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Abstract. We present simulations of stable isothermal clouds exposed to ionizing radiation from
a discrete external source, and identify the conditions that lead to Radiatively Driven Implosion
and Star Formation. We use the Smoothed Particle Hydrodynamics code SEREN (Hubber et al.
2010) and the HEALPix-based photoionization algorithm described in Bisbas et al. (2009). We
find that the incident ionizing flux is the critical parameter determining the evolution; high
fluxes disperse the cloud, whereas low fluxes trigger star formation. We find a clear connection
between the intensity of the incident flux and the parameters of star formation.
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1. Introduction
When an expanding Hii region overruns a pre-existing cloud, it compresses it by driving

an ionization front and a shock wave into it (Sandford et al. 1982; Bertoldi 1989; Lefloch &
Lazareff 1994). The inner parts may become gravitationally unstable and collapse to form
new stars. This mechanism is known as Radiation Driven Implosion (RDI). Observations
(Lefloch & Lazareff 1995; Lefloch et al. 1997; Sugitani et al. 1999, 2000; Ikeda et al.
2008; Morgan et al. 2008; Chahuan et al. 2009) strongly support a connection between
the RDI mechanism and the formation of Young Stellar Objects (YSO). Simulations of
the interaction of ultraviolet ionizing radiation with self-gravitating clouds have been
presented by various authors (Kessel-Deynet & Burkert 2003; Esquivel & Raga 2007;
Gritschneder et al. 2009; Miao et al. 2009). However, no model can explain where star
formation takes place (in the core or at the periphery) or when (during the maximum
compression phase or earlier – Deharveng et al. 2005). The aim of this work is to answer
questions of whether the ionizing radiation incident upon stable clouds is able to trigger
the formation of new stars or not, and how the process and the properties of this star
formation are connected with the intensity of the incident flux. In Section 2 we give a
brief description of the numerical treatment and the initial conditions we use. In Section 3
we discuss the results of our simulations. We summarize in Section 4.

2. Numerical Treatment and Initial Conditions
We use the Smoothed Particle Hydrodynamics (SPH) code SEREN†, fully described

in Hubber et al. (2010), with an ionization routine (Bisbas et al. 2009) based on the

† http://www.astro.group.shef.ac.uk/seren
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HEALPix‡ sphere tesselation code (Górski et al. 2005). We use a barotropic equa-
tion of state (i.e. Bonnell 1994) to set the temperature of the neutral gas as TN (ρ) =
TIS O

{
1 + (ρ/ρC R IT )γ−1

}
, where TIS O = 10 K, ρC R IT = 10−13 g cm−3 and γ = 5/3 is the

ratio of specific heats. The temperature of the ionized gas is set to Ti = 104 K, except
in the transition zone between the two extremes, where it changes smoothly from Ti
to TN (see Bisbas et al. 2009). We include sink particles (Bate et al. 1995) with radii
RS IN K = 2.5AU created if ρ > ρS IN K = 10−11 g cm−3 .

Our clouds are stable Bonnor-Ebert spheres (heareafter ‘BES’) with dimensionless cut-
off radii ξB = 4, 5, 6 (see Bonnor 1956 for its definition) and with masses M = 2, 5, 10M�.
The particle resolution we use is 5 × 104 SPH particles per solar mass (cf. Hubber et al.
2006). We use a single source emitting Lyman-α photons. We place the BESs at distance
D = 10R from the ionizing source, where R is the radius of the cloud (in pc), in order
to keep constant the divergence of the incident flux and as parallel as possible. We run
simulations with a wide range of emission rates ṄL y C = 10x s−1 , where x = 48, 48.5, ...52.

3. Results
In Fig.1a we present a semi-logarithmic diagram where we correlate the intensity of

the incident ionizing flux with the initial mass of each BES. The lines define subsets
of parameter space where models either show star formation (left) or not (right), with
accuracy 0.25 dex. It can be seen that as the mass of the BES decreases (and as a result
ξB increases) the clouds appear to dissolve in higher fluxes. This is because for a given
ξB , the density ρc at the centre of each BES increases with decreasing M .

We also find that the Strømgren radius at the end of the R-type expansion determines
whether stars are formed or not; if the ionization front has not overrun the central core of
the BES, then the incident flux will trigger star formation during the D-type expansion of
the Hii region. In the opposite case there is not enough material to undergo gravitational
collapse and form stars.

The time, tS IN K , between the beginning of the D-type expansion and the first sink
creation (beginning of star formation) increases with decreasing ionizing flux. This finding
is in agreement with simulations of the RDI performed by Gritschneder et al. (2009).
Figure 1b is a logarithmic diagram where we plot the values of tS IN K versus the incident
flux Φ

D
. Remarkably, it can be seen that tS IN K does not depend on ξB . Results from our

simulations can be described with a power law of the form tS IN K = 80 × Φ−0.3
D

(tS IN K in
Myr, ΦD in cm−2s−1).

Figure 2 shows column density plots of a BES with M = 10M� and with ξB = 6 at
tS IN K for different fluxes. A common feature in all our simulations is that stars form close
to the symmetry axis joining the centre of the cloud to the exciting star. This is probably
a consequence of the initial spherical symmetry of the cloud and it is in an agreement
with observations by Sugitani et al. (1999). The distance dt between the first sink particle
and the ionization front is a function of the ionizing flux and the BES parameters (see
Fig.1c where we plot dt/2R for all BESs with ξB = 6). We find that for low fluxes stars
tend to form away from the periphery, whereas for high fluxes stars tend to form at the
periphery of the cloud. Similar results are found also with ξB = 4 and ξB = 5.

Figure 2 shows that the lateral compression, wd , of the BESs at the beginning of star
formation is connected to the intensity of the incident flux. We see that for low fluxes, wd
is quite high and the cloud has a U-shape structure, whereas for high fluxes wd is small
and the cloud has a V-shape structure. In Fig.1d we plot wd/2R for all BESs with ξB = 6

‡ http://healpix.jpl.nasa.gov
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and we find that stars tend to form during maximum compression once the incident flux
is increased. Similar results are found also for the rest of the clumps.

4. Conclusions
We present simulations of RDI in stable clouds represented by BESs. We performed 75

simulations with clouds of different masses, different dimensionless radii, and with a wide
range of incident fluxes. In general we find a connection between the incident ionizing
flux and whether the cloud is induced to form stars or not by the flux. Our results only
apply to clouds which have similar density structures.

We introduce a semi-logarithmic diagram (flux-mass diagram) where we correlate the
intensity of the incident flux and the initial mass of each BES, and we define zones of
Star Formation and no-Star Formation. We find that if the Strømgren radius has not
overrun the central core of the BES by the end of the R-type expansion, the ionizing
radiation will trigger star formation. The time when star formation occurs increases with
decreasing flux, and does not depend on ξB . A power-law of the form tS IN K = 80×Φ−0.3

D

fits very well with the results of our models. Finally, as the incident flux increases, stars
tend to form closer to the periphery of the cloud and during its maximum compression
phase.

Figure 1. (a) The flux-mass semi-logarithmic diagram where we define areas where stars are
formed (SF) and areas where stars are not formed (no-SF) depending on the dimensionless
radius ξB of a BES. (b) Logarithmic diagram of the incident flux versus tS IN K . The power law
we propose (solid line) fits very well with our simulations (tS IN K is in Myr and ΦD is in cm−2 s−1 ).
(c) Star formation occurs at the periphery with increasing flux. (d) Star formation occurs during
maximum compression with increasing flux.
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Figure 2. Column density plots of a BES with M = 10 M� and ξB = 6 at tS IN K when it is
exposed to three different intensities of flux (flux increases from left to right). The white dots
are sink particles. In the left plot we draw the values of dt and wd .
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