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Abstract

A subset X of a finite group G is a set of pairwise noncommuting elements if xy , yx for all x , y ∈ X.
If |X| ≥ |Y | for any other subset Y of pairwise noncommuting elements, then X is called a maximal subset
of pairwise noncommuting elements and the size of such a set is denoted by ω(G). In a recent article by
Azad et al. [‘Maximal subsets of pairwise noncommuting elements of some finite p-groups’, Bull. Iran.
Math. Soc. 39(1) (2013), 187–192], the value of ω(G) is computed for certain p-groups G. In the present
paper, our aim is to generalise these results and find ω(G) for some more p-groups of interest.
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1. Introduction

Let G be a finite nonabelian group and let Z(G) denote the centre of G. A subset
N ⊂G\Z(G) is called a pairwise noncommuting subset of G if xy , yx for all x , y ∈ N.
If |N| ≥ |M| for any other subset M of pairwise noncommuting elements in G, then N
is said to be a maximal subset of pairwise noncommuting elements. The cardinality
of such a subset is denoted by ω(G). In fact, ω(G) is the maximal size of a clique
in the noncommuting graph ΓG of G whose vertex set V(ΓG) is G\Z(G) and whose
edge set E(ΓG) consists of those {x, y} with x , y ∈ G\Z(G) such that [x, y] , 1. The
noncommuting graph of a finite group G was first considered by Erdős in 1975 [10].
By a famous result of Neumann [10] answering a question of Erdős, the finiteness of
ω(G) is equivalent to the finiteness of the factor group G/Z(G) in G. Mason [9] gave
a bound for ω(G) by covering the group G by ( 1

2 |G| + 1) abelian subgroups. Pyber
[12] proved that there is some constant c such that the index of the centre Z(G) in G
satisfies |G : Z(G)| ≤ cω(G). The value of ω(G) has been computed for various groups
G (see for example [1, 3, 5–7]).
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A finite p-group G is called extraspecial if the centre, the Frattini subgroup and the
derived subgroup of G all coincide and are cyclic of order p. Chin [5] has shown that

np + 1 ≤ ω(G) ≤
p(p − 1)n − 2

p − 1
,

for extraspecial p groups of odd order p2n+1. For extraspecial 2-groups of order
22n+1, Isaacs proved that ω(G) = 2n + 1 (see [4, page 40]). The cardinalities of
maximal subsets of pairwise noncommuting elements of extraspecial p-groups are
important as they provide combinatorial information which can be used to calculate
their cohomology lengths. (The cohomology length of a nonelementary abelian p-
group is a cohomology invariant derived from a theorem of Serre [15].)

Azad et al. [3] proved that ω(G) = p + 1 for any finite p-group G with central
quotient of order p2, where p is a prime number. Moreover, they also determined
ω(G) for any nonabelian group of order p4. Orfi [11] determined ω(G) for p-groups
of order p5. Fouladi and Orfi [7] proved that ω(G) = |G′|(p + 1)/p, where G is a finite
nonabelian metacyclic p-group with p > 2. Further, Fouladi and Orfi [6] determined
ω(G) for some p-groups G of maximal class.

In this paper, we generalise the results of [3]. In particular, [3, Lemma 3.2] states
that if G is a p-group with central quotient of order p3, then G is an AC-group. In
Section 3, we prove the following generalisation of this result.

Theorem 1.1. Let G be a nonabelian p-group of order pn. Suppose |Z(G)| = pr with
n − r ≥ 3 and G has an abelian maximal subgroup. Then there exists an element
x ∈ G\Z(G) such that |CG(x)| = pn−1 and CG(x) is uniquely determined. Moreover,
ω(G) = pn−r−1 + 1.

If G satisfies the assumptions of Theorem 1.1 with |G/Z(G)| = p3, it follows that
ω(G) = p2 + 1. This is [3, Theorem 3.3(ii)]. In Section 4, we calculate ω(G) for AC
p-groups where the cardinality of G/Z(G) is either p4 or p5. We also discuss the nature
of certain centraliser subgroups.

In Section 5, we generalise [3, Lemma 3.1 and Theorem 3.3] by proving the
following theorems.

Theorem 1.2. Let G be a finite nonabelian group and let p be the smallest prime
dividing the order of G. If |G/Z(G)| = p2, then G is an AC-group and ω(G) = p + 1.

Theorem 1.3. Let G be a finite nonabelian group and let p be the smallest prime
dividing the order of G. If |G/Z(G)| = p3, then G is an AC-group and ω(G) =

p2 + (1 − δ)p + 1, where δ is a nonnegative integer.

Throughout the paper, G denotes a finite nonabelian group and Z(G), CG(x) denote
respectively the centre of G and the centraliser of an element x ∈ G. If x, y ∈ G, then
[x, y] = x−1y−1xy. By G′ and Z2(G) we denote the commutator and the second centre
of G respectively.
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2. Preliminaries

In this section, we quote some results that are required in the rest of the paper. We
start with the following lemma, which is an easy exercise.

Lemma 2.1. Let G be a finite group.

(1) For any subgroup H of G, ω(H) ≤ ω(G).
(2) For any normal subgroup N of G, ω(G/N) ≤ ω(G).

A group G is called an AC-group, if the centraliser of every noncentral element
of G is abelian. The following lemma gives equivalent criteria for a group to be an
AC-group.

Lemma 2.2 [14, Lemma 3.2]. The following statements are equivalent:

(1) G is an AC-group.
(2) If [x, y] = 1, then CG(x) = CG(y), where x, y ∈ G\Z(G).
(3) If [x, y] = [x, z] = 1, then [y, z] = 1, where x ∈ G\Z(G).
(4) If A and B are subgroups of G and Z(G) < CG(A) ≤ CG(B) < G, then CG(A) =

CG(B).

Remark 2.3. If G is an AC-group, then {CG(x) | x ∈ G\Z(G)} is the set of maximal
abelian subgroups.

Lemma 2.4 [6, Lemma 2.2]. Let G be an AC-group.

(1) If x, y ∈ G\Z(G) with distinct centralisers, then CG(x) ∩CG(y) = Z(G).
(2) If G =

⋃k
i=1 CG(xi), where CG(xi) and CG(x j) are distinct for 1 ≤ i < j ≤ k, then

{x1, . . . , xk} is a maximal set of pairwise noncommuting elements of G.

Lemma 2.5 [3, Lemma 2.3]. Let G be a finite AC-group. Then G =
⋃k

i=1 CG(xi), where
CG(xi) are distinct for i , j and {x1, . . . , xk} is a maximal set of pairwise noncommuting
elements of G.

Lemma 2.6. Let G be an AC-group and let X be a set of noncommuting elements in G.
Then X can be extended to a maximal set of noncommuting elements in G.

Proof. Let ω(G) = k and M = {x1, x2, . . . , xk} be a maximal set of noncommuting
elements in G. Since G is an AC-group, we have G =

⋃k
i=1 CG(xi), where CG(xi)

and CG(x j) are distinct and CG(xi) ∩ CG(x j) = Z(G) for 1 ≤ i < j ≤ k. Since CG(xi) is
abelian, |CG(xi) ∩ X| ≤ 1 for 1 ≤ i ≤ k. Set P := {i ∈ {1, . . . , k} | CG(xi) ∩ X = ∅}. Now
choose a j ∈ CG(x j)\Z(G) for each j ∈ P. Then, X ∪ {a j | j ∈ P} is a maximal set of
noncommuting elements in G. �

Lemma 2.7 [12, Lemma 3.4]. Let G = H × K, where H and K are nonabelian
subgroups of G. Then, ω(G) ≥ ω(H)ω(K).

Lemma 2.8. Let H and K be groups.

(1) If K is an AC-group and H′ = 1, then H × K is also an AC-group.
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(2) If H, K and H × K all are AC-groups, then ω(H × K) = ω(H)ω(K).
(3) If H is a nilpotent AC-group, then H is a metabelian.

Proof. (1) Follows from the fact that CH×K(h, k) = CH(h) × CK(k), where (h, k) ∈
H × K.

(2) Let X = {(xi, yi) | 1 ≤ i ≤ n} be a maximal set of noncommuting elements in
H × K with ω(H × K) = |X|. Define XH := {xi | (xi,−) ∈ X} and XK := {yi | (−, yi) ∈ X}.
Then, |XH | ≥ ω(H) and |XK | ≥ ω(K). Suppose |XH | > ω(H). Then there exists xi ,
x j ∈ XH such that xix j = x jxi. Since H is an AC-group, CH(xi) = CH(x j). Choose
(xi, yi), (x j, y j) ∈ X, so that yiy j , y jyi. Then,

CH×K(xi, yi) ∩CH×K(x j, y j) = (CH(xi) ∩CH(x j)) × (CK(yi) ∩CK(y j))
= CH(xi) × Z(K) , Z(H) × Z(K),

which is a contradiction. Hence, |XH | = ω(H) and, similarly, |XK | = ω(K).
(3) Since H is a nilpotent group, Z(H) < Z2(H). Now, by [13, Theorem 5.1.11], we

have [Z2(H),H′] = 1. Let x ∈ Z2(H)\Z(H). Then H′ ⊂ CH(x) and so H′ is abelian.
This shows that H is a metabelian group. �

Lemma 2.9 [2, Lemma 5.7]. Let f (x), g(x) ∈ Z[x] such that f (x)/g(x) takes integer
values for infinitely many values of x ∈ Z. Then, f (x)/g(x) ∈ Q[x]. Further, if g(x) is
monic, f (x)/g(x) ∈ Z[x].

3. AC p-groups

We begin this section with the following proposition.

Proposition 3.1 [14, Proposition 3.10]. Let G be a p-group.

(1) If G has an abelian subgroup of index p, then G is an AC group.
(2) If G has an abelian subgroup A of index p2, but no abelian subgroup of index p,

then G is an AC group if and only if CG(x) ∩ A = Z(G) for every x ∈ G\A.

Lemma 3.2. Let G be an AC p-group. Then, ω(G) ≡ 1 (mod p).

Proof. Let {x1, . . . , xk} be a maximal set of pairwise noncommuting elements. Write
G =
⋃k

i=1 CG(xi), where CG(xi) and CG(x j) are distinct for 1 ≤ i < j ≤ k. By Lemma
2.4(1),

|G| =
k∑

i=1

(|CG(xi)| − |Z(G)|) + |Z(G)| = −(k − 1)|Z(G)| +
k∑

i=1

|CG(xi)|,

|G/Z(G)| = −(k − 1) +

k∑
i=1

|CG(xi)/Z(G)|

and the desired result follows. �

Proof of Theorem 1.1. Since G has an abelian maximal subgroup, G is an AC group
by Proposition 3.1(1). By Remark 2.3, there exists a noncentral element x such
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that |CG(x)| = pn−1. Suppose for y , x, we have |CG(y)| = pn−1 and CG(y) , CG(x).
Then, pn−r = |G/Z(G)| = |G/(CG(x) ∩ CG(y))| ≤ |G/CG(x)| |G/CG(y)| = p2, which is
impossible. Hence, CG(x) is uniquely determined. In fact, it is the unique abelian
maximal subgroup of G.

Next, we determine ω(G) by considering two cases.

Case 1: n − r > 3. First, we show that there is no noncentral element z such
that |CG(z)| ≥ pm, where r + 2 ≤ m ≤ n − 2. On the contrary, suppose there is
z ∈ G\Z(G) such that |CG(z)| ≥ pm. Then, pn−r = |G/Z(G)| = |G/(CG(x) ∩ CG(z))| ≤
|G/CG(x)| |G/CG(y)| = p · pn−m, which is impossible. Hence, |CG(z)| = pr+1.

Let {x1, . . . , xk} be a maximal set of pairwise noncommuting elements. By the above
observations we may assume that |CG(x1)| = pn−1 and |CG(x j)| = pr+1 for 2 ≤ j ≤ k.
Now, write G =

⋃k
i=1 CG(xi). By Lemma 2.4(1),

|G| =
k∑

i=1

(|CG(xi)| − |Z(G)|) + |Z(G)|,

that is, pn = (pn−1 − pr) + (k − 1)(pr+1 − pr) + pr, which yields ω(G) = pn−r−1 + 1.

Case 2: n − r = 3. By a similar argument to that in Case 1, |CG(x1)| = pn−1 and
|CG(x j)| = pn−2 for 2 ≤ j ≤ k. Therefore, by (4.1), ω(G) = p2 + 1 = pn−r−1 + 1.

This completes the proof of the theorem. �

4. |G/Z(G)| = p4 or p5

In this section, we calculate ω(G) for certain AC p-groups with |G/Z(G)| = p4 or p5.
We also discuss the uniqueness of certain centraliser subgroups.

Theorem 4.1. Let G be an AC p-group of order pn with |G/Z(G)| = p4 and p , 3.
Suppose G has no abelian maximal subgroup and let X = {x1, x2, . . . , xk} be a maximal
set of noncommuting elements in G.

(1) If G has no noncentral element x such that |CG(x)| = pn−2, then ω(G) = p3 + p2 +

p + 1.
(2) If |CG(xi)| = pn−2 for 1 ≤ i ≤ r and |CG(x j)| = pn−3 for r + 1 ≤ j ≤ k, then ω(G) =

−rp + (p + 1)(p2 + 1) and k − r ≥ 2. In particular, if G has no noncentral element
x such that |CG(x)| = pn−3, then ω(G) = p2 + 1.

Proof. Since G has no abelian maximal subgroup, the cardinality of the centraliser
of any noncentral element is either pn−2 or pn−3. Write G =

⋃k
i=1 CG(xi). Now, we

consider two cases.

Case 1. Suppose there is no noncentral element x such that |CG(x)| = pn−2. In this
case |CG(x)| = pn−3 for every x ∈ G\Z(G). By Lemma 2.4(1),

|G| =
k∑

i=1

(|CG(xi)| − |Z(G)|) + |Z(G)|, (4.1)

yielding ω(G) = p3 + p2 + p + 1.
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Case 2. Suppose there is a noncentral element x such that |CG(x)| = pn−2. This case
divides into two subcases.

Subcase 1. If |CG(x)| = pn−2 for every x ∈ G\Z(G), then ω(G) = p2 + 1.

Subcase 2. Without loss of generality, suppose |CG(xi)| = pn−2 for 1 ≤ i ≤ r and
|CG(x j)| = pn−3 for r + 1 ≤ j ≤ k. Again, Lemma 2.4(1) gives (4.1), which yields
pn = r(pn−2 − pn−4) + (k − r)(pn−3 − pn−4) + pn−4, that is

k = −rp + (p + 1)(p2 + 1). (4.2)

If k − r = r, then (4.2) leads to r = (p + 1)(p2 + 1)/(2 + p). By Lemma 2.9 this is not
possible for any prime p, except for p = 3. If k − r = 1, then (4.2) gives k = p3 + p2 +

2p + 1/(p + 1), which is impossible. Thus, if there is a noncentral element x such that
|CG(x)| = pn−3, then the number of such elements in the maximal noncommuting set is
more than one. Moreover, if r = 1, then from (4.2), k = p3 + p2 + 1. �

Lemma 4.2. Let G be a p-group of order p6. Suppose G is not an AC group and
|G/Z(G)| = p4.

(1) If there is an element x such that |CG(x)| = p3 or p4, then CG(x) is abelian.
(2) There exists a noncentral element x such that |CG(x)| = p5 and CG(x)/Z(CG(x)) �

Cp ×Cp.

Proof. (1) If there exists x such that |CG(x)| = p3 or p4, then CG(x)/Z(CG(x)) is either
a trivial group or a cyclic group of order p.

(2) If x ∈ G\Z(G), then |CG(x)| ∈ {p3, p4, p5}. Suppose there is no x ∈ G\Z(G) such
that |CG(x)| = p5. Then, by (1), G is an AC group, which is a contradiction. Hence,
there is a noncentral element x such that CG(x) is nonabelian and |CG(x)| = p5. Since
Z(G) < CG(x) and CG(x)/Z(CG(x)) is not cyclic, CG(x)/Z(CG(x)) � Cp ×Cp. �

Theorem 4.3. Let G be an AC p-group of order pn with |G/Z(G)| = p5, where p is odd.
Suppose G has no abelian maximal subgroup and let X = {x1, x2, . . . , xk} be a maximal
set of noncommuting elements in G.

(1) If G has a noncentral element x such that |CG(x)| = pn−2, then CG(x) is uniquely
determined. Further, suppose |CG(xi)| = pn−3 with 2 ≤ i ≤ r + 1 and |CG(x j)| =
pn−4 for r + 2 ≤ j ≤ k. Then, ω(G) = p4 + p3 − rp + 1 and r , k − r − 1.

(2) If G has no noncentral element x such that |CG(x)| = pn−2, then ω(G) = p(p + 1)
(p2 + 1) + 1 − r(p + 1) + r, where |CG(xi)| = pn−3 for 1 ≤ i ≤ r and |CG(x j)| =
pn−4 for r + 1 ≤ j ≤ k and r , k.

Proof. By the hypothesis, G has no abelian maximal subgroup and hence the
cardinality of the centraliser of any noncentral element is pn−4 or pn−3 or pn−2. Write
G =
⋃k

i=1 CG(xi).

Case 1. Suppose there is a noncentral element x such that |CG(x)| = pn−2.
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We claim that CG(x) is uniquely determined. On the contrary, suppose there
is another y such that |CG(y)| = pn−2 and CG(x) , CG(y). Then p5 = |G/Z(G)| =
|G/(CG(x) ∩ CG(y))| ≤ |G/CG(x)| |G/CG(y)| = p2, which is impossible. Now, let
|CG(x1)| = pn−2 , |CG(xi)| = pn−3 with 2 ≤ i ≤ r + 1 and |CG(x j)| = pn−4 for r + 2 ≤ j ≤ k.

Lemma 2.4(1) again gives (4.1) which in this case yields

pn = (pn−2 − pn−5) + r(pn−3 − pn−5) + (k − r − 1)(pn−4 − pn−5) + pn−5,

that is

k = p4 + p3 − rp + 1. (4.3)

Thus, ω(G) = p4 + p3 − rp + 1.
If k − r − 1 = 1, then from (4.3), k = (p4 + p3 + 2p + 1)/(p + 1), which is

impossible. Thus, if there is a noncentral element x such that |CG(x)| = pn−4, then
the number of such elements in the maximal noncommuting set is more than 1. Next,
if k − r − 1 = 0, then from (4.3), ω(G) = p3 + 1. Now, if r = 1, then from (4.3), we
have k = p4 + p3 − p + 1. This implies that if there is a unique noncentral element x in
the maximal noncommuting set such that |CG(x)| = pn−3, then ω(G) = p4 + p3 − p + 1.
If r = 0, then from (4.3), we have ω(G) = p4 + p3 + 1. If k − r − 1 = r, then from (4.3),
we have r = p3(p + 1)/(p + 2), which is not possible. Hence, this case will not arise.

Case 2. Suppose there is no noncentral element x such that |CG(x)| = pn−2. In this
case, suppose that |CG(xi)| = pn−3 for 1 ≤ i ≤ r and |CG(x j)| = pn−4 for r + 1 ≤ j ≤ k.
By Lemma 2.4(1), we again have (4.1) which gives

pn = r(pn−3 − pn−5) + (k − r)(pn−4 − pn−5) + pn−5

that is

k = p(p + 1)(p2 + 1) + 1 − r(p + 1) + r. (4.4)

If k − r = 1, then from (4.4), ω(G) = p3 + p + 1. If r = 1, then from (4.4), ω(G) =

p4 + p3 + p2 + 1. If k = 2r, then from (4.4), ω(G) = (p(p + 1)(p2 + 1) + 1)/(p + 2),
which is impossible. Hence, this case will not occur.

This completes the proof of the theorem. �

To prove our next lemma, we will use the classification of groups of order p5 by
James [8, Section 4.5]. James divided the groups of order p5 into isoclinism families.
It is well known that if G is isoclinic to H, then ω(G) = ω(H) (see [11, Lemma 2.6]).

Lemma 4.4. Let G be a p-group of order p6. Suppose G is not an AC group and
|G/Z(G)| = p5.

(1) If there is an element x such that |CG(x)| = p2 or p3, then CG(x) is abelian.
(2) If there exists an element x such that |CG(x)| = p5, then CG(x)/Z(CG(x)) is either

isomorphic to an elementary abelian group or a nonabelian group of order p3.
(3) If there is no noncentral element x such that |CG(x)| = p5, then there exists a

noncentral element y such that |CG(y)| = p4 and CG(y)/Z(CG(y)) � Cp ×Cp.
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Proof. (1) If there exists x such that |CG(x)| = p2 or p3, then CG(x)/Z(CG(x)) is either
a trivial group or a cyclic group of order p.

(2) Let x ∈G\Z(G) such that |CG(x)| = p5. By Proposition 3.1, CG(x) is nonabelian.
Since Z(G) < CG(x) and CG(x)/Z(CG(x)) cannot be a cyclic group, CG(x)/Z(CG(x)) is
either isomorphic to an elementary abelian group or a nonabelian group of order p3

(use [8, Section 4.5]).
(3) Let x ∈ G\Z(G). By assumption, |CG(x)| ∈ {p2, p3, p4}. Therefore, by part (1),

there exists a noncentral element y such that CG(y) is nonabelian and |CG(y)| = p4.
Since Z(G) < CG(y), CG(y)/Z(CG(y)) � Cp ×Cp. �

5. AC-groups

In this section, we prove Theorems 1.2 and 1.3.

Proposition 5.1. Let G be a p-group having an abelian subgroup H of index p3

but no abelian subgroup of index p or p2. Then, G is an AC group if and only if
CG(x) ∩ H = Z(G) for every x ∈ G\H.

Proof. Since G has no abelian subgroup of index p or p2, Z(G) ≤ H. If G is an
AC group, then clearly CG(x) ∩ H = Z(G) for every x ∈ G\H. Conversely, suppose
that CG(x) ∩ H = Z(G) for every x ∈ G\H. If x ∈ H\Z(G), then CG(x) = H. Now if
x ∈ G\H, then CG(x) = 〈x〉Z(G) or CG(x) = 〈x, y〉Z(G). This completes the proof. �

Proof of Theorem 1.2. Let x ∈ G\Z(G). Then Z(G) < CG(x) < G and

p2 = |G/Z(G)| = |G/CG(x)| |CG(x)/Z(G)|.

Hence, |CG(x)/Z(G)| = p, which implies that Z(G) is a maximal subgroup of CG(x).
Therefore, CG(x) = 〈Z(G), x〉 is abelian. This shows that G is an AC-group. Now,
write G =

⋃k
i=1 CG(xi), where k = ω(G). By Lemma 2.4(1), we again have (4.1), which

yields that ω(G) = p + 1. �

Proof of Theorem 1.3. Repeating the argument of the proof of Theorem 1.2, we have

p3 = |G/Z(G)| = |G/CG(x)| |CG(x)/Z(G)|,

where x ∈ G\Z(G). Now, we have two cases.

Case 1. If |CG(x)/Z(G)| = p, then Z(G) is a maximal subgroup of CG(x). Therefore,
CG(x) = 〈Z(G), x〉 is abelian.

Case 2. If |CG(x)/Z(G)| = p2, then from the tower Z(G) < Z(CG(x)) ≤ CG(x), we
obtain

p2 = |CG(x)/Z(G)| = |CG(x)/Z(CG(x))| |Z(CG(x))/Z(G)|.

If |CG(x)/Z(CG(x))| = 1, then CG(x) is abelian. On the other hand, if |CG(x)/Z(CG(x))|
= p, then Z(CG(x)) is a maximal subgroup of CG(x). Thus, CG(x) = 〈Z(CG(x)), y〉 is an
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abelian subgroup, for any y ∈ CG(x)\Z(CG(x)). In both cases CG(x) is abelian subgroup
for x ∈ G\Z(G). Therefore, G is an AC-group.

By the above arguments, either |CG(x)| = p|Z(G)| or |CG(x)| = p2|Z(G)| for x ∈
G\Z(G). Let X = {x1, x2, . . . , xk} be a maximal set of noncommuting elements in G.
Let δ be the number of xi such that |CG(xi)| = p2|Z(G)| and hence for the remaining
k − δ many xi, we have |CG(xi)| = p|Z(G)|. Now, write G =

⋃k
i=1 CG(xi). By Lemma

2.4(1), we have (4.1) and

|G| = δ(p2|Z(G)| − |Z(G)|) + (k − δ)(p|Z(G)| − |Z(G)|) + |Z(G)|.

We conclude that ω(G) = p2 + (1 − δ)p + 1. �

Remark 5.2. Regarding the proof of the Theorem 1.3, we observe that if |CG(xi)| =
p2|Z(G)|, then |G/CG(x)| = p. Hence, CG(x) is a maximal subgroup of G. If G has
no abelian maximal subgroup, then δ = 0 and hence ω(G) = p2 + p + 1. On the other
hand if G has a maximal abelian subgroup A, then A = CG(x) and δ = 1 for some
x ∈ G\Z(G). In this case we get ω(G) = p2 + 1. Therefore, the above theorem is a
generalisation of [3, Theorem 3.3].
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