fast gap flow, the impacting cylinder starts to oscillate at a
lower reduced velocity than the isolated cylinder. Indeed, if the amplitude of the impacting
cylinder is plotted as a function of StUr in figure 7(a), the critical value StUr,cr for initiating
large-amplitude oscillations is close to 0.95 for all cases.

For all gap ratios, the dimensionless frequency is proportional to the reduced velocity
(figure 7b). Because the amplitude of the impacting cylinder increases with the gap ratio,
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Figure 8. Strouhal number St of a fixed cylinder between sidewalls with respect to the gap ratio e/D.

cylinders with a greater gap ratio have a smaller dimensionless frequency for a given
reduced velocity. Although the frequencies of all the gap ratios are similar to the natural
frequency near the critical velocity, the difference between the frequencies becomes
more distinct beyond the critical velocity. For example, the dimensionless frequency of
e/D = 0.2 is about 1.3 times that of e/D = 0.6 beyond the critical velocity.

For the case of decreasing reduced velocity, the region of large-amplitude oscillation
shifts towards a larger reduced velocity as the gap ratio increases (figure 7c). That is, the
critical velocities at which the impact between the cylinder and the sidewalls begins and
ends move to greater values as the gap ratio increases. Moreover, the bandwidth of large
amplitude becomes significantly narrower than that of the non-impacting cylinder for all
gap ratios. In figure 7(d), similar to the case of increasing reduced velocity, the oscillation
frequency of larger gap ratios tends to be lower than that of smaller gap ratios below
approximately Ur = 4.0–5.0 where the oscillation amplitude drops.

To compare the vortex structure between the impacting and non-impacting cylinders,
vorticity contours are depicted in figure 9. The vorticity contours are phase-averaged
according to the oscillation frequency of each case. The lower end of the cylinder is
masked by a black circle in figure 9. Thus, the black circle appears to cross the wall at
some instants in the figure. At Ur = 2.9, the isolated cylinder does not oscillate, and the
cylinders with e/D = 0.3 and 0.5 impact the walls. Although the non-impacting cylinder
with e/D = 0.7 oscillates slightly, it appears to be stationary in the figure due to its very
small oscillation amplitude.

In figure 9(a,b), the shear layer (blue contours) near the cylinder surface is clearly
observed at t0 before impact with the sidewall. However, when impact occurs, the shear
layer also interacts with the sidewall and loses its clear form at t0 + 0.25T . The shear
layer is dissipated by the impact and does not evolve into a flow pattern of a typical VIV
behind the cylinder. Thereafter, as the impacting cylinder departs from the wall, the shear
layer (red contours) develops in the opposite direction at t0 + 0.50T . One notable feature
in the flow structure of the impacting cylinder is the direction of the shear layer developed
near the cylinder surface. For the isolated cylinder or the cylinder without impact, the
shear layer stretched from the cylinder surface is distributed mainly along the streamwise
direction (figure 9c,d). However, in figure 9(a,b), the shear layer of the impacting cylinder
develops more closely to the back of the cylinder after the impact (at t0 and t0 + 0.50T).
That is, the shear-layer development near the impacting cylinder is distinctly different from
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ωzD/U
2.50–5.0 –2.5

(a)

(b)

(c)

(d)

Figure 9. Phase-averaged vorticity contours near the cylinder at four instants (Ur = 2.9): (a) e/D = 0.3,
(b) e/D = 0.5, (c) e/D = 0.7 and (d) the isolated cylinder. The cylinder is masked by a black circle, and
blue horizontal lines indicate the sidewalls. Parameter T denotes the oscillation period of the cylinder for each
case.

that of the cylinder in the absence of impact. This result indicates that the critical factor
that induces the change in dynamics of the impacting cylinder is not only the reaction force
acting on the cylinder by the sidewall during impact but also the unique flow structure
different from the general VIV.

To determine whether the PIV results for the middle plane of the cylinder can be
generalized along the spanwise direction, we also conducted PIV experiments for three
different horizontal planes of the cylinder, although not presented here. The horizontal
planes were chosen to be positioned at every quarter from the tip of the cylinder. All planes
showed a similar flow pattern, and three-dimensional effects on the flow structure were not
significant for both the isolated and impacting cylinders. Thus, our arguments based on the
PIV results of a horizontal plane in the middle of the cylinder can be generalized.

To further examine the interaction of the flow structure and the impacting cylinder, first
the transverse velocity profiles of the impacting cylinder during one cycle are presented
for several values of the reduced velocity and gap ratio (figure 10). The velocity data were
obtained by the forward difference of the displacement data for the centre of the cylinder
bottom surface, which were measured from the images. The time t is made dimensionless
by the oscillation period T . The dimensionless transverse velocity v∗(= v/U) is divided
by the gap ratio e∗(= e/D) to properly compare the velocity profiles of different gap ratios.
In figure 10(a), the velocity profile of the cylinder with e/D = 0.6 differs by the reduced
velocity. For Ur = 3.6 when the cylinder starts to impact, the velocity profile is almost
sinusoidal when the cylinder moves from one sidewall to the opposite sidewall, and the
Ur = 3.6 case shows the largest value of v∗/e∗ in most of the oscillation; the peak value
of v∗/e∗ is roughly 1.7 at t/T = 2.4. Velocity v∗/e∗ decreases gradually with an increase
in the reduced velocity. For the cases of Ur ≥ 9.3, the profiles of v∗/e∗ are collapsed,
and they become almost linear when the cylinder moves between the sidewalls. The v∗/e∗
value continues to increase over time, and the peak value of approximately v∗/e∗ = 0.9

937 A28-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

12
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.128


Flow-induced vibration of a cylinder between walls

(a) (b)

0

0

v*/e* 0

2.0

1.0

1.5

0.5

–2.0

–1.0

–1.5

–0.5

2.0

1.0

1.5

0.5

–2.0

–1.0

–1.5

–0.5

1.00.80.60.40.2

t/T
0 1.00.80.60.40.2

t/T

e/D = 0.3

e/D = 0.2

e/D = 0.4

e/D = 0.5

e/D = 0.6

Ur = 6.0

Ur = 4.5

Ur = 3.6

Ur = 9.3

Ur = 12.3

Ur = 15.5

Figure 10. Transverse velocity profiles of the impacting cylinder for one cycle. (a) Various reduced velocities
with e/D = 0.6 and (b) various gap ratios with Ur = 15.5.

appears at t/T = 0.45. In contrast to when t/T is less than 0.45, the v∗/e∗ profiles
are similar for all reduced velocities just before and after the impact, t/T = 0.45–0.55.
Meanwhile, the change in the gap ratio hardly affects the velocity profile in the entire
oscillation period for a given reduced velocity (figure 10b). Although not presented here,
the velocity profile shows a similar trend for all gap ratios at other reduced velocities as
well.

Phase-averaged vorticity contours between impacting cylinder and sidewall are depicted
for three different reduced velocities with e/D = 0.6 in figure 11. Here, t0 is the time
at which the cylinder impacts the sidewall. Three contours in each column of the
figure have the same position of the cylinder. A stronger shear layer develops for the
lower-reduced-velocity case (Ur = 3.6). The formation of a strong shear layer for Ur = 3.6
induces a greater hydrodynamic force on the cylinder, leading to a larger v∗/e∗ value and
more sinusoidal velocity profile as reported in figure 10(a).

Next, we analyse how the flow structure of the impacting cylinder enables the
oscillation of the cylinder even outside the lock-in regime of the isolated cylinder. The
cases in figure 12 depicting velocity contours correspond to the cases in figure 11. In
figure 12(a,d,g), the upper surface of the cylinder approaching the sidewall forms the
general flow pattern that can be observed for the isolated cylinder. At the instant of impact
(figure 12b,e,h), flow near the front side of the cylinder is weakened. However, near the rear
side of the cylinder, flow is generated towards the wall from the non-impacting side (lower
surface) of the cylinder. Thereafter, as the cylinder departs from the wall, the flow on the
front side of the cylinder enters the gap, and the flow from the non-impacting side causes
back flow in the gap on the rear side of the cylinder (12c, f,i). As a result, crosswise flow
forms in the gap by the interaction between the forward flow and the back flow, directly
imposing fluid force on the cylinder along the crosswise direction. This process is simply
illustrated in figure 13. For impacting cylinder cases, this phenomenon occurs universally
regardless of the reduced velocity. The hydrodynamic force exerted by the crosswise flow
in the gap as well as the reaction force from the sidewalls during impact is responsible for
persisting large-amplitude oscillations outside the lock-in regime of the isolated cylinder.

To more quantitatively examine the effect of the crosswise flow on the dynamics of
the impacting cylinder, the velocity distributions of the crosswise flow are plotted in
figure 14. The y velocity component of the crosswise flow, vf , is extracted near the
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Figure 11. Phase-averaged vorticity contours between impacting cylinder and sidewall with e/D = 0.6:
(a) Ur = 3.6, (b) Ur = 9.3 and (c) Ur = 15.5.

cylinder moving away from the wall: on the red line in figure 14(a). Velocity component
vf is phase-averaged and normalized by the free-stream velocity. The distributions of
the dimensionless crosswise flow velocity vf /U are compared in figure 14(b) for several
reduced velocities. All vf values are extracted at t = t0 + 0.15T when the crosswise flow
is sufficiently developed. For each Ur in figure 14(b), the uppermost point of the cylinder
is placed at approximately 0.20D from the wall. Because the cylinder of the same phase is
located in a different position for the case of low reduced velocity, we considered only the
cases of relatively high reduced velocity between Ur = 9.3 and 15.5.

Despite the variations in the reduced velocity, the distributions of vf /U near the cylinder
are quite similar; for all cases, vf /U has a peak at a location close to x/D = 0, and
the peak value of vf /U ranges from 0.30 to 0.35. That is, at a given position near the
cylinder, vf scales with the free-stream velocity, and accordingly the hydrodynamic force
acting on the cylinder, which is induced by the crosswise flow, scales as the square of
the free-stream velocity. This trend is correlated with the y-velocity profile of the cylinder
in figure 10(a). In a dimensional form of figure 10(a), the slope of the cylinder velocity
profile, which means acceleration along the y direction, is also proportional to the square
of the free-stream velocity. This correlation indicates that the crosswise flow contributes
to accelerating the transverse motion of the cylinder between successive impacts, thereby
leading to the high oscillation frequency of the impacting cylinder. The crosswise flow
persists until the cylinder closely approaches the wall on the other side (figure 14c).
Velocity vf /U near the cylinder tends to increase from t = t0 + 0.15T to t0 + 0.35T , and
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t0 – 0.20T t0 t0 + 0.20T

(a) (b) (c)

(d) (e) ( f )

(g) (h) (i)
t0 – 0.12T t0 t0 + 0.22T

t0 – 0.13T t0 t0 + 0.23T

Figure 12. Phase-averaged velocity vectors between impacting cylinder and sidewall with e/D = 0.6:
(a–c) Ur = 3.6, (d–f ) Ur = 9.3 and (g–i) Ur = 15.5.

(a) (b) (c) (d)

Figure 13. Schematics of the flow pattern between impacting cylinder and sidewall. (a) Before impact, (b) at
impact and (c,d) after impact.

the peak value of vf /U near the cylinder can reach about 0.7. While the peak velocity
occurs near x/D = 0 at t = t0 + 0.15T , the location of the peak velocity is displaced
along the x direction as time advances; e.g. the peak location is near x/D = 0.2 at
t = t0 + 0.35T . As the gap between the cylinder and the wall continues to widen after
impact, the forward flow from the front side of the cylinder becomes dominant over the
back flow from the rear side of the cylinder, which results in the downstream movement of
the peak location as time advances.

3.3. Dynamics of a square cylinder between two sidewalls
In this section, we consider a square cylinder under the same conditions as those for the
circular cylinder illustrated in figure 1; only the cylinder is replaced at the same position.
The side width of the square cylinder is the same as the diameter of the circular cylinder,
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Figure 14. (a) The y-directional velocity of the crosswise flow, vf , is obtained on the red line near the cylinder.
(b) Distributions of vf for various reduced velocities at the same phase, t = t0 + 0.15T . (c) Distributions of vf
for various phases at the same reduced velocity, Ur = 9.3. For all cases, the gap ratio is fixed as e/D = 0.6.

D = 5 cm, and the weight of the oscillating platform is 2.9 kg. The aspect ratio L/D is
also same as that of the circular cylinder: L/D = 7. For the square cylinder, the angle of
incidence was set to be zero; refer to figure 1(c) for the definition of the angle of incidence
α between the free stream and the square cylinder. To measure the natural frequency and
damping ratio of the square cylinder, we conducted a free decay test for the isolated square
cylinder. The natural frequency fn was 0.49 Hz in still water, and the structural damping
ratio ζ was 0.01 in air. Particle image velocimetry experiments were also conducted for
the square cylinder. Images were captured at 125 frames per second. The initial window
size for the correlation was 24 × 24 pixels with an overlap of 50 %. The other parameters
for the flow visualization were identical to those for the circular cylinder.

The galloping response of a non-circular (e.g. square) cylinder significantly differs from
the VIV response (e.g. Igarashi 1984; Norberg 1993; Yoon, Yang & Choi 2010; Sarioglu
2017; Feero, Naguib & Koochesfahani 2020). Whereas a structure oscillates over a limited
range of the flow velocity in VIV, it can oscillate by galloping if the flow velocity exceeds
a critical value, and the oscillation amplitude continues to grow with increasing flow
velocity. Of course, periodic vortex shedding also occurs behind the square cylinder as
well as the circular cylinder, and the square cylinder can undergo both galloping and
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Figure 15. Effects of the gap ratio on the square cylinder. (a) Amplitude response and (b) frequency response
with respect to the reduced velocity.

VIV. The dominant flow-induced vibration mechanism of the square cylinder is mainly
determined by the angle of incidence (Nemes et al. 2012). The oscillation of the square
cylinder with a large angle of incidence is influenced by VIV and cannot be regarded as full
galloping (Zhao et al. 2014, 2019; Tang & Zhou 2020). Meanwhile, Mannini et al. (2016)
investigated the interference between VIV and galloping of a rectangular cylinder with
α = 0◦. In their study, the interference is divided into four different modes, namely full,
partial, low and no interference, and the interference modes can be distinguished from
the amplitude–velocity curve. In figure 15(a), our isolated square cylinder model with
α = 0◦ shows interference between VIV and galloping. Here, the definition of the reduced
velocity is the same as that for the circular cylinder: Ur = U/fnD. The amplitude is made
dimensionless by the side width of the square cylinder. The VIV of the isolated square
cylinder occurs at a low reduced velocity of Ur = 4.0, but the amplitude at this reduced
velocity is very small. Because we are interested in the high-reduced-velocity region
that is predicted to generate high electrical energy in energy-harvesting applications, the
oscillation of the square cylinder with α = 0◦ can be regarded as full galloping. Since we
intend to compare the effects of the sidewalls on the galloping of the square cylinder and
the VIV of the circular cylinder, we consider the square cylinder with only α = 0◦ in the
present study.

The isolated square cylinder starts galloping near Ur = 4.3, and the amplitude increases
monotonically with the reduced velocity (figure 15a). Up to Ur = 8.8, the isolated square
cylinder exhibits a smaller amplitude than the isolated circular cylinder. However, the
amplitude of the square cylinder becomes greater than that of the circular cylinder from
Ur = 9.5. Interestingly, with two sidewalls installed, the square cylinder does not impact
the sidewalls for any gap ratio considered in this study (figure 15a). For all of the square
cylinders in the presence of sidewalls, the amplitudes are similar to or smaller than those
for the isolated square cylinder. Unlike the circular cylinder, a small gap ratio tends to
suppress the oscillation of the square cylinder. In particular, from e/D = 0.3 to 0.7, the
oscillation amplitude of the square cylinder is less than A/D = 0.1 in the entire region of
the reduced velocity. The dimensionless amplitude at the same reduced velocity increases
with the gap ratio and reaches the value for the isolated cylinder when the gap ratio is
e/D = 1.5. In figure 15(b), the response of the dimensionless frequency is not strongly
affected by the gap ratio, except for the e/D = 0.9 case; only e/D values (e/D = 0.9–1.5)
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Figure 16. Transverse force coefficient Cy with respect to the angle of incidence α for the fixed square
cylinder (Ur = 6.6).

that produce sufficiently large amplitudes are presented in figure 15(b). The frequency
tends to increase with the reduced velocity, except at e/D = 0.9, and its value is similar to
that for the isolated square cylinder.

To examine why the sidewalls arranged closely to the square cylinder suppress its
oscillation and prevent impact, the quasi-steady transverse force coefficient Cy was
measured with a load cell (MB-5, Interface Inc.) for a square cylinder fixed in the
middle between the walls, and averaged over 180 s: Cy = Fy/

1
2ρf U2LD, where Fy and L

denote the measured transverse force and the immersed length of the cylinder in water,
respectively. Regarding the transverse force coefficient as a function of the angle of
incidence α (figure 1c), the fixed square cylinder in the absence of the walls exhibits the
same general trend as reported in other studies (Parkinson & Smith 1964; Bearman et al.
1987; Norberg 1993); the slope is positive at α = 0◦, and the sign of the slope changes near
α = 12◦ (figure 16). The stability of the square cylinder for the galloping phenomenon is
determined by the slope of the transverse force coefficient with respect to the angle of
incidence (Païdoussis, Price & Langre 2011). If the slope of Cy versus α is positive at
α = 0◦, the free square cylinder with α = 0◦ undergoes galloping.

When the square cylinder oscillates with a sufficiently large amplitude between the
sidewalls (i.e. e/D = 1.1), the trend of the transverse force coefficient is similar to that for
the isolated cylinder, but the point at which the slope of the coefficient changes moves to a
lower angle of incidence; for e/D = 1.1, the slope becomes negative at α = 8◦ (figure 16).
However, as the gap ratio becomes smaller (i.e. e/D = 0.3), the slope at α = 0◦ becomes
negative. That is, the free square cylinder with α = 0◦ becomes stable and does not
oscillate with a large amplitude when it is placed in a narrow gap between the sidewalls.

For the isolated square cylinder, the shear layer generated from the leading edge of the
cylinder reattaches to the upper surface at a certain angle of incidence (Igarashi 1984). This
reattachment dramatically changes the pressure distribution on the surface and eventually
causes the transverse force coefficient slope to be reversed from positive to negative at
that angle of incidence. Okajima et al. (1997) reported that, in the presence of walls, the
shear layer from the leading edge could reattach on the side surface even at zero angle of
incidence. The reattachment phenomenon also occurs in our square cylinder model with
sidewalls at zero angle of incidence. Figure 17 presents the averaged velocity magnitude
contours and velocity vectors near the upper surface of the stationary square cylinder for
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Figure 17. Flow visualization of the square cylinder for several gap ratios at Ur = 3.2. (a) Velocity magnitude
contours and (b) velocity vectors. The square cylinder is masked by a black box, and its shadow is masked by
a grey box. The blue arrows in (b) represent the flow direction of the shear layer.

several gap ratios at Ur = 3.2. For e/D = 0.3, the shear layer shed from the leading edge
reattaches about halfway along the upper surface, and the reattachment point shifts towards
the trailing edge of the cylinder with increasing gap ratio. That is, for a small gap ratio
(e/D = 0.3–0.7), the sidewalls induce the reattachment of the shear layer at α = 0◦. By the
reattachment, the slope of the transverse force coefficient becomes negative at α = 0◦, and
the square cylinder stabilized by the reattachment does not undergo galloping. By contrast,
for a gap ratio larger than e/D = 0.9, the reattachment does not occur at α = 0◦, and the
square cylinder can oscillate with a large amplitude at α = 0◦ (figure 15a). According
to these results, shear-layer reattachment is an important phenomenon which determines
whether the square cylinder between the sidewalls oscillates by galloping, and there is a
critical gap ratio for inducing shear-layer reattachment and consequent galloping.

3.4. Energy extraction from a circular cylinder
In the previous sections, we discussed the dynamic responses of circular and square
cylinders with sidewalls. In this section, we examine the extraction of energy from the
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cylinders to reveal the advantages of the present model from the perspective of energy
harvesting. Because an actual energy-harvesting device was not incorporated in our model,
we simply use structural damping to evaluate the extracted power. The structural damping
of the oscillating system is very small due to the low friction of the air bushings, and so the
calculated power is also low. Therefore, we focus on comparing the power extracted from
impacting and non-impacting cylinders rather than evaluating the absolute magnitude. For
the isolated cylinder, the extracted power can be assumed to be the same as the power
dissipated by damping effects (Lee & Bernitsas 2011; Soti et al. 2017; Soti & De 2020).
The dimensionless dissipated power is defined as

P∗(t) = cv2

1
2
ρf U3DL

= 2π2m∗ζv∗2

Ur
, (3.1)

where ρf is the fluid density and v∗ is the transverse velocity of the cylinder normalized
by the free-stream velocity U (v∗ = v/U). The damping ratio ζ is defined as c/cc, where
c is the damping coefficient of the oscillating platform in air and cc is the critical damping
coefficient, cc = 4πmfn, where fn is the natural frequency in air. The averaged value of the
extracted power is then obtained from

P∗
avg = 2π2m∗ζv2∗

rms

Ur
, (3.2)

where v∗
rms is the root mean square value of v∗.

In § 3.3, we reported that the isolated circular cylinder in the lower branch region has a
greater oscillation amplitude than the isolated square cylinder up to Ur = 8.8, and that
the isolated square cylinder has a larger amplitude from Ur = 9.5. Regarding energy
extraction, the circular cylinder produces a greater extracted power P∗

avg at the lock-in
region, and the square cylinder exhibits better performance beyond Ur = 10.0 (figure 18).
However, although the square cylinder experiences a larger amplitude beyond Ur = 10.0,
the P∗

avg value of the square cylinder is remarkably small compared with that for the lock-in
region of the circular cylinder because of the relatively low oscillation frequency and high
reduced velocity. Thus, for the following discussion on energy extraction, we only consider
circular cylinders.

As the non-impacting circular cylinder with e/D = 0.7 does not show a dramatic
difference in dynamics from the general VIV response, the trend of the energy-harvesting
performance is similar to that of the isolated cylinder (figure 19a). The dimensionless
extracted power P∗

avg is considerable at the lock-in region and almost zero outside the
lock-in region. However, the peak values of P∗

avg differ significantly in the cases of the
isolated cylinder and the cylinder with e/D = 0.7. For the cylinder with e/D = 0.7, the
peak value of the extracted power is 0.15, more than twice that of the isolated cylinder,
although the oscillation amplitude of the cylinder with e/D = 0.7 is less than that of the
isolated cylinder in the lock-in region.

The impact between cylinder and sidewalls changes the dynamic response of the
cylinder. Thus, the trends in the extracted power are also notably affected by the impact;
see the case of the impacting cylinder with e/D = 0.6 in figure 19(a). Because the motion
of the impacting cylinder is no longer harmonic, the averaged powers of the mass and
spring force terms in the mass–damper–spring equation for the cylinder are non-zero for a
cycle. However, we consider only the power dissipated by the damping effect in the present
study, assuming that energy is extracted by the damping mechanism.
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Figure 18. Comparison of dimensionless extracted power P∗
avg between the isolated circular and square

cylinders.
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Figure 19. Comparison of dimensionless extracted power P∗
avg (a) between the isolated circular cylinder and

circular cylinders with e/D = 0.6 and 0.7 and (b) between impacting circular cylinders with e/D = 0.2–0.6.

As expected, the changes in the dynamics induced by the impact (i.e. reduction in the
critical velocity, consistent oscillation amplitude beyond the critical velocity and high
oscillation frequency, as shown in figure 7) improve the energy extraction of the impacting
cylinder over a broad range of reduced velocity. The peak value of the extracted power
is 0.23 at the reduced velocity where the cylinder starts to impact the sidewalls, more
than three times that of the isolated cylinder. After the critical condition, the oscillation
frequency is proportional to the free-stream velocity (figure 7b), and the transverse velocity
of the impacting cylinder is also proportional to the free-stream velocity due to the constant
oscillation amplitude. Therefore, the extracted power P∗

avg normalized by the third power
of the free-stream velocity in (3.1) decreases with the reduced velocity; note that the
dimensional extracted power itself increases with the reduced velocity. As the gap ratio
further decreases from e/D = 0.6, P∗

avg tends to decrease for most reduced velocities
(figure 19b). The peak value of P∗

avg, which occurs when the cylinder begins to impact the
walls, becomes distinctly smaller as the gap ratio decreases. For example, the peak value
of the extracted power is about 0.23 for e/D = 0.6, while it is only 0.13 for e/D = 0.2.
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4. Concluding remarks

We have investigated the dynamics of circular and square cylinders under periodic impacts
with two sidewalls. For a circular cylinder with sidewalls, the dynamics differs distinctly
depending on whether the cylinder impacts the walls. An impacting circular cylinder
retains large-amplitude oscillations even outside the lock-in region of the isolated circular
cylinder, and its amplitude is limited by the gap between the walls. Furthermore, the
oscillation frequency is proportional to the reduced velocity, in contrast to the general VIV
response of a non-impacting cylinder. Interestingly, the impacting circular cylinder with
sidewalls exhibits strong hysteresis, in contrast to the isolated circular cylinder. According
to flow visualization, the crosswise flow in the gap, which is formed by the impact,
contributes to the change in dynamics of the impacting cylinder. These salient features of
circular cylinders impacting with sidewalls are responsible for enhancing damping-based
energy extraction over isolated cylinders. Square cylinders, however, do not experience
galloping when the sidewalls become closer to each other. The suppressed oscillation of
the square cylinder in the presence of sidewalls is due to the reattachment of the shear
layer to the side surface of the cylinder below the critical gap ratio.

In this study, we focused on how the interaction with sidewalls changes the dynamic
response of a cylinder. Admittedly, the impact of a moving cylinder with a sidewall
under a cross-flow is a complicated process, and quantitative analysis is required to better
understand the flow-induced vibration and subsequent impact of the cylinder between the
sidewalls. In future, we will consider various types of sidewalls with different coefficients
of restitution and examine how changes in the restitution coefficients affect the dynamics
of the cylinder and the actual energy-harvesting performance of the system integrated with
electrical devices.
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