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TWISTOR SPACES FOR REAL

FOUR-DIMENSIONAL LORENTZIAN MANIFOLDS

YOSHINORI MACHIDA AND HAJIME SATO

Introduction

It is R. Penrose who constructed the twistor theory which gives a correspond-

ence between complex space-times and 3-dimensional complex manifolds called

twistor spaces. He and his colleagues investigated conformally invariant equations

(e.g. massless field equations, self-dual Yang-Mills equations) on the space-time

by transforming them into objects in complex analytical geometry. See e.g.

Penrose-Ward [P-W] or Ward-Wells [W-W]. After that, Atiyah-Hitchin-Singer

([A-H-S], cf. [Fr]) constructed the twistor spaces corresponding to real

4-dimensional Riemannian manifolds. Their construction as well as that of Pen-

rose is mainly effective under the condition of the self-duality. In this paper we

will construct twistor spaces more geometrically from real 4-dimensional Lorent-

zian manifolds under a suitable curvature condition.

For a Lorentzian manifold, we have * = ~ id for Hodge's star-operator

* and the space of 2-forms has no canonical real decomposition. The set

of all Lorentz orthogonal complex structures on R : is isomorphic to

SO+(3,1) / ί/(l) and of 5-dimension. It is different from the Riemannian case.

After the work of [A-H-S], Berard Bergery and Ochiai [BB-O] generalized the

theory from the viewpoint of G-structures. Since each fibre of their twistor space

has to be a G-invariant subset of all complex structures, we need a different con-

struction of a twistor space.

As the underlying space of the twistor space of a 4-dimensional Lorentzian

manifold M, we take the space P of all future-pointing null directions on M. This

fits in with the original idea of Penrose and it will have physical applications. The

space P is a fibre bundle over M with fibre S . By choosing a future-pointing

timelike vector field T on M, we can naturally define an almost complex structure

/ = Λ on P.
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The point x and a timelike unit tangent vector T at x form a model of the in-

stantaneous observer in the Lorentzian world M. The vector indicates the direction

of the observer's individual time. The subspace in M Lorentz orthogonal to this

vector is a model of the 3-dimensional physical space of the instantaneous obser-

ver. The physical spaces of two different instantaneous observers are different,

even if the observers are located at the same point of M. See Manin [Ma].

Our main result is to state the integrability condition of the almost complex

structure / on P by the vanishing of certain parts of an irreducible 5 0 ( 3 ) -

decomposition of the curvature tensor R of the 4-dimensional Lorentzian manifold

M.

This paper is organized as follows: In §1, we define an almost complex struc-

ture / on the set P of all future-pointing null directions on M, and we state the

main theorem. We prove the theorem dividing into several steps in the next sec-

tions. In §2 and §3, we give a curvature condition of the integrability. We transfer

the integrability condition to that of the linear frame bundle. We obtain a curva-

ture condition which is the vanishing of two components of an irreducible

50(3)-decomposition. The irreducible 50(3)-decomposition of the curvature ten-

sor is explained in Remark A of §5. In §4, we give global examples with integr-

able twistor spaces. Any Robertson-Walker space-time is conformally flat and the

flow of the perfect fluid on it defines an integrable twistor space. In Remark B of

§5, we explain the relation of our result and that of [BB-0]. In Remark C, we re-

mark a relation to the normal CR-structures of the tangent sphere bundles of

3-dimensional manifolds ([S-Y]) and we will discuss a relation of our result to the

twistor of the real 4-dimensional Riemannian manifold made by changing a real

time to the imaginary time.

§1. Almost complex structure of P

1. Let {Mλ, g) be a 4-dimensional oriented and time-oriented connected

Lorentzian manifold. Let P be the set of all future-pointing null directions:

P = Null+(M) = {[v] I g(v, υ) = 0, υ ( e T(M)) is future-pointing},

where [v] is the equivalence class defined by the relation υ ~ λυ. Then P is a

6-dimensional manifold and is the total space of a fibre bundle over M with fibre

S . We define an almost complex structure on P and study its integrability. When

the structure is integrable, we call the complex 3-dimensional manifold P the in-

tegrable twistor space, or simply, the twistor space of the real 4-dimensional

Lorentzian manifold M.
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On the integrable twistor space P, each fibre S over M becomes biholomor-

phic to P (C), and the normal bundle to it is isomorphic to H (& H. Here H is the

hyperplane-section line bundle on P (C).

The linear frame bundle over M is reduced to a principal bundle Q with

structure group SO+ (3,1). The space P is a fibre bundle

X S0+(3,D

with fibre

associated to Q. Let

τ r : P - > M

be the canonical projection. We will define an almost complex structure

/ : TP-+TP.

We have the horizontal lift and the horizontal space of M over P associated to Q.

Let T be the vertical subbundle of M and let T be the horizontal subbundle of

M. Then we have

TP= Tv® Th.

On 2-dimensional subbundle T , an almost complex structure is naturally defined.

On T , the problem is how we define an almost complex structure.

Let [n] be a point in P. Wτe want to lift the Lorentz orthogonal complex struc-

tures on Tπ[n]M = Rj to T horizontally. The set C of all Lorentz orthogonal com-

plex structures is a subset of End(Tπ[n]M) and is isomorphic to SO+(3,1) / U(l).

Therefore, since C is 5-dimensional, we cannot canonically define an almost com-

plex structure on TP. Compare with the Riemannian case where the set C of all

orthogonal complex structures is isomorphic to SO(4)/f/(2) = S . Let T be a

future-pointing timelike vector field on M such that g(T, T) — — 1. We will de-

fine an almost complex structure Jτ associated to T. Let Πf be a timelike plane

spanned by T and n. Let Π s be a spacelike plane orthogonal to Π,. Then there ex-

ists an oriented Lorentz orthonormal basis (eλ e2, e3, e4 ^ Tπ[n]M) such that

^ ( = T), e2 G Πί e3, eA e Us

and
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A vector e2 is uniquely determined under the condition that g(T + e2, n) = 0. If

we define a transformation j τ on Tπ[n]M such that

; Γ (*i) = 2̂» i r ( ^ ) = ~ *i Jτ(e3) = e4, jτ(eA) = - e3,

we define a Lorentz orthogonal complex structure on Tπ[n]M. It is independent of

the choice of e3, e4 ^ Π5. Thus, when we choose T, we can canonically define a

complex structure on Tπ[n]M. If we define a transformation Jτ on T[Λ] such that

Jτ(e\) = e2, Jτ(e2) = - e\ /Γ(e*) = el Jτ(e") = - e*,

for the horizontal lifts eι 2̂> 3̂> 4̂> w e define a complex structure on the hori-

zontal space T[n] of T[n]P. Therefore we can define an almost complex structure Jτ

associated to T on T[n]P and TP.

2. We will show the integrability of Jτ under the curvature conditions of g.

In this section we state the main theorem. The proof will be given in the next sec-

tions. Let x be a point in M. We regard the curvature tensor R as a linear trans-

formation on A — A TXM by

g(R(X ΛY),ZΛW)= g{R{X, Y)Z, W)

forZ, Y, Z, W<Ξ TXM. Put

RiJkl = g{R{βi A e,), ek A et),

for a T-Lorentz orthonormal basis (eι e2, e3, eA ^ TXM). Here we mean a

Γ-Lorentz orthonormal basis by a Lorentz orthonormal basis such that eλ = Γ.

We write the dual basis of Tx M for (et) by the same letter (et). We have the

linear transformation

by

R(p A p) = — Y R P A p

The class of six 2-forms

e = ( « , Λ e2, eλ Λ e3, e1 A e4 e3 A e4, e4 A e2, e2 A e3)

is an orthonormal basis of A . The former three 2-forms are of norm — 1 and

they span the timelike planes. The latter three 2-forms are of norm 1 and they

span the spacelike planes. We denote the subspaces of A spanned by the former
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three 2-forms and the latter three 2-forms by Λt and Λs respectively. With re-

by * =

-operator * : /I —̂  yl is represented

, where / is the 3 X 3 unit matrix. The mapping * transforms

spect to the orthonormal basis, Hodge's

0 -I
1 0

o o o o o o

Λt onto Λs and As onto Λt and * = — id. With respect to the mapping * , A be-

comes a 3-dimensional complex vector space.

Put 0(α, β) = g(Ra, β) for a, β e A2. Then with respect to the orthonor-

mal basis e of A , we can write

-*M21S> -"̂ 131 9 -*M,

A B

1212

-*M213 -"1313

^3412 ^ 4 R
-"l413 -"3413 -"4213 -*V

2312

2313

-*M214 -"1314 -"l

p p
-"1234 -"-1334

\

R*
Rr

-"3414 -"4214 -"2314

Ό Ώ Ό

1434 -""3434 -""4234 -""2334

R*AA9 R±
p

- " 2

1423 -"̂ 3423 -"4223 ^2323

δ d e x p q
d ε f s y r
e f ζ t u z
x s t a a b
p y u a β c
q r z b c γ

where A, B, C are 3 X 3 matrices and δ = i ? m 2 , d = i?1

Then A = Ά, C = 'C, and - Λ : ^ — yl', C :

transformations.

We can state the following main theorem:

' Λs are self-adjoint linear

THEOREM. Suppose that Jτ is integrable on P. Then, with respect to any

T-Lorentz orthonormal basis e = {eι — T e2, e3, e4 ^ TJVί) at any point x ^ M,

the following six relations hold :

- a + βP
q

r

+
+
+

s
t
u

+
+
+

2a
2b
2c

= X

— z

= y

- y

— x

- z

+
+
+

δ-
ζ "
ε -

ε
δ

ζ

P
Q

+ s -
+ M
+ u-

V 2d —

-2e =

f2/ =

— x ~f~ y —

- z + x-
-y + z-

Conversely, if this six relations hold for some T-Lorentz orthonormal basis e = (eλ = T
e2> e3> e4 e TXM) at any point x ^ M, then Jτ is integrable on P.
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From the above six relations, it follows that

a + b + c = e + d + f = - j ( p + q + r + s + t + u ) .

By the first Bianchi's identity, x + y + z = 0. Although Γ-Lorentz orthonormal

basis at each point has an ambiguity of 50(3), the six relations are invariant

under the rotations by S0(3).

ί-A -B\
3. The curvature tensor R — ( t I is decomposed into the spaces

\ B C I
Ψ, %, % (see Besse [Be]), where

Ψ = {R\ *R = i ?* , tri? = Ol Ricci flat,

£= {R\ * i ? = - i ? * } ,

°U = {R\ R = cl6, c : constant, / 6 : 6 x 6 unit matrix} constant curvature,

°U + Ψ (i.e., the part oί £ = 0) Einstein (*i? = i ? * ) ,

°li + X (i.e., the part of Ψ = 0) * * conformally flat.

They are irreducible S0+ (3,1) -invariant subspaces of algebraic curvature tensor

spaces Ά and dim Ψ = 10 , dim X = 9, dim °U = 1 (cf. Besse [Be]). Since

R(Ξψe>-A = C,B=tB,trA = 0(ortrC= 0 ) ,

RtΞί£^A= C, B= -*B,

RE:%& - A= C = cI3(R = cl6),

we have

'-A -B
ι C

'-A + C -B-'B \ I -A-C -B + 'B
2 κA-I3 2 \ / 2 2

B + 'B -A + C / \-B + 'B A + C

If the Lorentzian manifold (M, g) is of restricted type, the integrability con-

dition of Jτ becomes easier to describe.
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COROLLARY. The necessary and sufficient condition that Jτ is integrable on P is

given as follows:

(1) If R & °U, i.e., if (M, g) is of constant curvature, then Jτ is integrable for

any T on P and

n=(-al 0
Q \ 0 al)'

(2) If R G °U + ί£, i.e., if (M, g) is conformally flat, then the condition is that

Q is represented by the following form:

k 0 0 0 p q

Ok 0 -p 0 r

0 0 k - q - r 0

0 - p - q I 0 0

p 0 - r 0 / 0

q r 0 0 0 /

Ψ, i.e., if (M, g) is Einstein, then, for a form

— a — a — b x p q

— a — β — c p y r

— b — c — γ q r z

x p q a a b

i p y r a β c

\ q r z b c γ

the condition is that

Especially, if

2p = - a + β, 2q = - γ + a, 2r = - β + γ,

2a = x — y, 2b = z — x, 2c = y — z,

(x + y + z = 0).

p = q= r=0,

then

and if

a = b = c = 0,
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then

that

x — y = z — 0.

Note that, if R e ψ, i.e., if (M, #) is Ricci flat, then the condition in (3) is

2p = - a + β, 2q = - γ + α, 2r = - β + γ,

2a = χ — y,2b = z — x,2c = y — z,

a + β+ r = 0,

In §4, we will give examples with integrable twistor spaces.

§2. Integrability of Jτ

1. We investigate the integrability of Jτ not on P directly but on the linear

frame bundle over M. Let x be a point in M and let e — {eγ = Γ £2> 3̂> O be a

Γ-Lorentz orthonormal basis on TXM. Then Qr = U^eM{e} is the principal

50(1) X 50(3) = 50(3) subbundle of Q over M. We define a mapping

Φ: Q'->P

by

Φ(e) = U, + e2].

Then Qr is a principal 50(2) bundle over P. Similarly we define a mapping

Φ-.Q—P

and Q is a principal H bundle over P. We have the following diagrams:

S0+(3, 1) > Q Q H

m S0+(3,

M M

By a choice of Γ, we have the following reduced digrams:
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SO(S) Q'

M

Q

Φ

M

SO(2)

- SO(3) I SO(2) ^ S2

2. For a Γ-Lorentz orthonormal basis e — (e1 — T e2, e3, e4) on TXM, put

n — eι + e2 ^ TXM. The horizontal space T[w] c T[M]P and the horizontal lifts

£x ^2, 63, e4 ^ T1 ]̂ were defined in §1. Similarly we can define the horizontal

space Te c Γ e Q and the horizontal lifts ei e2, e3, e4 Te by SO+ (3,1)-

connection. Since the holonomy group of M is not always 6Ό(3), SO+(3,1)-

connection is not always reduced to SO(3) -connection on Q\ Thus Te is not al-

ways a subspace of Te Q\ We can define a complex structure }τ on Te by

For e = (eλ — T

H T / -ί*\ H T / -r/\

= ~ ^ , Jτ(e3) = e4, Jτ(eA) =

) ^ 0 ' and

SO(3) c SO+(3,1), α7 e 50(2),

.0 0

we have Rae — (e1 = Γ £2, ^3α, ^4α) G Q\ On T^ e we ha

*, JAffi — ~ ef ',Jτ((e3a)H) — (e4a)H, }τ({eAa)H) — — (e3a)H

and easily get

for e3, e4

LEMMA. / Γ is 50(2) equivaήant, that is,

Proof. I t i s s u f f i c i e n t to p r o v e RaJτ(ef) = JτRa*(ef) for ef, i= 1,2,3, 4 ,

of Te . Observe that, since we have Ra*Te — TR e, the horizontal space in TQ at a
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point on Q' is SO(2)-invariant. In general we have Ra*(υ ) = υ for υ e TXM,

0 <Ξ 5O+(3,1). Therefore

and
7 r> / #\ _ 7 # _ H

Thus RaJτ(ef) = JτRM(ef). Similarly RaJτ(ef) = JτRa*{e"), i = 2,3,4.

3. Let £ w be the matrix unit whose (i, j)-component is equal to 1 and the

other components are 0. For S = ( . - I, let us put

SO(3,1) = ( l e GLiA, R) I 'XSX = Si,

o(3,l) = ( i e Mat(4, R) | (XS + SX = 0).

Then o(3,l) has the basis CXΊ, X2, X3', Yv Y2> Y3) defined by

Ό 1 0 0\ /0 0 1 0
1 0 0 0 I _ ( 0 0 0 0
0 0 0 0 12 21' 2 1 1 0 0

*o 0 0 0 / \ o 0 0 0.

Ό 0 0 1\ /0 0 0 0
0 0 0 0 | = /Γ + £ • V = ί 0 0 0 °
0 0 0 0 " " 41> 1 - l o o o -

, 1 0 0 0 / \ o 0 1 0

Ό 0 0 0 \ /0 0 0 0

, 0 0 0 - 1 L F + F y = o o - i o
u ' 0 0 0 0 J 24 42> 3 I 0 1 0 0

\0 1 0 0 / \ θ 0 0 0.

Obviously the subgroup

{a e SO+(3,1) I β = | J „, | , α ' e SO(3)}

is isomorphic to 50(3). The corresponding Lie subalgebra of o(3,l) is isomorphic

to o(3) and Ylt Y2, Ys are the basis on it. Similarly the subgroup
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/I 0 0 0\

{a e SO + (3,1) U = Q J ° ° I «' e 5 0 ( 2 ) }

\ o o a ' I
is isomorphic to S0(2). The corresponding Lie subalgebra of o(3,l) is isomorphic

to o(2) and Yλ is the basis on it.

By the way, o(3,l) has the structure of a simple graded Lie algebra as fol-

lows. Put

g 0 =

^ = X2- F3, V2 = X3~ F2},

= X2+ Y3, W2 = X3 + Y2).

Then we have

Furthermore, for the Lie algebra ί) of H, we have

^ - 9o Φ 9i

For e €= Q^ we decompose

ΓeQ = Tζ Θ Te

ff = 9.! Θ 9 o 0 9 l Θ if.

We define

/Γ:Γ eC-T eQ

by the following way:

( i ) 7r(9o) = 0,

(iii) JT{Y2) = - Y3, JT(Y3) = Y2,

( i γ ) IT I τ« = Jτ>

where we write the fundamental vector fields Xt , Y{ simply by Xt, Yt. We have

J =JT(X2+Y3) =X3+Y2=W2, JT(W2) =JT(X3 + Y2) = ~X2-Y3=- Wv

LEMMA. JT is SO(2) equivariant, that is, fora £ 50(2) c S0+ (3,1),
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Proof As it follows easily that RaJτ(Xt) =JτRa*(Xt), i = 2,3, we will

prove RaJτ(Yi) = JτRa*(Y,), i = 2,3. Take

1 0 0 0

0 1 0 0
0 0 cos θ — sin 6

0 0 sin θ cos θ

Since

Ra*Y2 = Aά(a~ι) Y2 = sin ΘY3 + cos ΘY2,

Ra*Y3 = Aάia'1) Y3 = cos ΘY3 - sin ΘY2,

therefore

RaJrlYi) = -Ra*Ys=- cos ι9F3 + sin ΘY2,

JτRa*(Y2) = /Γ(sin ΘY3 + cos ι9F2) = sin ΘJT (F3) + cos 0/Γ(F2)

= sin 0F2 - cos ΘY3.

Therefore we obtain that RaiJτ(Y2) = Jτ Ra*(Y2). Similarly we obtain that

LEMMA. We have

ΦJT=JTΦ*.

Ker Φ# = {) = g0 Θ glβ

Proo/. According to the definitions of horizontal spaces and horizontal lifts,

the horizontal space in Q at a point on Qr is isomorphically mapped onto the hori-

zontal space at a point on P : Φ*T = T . To be precise, Φ*(^ ) = ^ , / =

1,2,3,4, hold. Therefore the conclusion follows from the lemma above.

4. Since we can regard Φ Q'-^P as a quotient mapping by the right ac-

tion of {a(θ) = expiθY^} = 50(2), the following proposition is a consequence

of the above lemma.

PROPOSITION. The following conditions are equivalent:

(1) Jτ is integrable on P.
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(2) For Neijenhuis tensor N, we have

N(U, V) = [U,V\-\JU,JV\+ J{JUt V\ + /[[/, JV\ = 0,

where U, V are vector fields on P.

(3) For J — Jτ on Q, we have

N(O, Ϋ) = [O,V\- \JU,JV\ +JUU, V\ +JWJΫ1 c span {Xυ Fx Vv V2},

where U, V are vector fields on Q along Qf and Φ-related with [/, V respectively,

which is equivalent to that

N(U,V)=0 mod spanUΓi, Yx Vlf V2),

where U, V belong to spanίW^, W2) Θ TH.

From now on, we write N and / simply by N and /.

§3. Proof of Theorem

In the following we investigate the curvature condition with respect to g of M

such that N = 0 mod s p a n ί ^ , Yλ Vlf V2} by dividing into several parts.

1. We have the following relations:

[Xv X2] — ~ Y3, [Xn X3] = ~~ Y2, [X2i ^3] = ~ Y\>

[̂ 1> ^l] = 0, [-̂ 1, Y2]
 = ~ X3, [Xv ^ = ~ 2̂>

[X2, FJ = - X3, [X2, Y2] = 0, [X2, Y3] = Xlt

[A,, r j = A2, u 3 , m = z1 ; [A3, r3] = o,

[Fi, F2] = - F3 I [ F υ F3] = F2, [F 2 ) F3] = - Yx.

The proof of the following is straightforward.

LEMMA. We have

N(WV W2) = 0.

2. Let x be a point in M and let e = (eι = T #2, g3, g4) be a T-Lorentz

orthonormal basis on TXM. Choose an open subset U c M such that the point .r

belongs to U and the linear frame bundle Qr is a trivial bundle over U. Let

s = (s1 = Γ 52, s3, s4) : t/-* Qf
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be a set of local sections such that sλ — T s2, s3, sA are Lorentz orthonormal

frame fields on U and s(x) = e, i.e., Sj(x) = eif i — 1,2,3,4, hold. Put

Z, = sf = S i - Σ ωjk(st)EJk, i = 1,2,3,4.

Here we write s^s{ and E1^ simply by s{ and £ ; fc. The SO+(3,1)-connection form

ω = (ωjk) is defined by Vs} = Σk ωjk ® sΛ, where 7 is the Levi-Civita connec-

tion. Since ω is a o(3,l)-valued 1-form, we can write

/ 0 ω12 ω13 ωu

_ / ^i2 0 ω 2 3 ω2

I ω 1 3 - ω 2 3 0
\ ω 1 4 — ω 2 4 — ω 3 4 0

for

We have

TH — span {Zι Z2, Z3, Z4}.

Since we have

Zi = ef,i= 1,2,3,4,

at e = (eι = T, e2, e3, e4) in Q',

JiZ,) = Z2, J(Z2) = -JiZ,); J(Z3) = Z4, J(Z4) = -Z3

hold on T e . From the 3-rd step to the 6-th step, we will discuss the problem at

3. We will show the following lemma:

LEMMA. We have

N(Ziy WO = 0 and N(Zif W2) = 0 mod {Xv Y, Vl9 V2}, i = 1,2,3,4.

Proof. We will only prove the former equation since the latter is proved

similarly.
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N{z13 w,) = [z1 ; wg - [z2, w2] +j[z2, wj +j[zlt w2]

= U1-Σ ωtl{Sι)E,lt WJ - [s2 - Σ α>f,(s2)£,/f W2]

+ J[s2 - Σίo,,(s2)£,;, WJ + M - Σffl,(Sl)£«,

-J{Σωti{s2)[Eφ WJ) -

= ~ (ωMiXt, WJ +ωu(Sl)[X2, WJ + ωM(s1)LX3, WJ

+ ω 2 3 ( S l ) t - r3> fFj + ω 2 4 ( S l ) [ - F2, IFJ + ω 3 4(S l)t

+ ωu(s2) [Xλ, W2] + ω13(s2) [X2, W2] + ωu(s2) \XV W2]

+ ω23(s2)[- Y3, W2]+ω2i(s2)[- Y2, W2] + ω3i(s2) [- F1 ; W2])

- JiωMIX,, Wx] +ωl3(s2)[X2, WJ + ωu(s2) [X3, WJ

+ α>23(52)[- Y3, WJ + α)M(s 2)[- r2, ^ ] + ω 3 4(5 2)[- F,, ^ ] )

- / ( ω ^ C s , ) ^ , ff2] +ωl3(Sι)[X2, W2] + ωu(Sι) [X3, W2]

+ ω23(Sι)[- Y3, W2] + ωu(Sι)[- F2) W2] + ωM(Sι)[- Ylf W2])

= ωl2{s-) W1 + WuisJ W2 — ω12(s2) W2 + ω34(s2) Wx

+ J(ω12(s2)W1) +J(ω34(s2)W2) + J(ωί2(Sι)W2) -J(ω34(Sl) WJ

+ {...} ({...} is the terms with respect to Xv Yx Vv V2)

= 0 modiXj, Y1;VV V2).

Similarly we obtain that

N(Zit WJ = 0 mod {Xlt Y, Vlt V2), i = 2,3,4.

4. The following equations are easy to see.

LEMMA. We have

N(ZV Z2) = 0, N(Z3, Z4) = 0,

N{ZV Z3) = - N(Z2, Z4), N(ZV Z4) = N(Z2, Z3).

5. From the above lemmas it remains to consider N(ZV Z 3), N(ZU Z 4).

For the above Lorentz orthonormal frame fields sx ^ T; s2, s3, s4 on U, moreover

let them satisfy (VSj)x = 0. They form a geodesic coordinate system at x. There-

fore ω o (sA) (x) - 0, and [s,, sk] \x = Vssk — VSks[ \x = 0.

For the curvature tensor R,

R(slt sk)st = VsySts, - VStVSιs, - V[Sι,Sk)Si.
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Since 7s, = Σ ω ί 7 5 ; , VSks{ = Σ ω y(sΛ)s y, we have

VsV^Si = Σ szω ί y(sΛ)5y + Σ ω^Cs^ω^Cs,) v

Similarly we have

VSkVSlSi = Σ s^y(s 7 )5 y + Σ ωtj(si)ωm(sk)sm.

Hence

^/*<y(^) = #(#($/» ^ ) 5 , , 5;)Cr)

= g(Σ (s,ω ιm(sΛ) - 5*0)^(5,))Sm, S,)(tf)
m

= ί - 5,0^(5*) + skωa(st)t if = 1,

U^yίSfc) - s^ωyίs,), if/ = 2,3,4.

Consequently

[Z,, Zy] | e - [S/ - Σ ωlk(Si)Elk, Sj - Σ ωmn(Sj)Emn] \e

= - Σ stωmn(sj)Emn + Σ Sjωιk(Si)Elk

= (SiCϋwisj) — 5^23(5^)73 + (5^24 (s, ) — 5^0)24(5^)72

+ ( - 5,ω13(5; ) + sjω13(si))X2 + (~ 5,ω14(5y) + 5^4(5

= ^723^3 + /̂;24̂ 2 + ^ijsΆ + ^ijiΆ "*" ^ ^

^ 2 3 + ^ ; 3 i ) Vi + \ ( - i ? ί y 2 4 + ^ ; 4i) V2 +{...} (e is o m i t t e d ) .

6. Finally we examine M Z 1 ? Z 3 ), iVίZ^ Z4).

LEMMA. The following conditions are equivalent:

(1) iV(Z1( Z,) s 0 mod {Z1; Fx Vi, F2},

(2) N(ZV Z4) = 0 mod {Xv Yx ^ , K2},

, v I ^1323 •" ̂ 1331 "•" ̂ 1324 ^^2324 "•" ̂ 1423 ~ ^1414 "•" ^1442
\O/ 1

1^2323 ~^ ^2331 "+" ̂ 2314 ~" 2 / ? 1 3 1 4 + i?2413 " ^ ^2414 " ^ ^2442

Proo/. We have

N(Zlt Z3) = [Zv Z3] - [Z2) ZJ +/[Z 2 ) Z3] + / [ Z 1 ; Z4]
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\ (R1323 + R1331) Wλ + \ U?1324 + Rl3n) W2

~ ~2 ^ 2 4 2 3 * -^2431' ^ 1 ^Γ ^ 2 4 2 4 ' ^ 2 4 4 1 ' ^ 2

| (#2323 + #233l) Wλ+\ (R2324 + R2341) W2

__jL/p 4-7? 4- J? 97? 4-/? 4-7? 4-7? ^W

2 ^ 1 3 2 3 r" ^1331 l̂  Λ 1324 ^^2324 ^^ ^ 1423 •" ̂ 1414 ~ ^1442/ K K 1

+ 2" ^ 2 3 2 3 ~̂ " ̂ 2 3 3 1 "̂ ~ ̂ 2 3 1 4 ~~ 2 J ^ 1 3 1 4 + ^2413 + ^2414 + ^2442) W2 +

Therefore the necessary and sufficient condition for

N(Zlt Z3) = 0 mod {Xl9 Yγ V19 V2},

is that

-^1323 ' -"-1331 ' ^ 1 3 2 4 ~~ ^ ^ 2 3 2 4 ' ^ 1 4 2 3 "•" -"-1414 ' ^ 1 4 4 2 ~~ ^

^ 2 3 2 3 ~"~ ̂ 2 3 3 1 ' ^ 2 3 1 4 ^ ^ 1 3 1 4 ' ^ 2 4 1 3 "•" -^2414 ' ^ 2 4 4 2 ~" ^

Next we have

N(ZV Z 4) = 2" ( i? 2 3 1 4 + i? 2 3 2 3 + i? 2 3 3 1 — 2R13U + R2U2 + i? 2 4 1 4 + i? 2 4 1 3) Wγ

1̂432 + 2i? 2 3 2 4 + i?i3 4 2 + ^ 1

Therefore the necessary and sufficient condition for

N(Zlf Z4) = 0 mod {Xl9 Yx Vl9 V2),

is that

^ 2 3 1 4 ' ^ 2 3 2 3 ' ^ 2 3 3 1 ^ ^ 1 3 1 4 ' -^2442 ' ^ 2 4 1 4 ' -^2413 "~ ^

^ 1 4 2 4 ' ^ 1 4 4 1 ' ^ 1 4 3 2 *~ ̂ ^ 2 3 2 4 ' -^1342 ~̂ ~ ̂ 1 3 3 2 ' -^1313 ~" ^ *

These are the same relations as for N(Zlf Z3).

7. Up to now, for the fixed point x ^ M, we have expressed the integrabil-

ity of Jτ at a point e = (eλ — T e2, e3y e±) with the distinguished local frame

field s = (s1 — T; s2, s3, s4) : U-+ Q' on the neighborhood U of x in M. We
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discuss the integrability of Jτ at all points along the fibre ατ~ (x) = SO(3) by

rotating e by SO(3). First we even-permute the index 2,3,4 in the two relations

at (3) in lemma in 6-th step. We discuss the integrability of Jτ at e' = (ex — T;

#4> e2> e3^ a n d e" = ( î = T; e3, e4, e2) in Q'. For the first relation,

/234\
i ώ u t j . p 4 - P -\- P o p - I - P 4 - P 4- P = Π
\ 2 S 4 / * 1 3 2 3 1331 ^ ^1324 ^-"-2324 "̂  ^1423 ' Λ 1414 "̂  ^1442 U>

234

423

/234

\342

For the second relation,

/2S4 \
[ £-"~f^: 1 . p - U P - I - P o p - I - P - I - P 4 - P r\
\ 2 S 4 / ' 2 3 2 3 2331 "̂  'Π-2314 ^^1314 "̂  ^2413 "̂  ^2414 ~ / t2442 U>

o c i4 \
^ ^ ^ ] . p - I - P -I-J? 9/? -I-/? -4-/? -I-/? : = Π
4 2 3 / * 4 2 4 2 4221 ' -^4213 ώ j ί V1213 "̂  -""4312 ' ^4313 ^^ -̂ -4334 u »

234
3 4 2 j ' 3 4 3 4 3441 ' -"-3412 2 / t 1 4 1 2 + -^3214 "" -^3212 * ^3223 O

Thus we have obtained six relations of the curvature of the Lorentzian manifold

which is equivalent to the relations of Theorem in §1. Next we rotate e by an

arbitrary element a ^ SO (3). The two relations are changed by the action of

a ^ S0(3). Using the skew-symmetry relations of the curvature tensor and rep-

resenting a ^ S0(3) by Euler's angles, we can show that these two relations are

linear combinations of the above six relations. This completes the proof of

Theorem.

We note that the space of algebraic curvature tensors which satisfy the above

six relations is S0(3)-invariant. See Remark A in §5.

§4. Global examples

1. Using Corollary in §1, we will give global examples of M with a

future-pointing timelike vector field T such that Jτ is integrable on P.

If M is of constant curvature and T is an arbitrary future-pointing timelike

vector field on M, then we have
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_ _ / - al3 0 \ o _ _ al3 0
Q-[ 0 alj aΠd R~aI'-[o al3

This form satisfies (1) of Corollary in §1 and Jτ is integrable on P.

If M is the (Lorentz) product of 3-dimensional Riemannian manifold N with

constant curvature and R l f then M is conformally flat. Take T to be the Rx direc-

tion. We have

Q=(° °) .no * - ( ? °
\O al3j \O al3

This form satisfies (2) of Corollary in §1 and Jτ is integrable on P.

Including two examples above, there are Robertson-Walker space-times with

_ | 0 / 3 C
O al,

They are conformally flat. See [O'N]. Of course, there are many examples of con-

formally flat spaces which are not Robertson-Walker space-times.

Robertson-Walker space-time M = M{k, f) is defined by (Lorentz) warped

product / x 7 JV, where / = (α, 6) c R\ ( - oo < a < b < + oo) a nd N is

3-dimensional connected Riemannian manifold with constant curvature k. We

write the Lorentzian metric g as

ds2= - dt2 +f{t)2dσ\

where — dt is a line element on base manifold /, do is a line element on fibre

manifold N, and fit) > 0 is a smooth function on / called a warping function or

scaling function. Robertson-Walker space-time is a globally hyperbolic space, and

spacelike slice S(f) (t ^ I) is a Cauchy hypersurface.

Especially if / — 1, M is the (Lorentz) product of 3-dimensional Riemannian

manifold N with constant curvature and /. This is Einstein's static universe.

There are other special examples of Robertson-Walker space-times which are

Lorentzian manifolds with constant curvature. We have Sλ = Rλ X f S , with

/ = cosh t, called the de Sitter space-time. Using the polar coordinate system on

s3,
ds2 = - dt2 + cosh2 t(dr2 + sin2r(dθ2 + sin2 θdφ2)).

We have the flat space time R : = Rx x R . We have (0, π) XfH for some

warping function / which is isometric to the half of the anti-de Sitter space Hι

diffeomorphic to R 3 x S1. Remark that the universal covering space H\ of H^ is
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given by H\ = H X g Rx, and g = cosh r. Using the polar coordinate system on

ds = — cosh2 rdt2 + dr2 + sinh r(dθ + sin2 θdφ2).

On a Robertson-Walker space-time M, let us choose

1 ~ dt

It is a unit vector field Lorentz orthogonal to each spacelike slice S(f) and

future-pointing with respect to the canonical timelike orientation. Let X, Y, Z be

vector fields tangent to S(i), then we have

R(X, Y)Z= - {(tj) + -^)(g(X, Z)Y- g(Y, Z)X),

R(X, Y)T= -γX> R(X, Y)T=0, R(X, Z)Y= -γg(X, Y)T.

The sectional curvature Kτ including T satisfies Kτ = —?-. If / is fixed, its values

are constant. The sectional curvature Kσ tangent to spacelike slice satisfies Kσ =

f'2 + k
— . If t is fixed, its values are constant. The Ricci curvature (tensor) has the

following values:

Ric(7\ T) = - ^ P , Ric(Γ, X) = 0,

RicCY, Y) = [2{lj-) + —2 +
 T-j)giX, Y).

1 ί(f'\2 k f"\
The scalar curvature satisfies 5 = -^ (\~γ) "I ^ H— f). It follows that M is

conformally flat, lί s1= T and s2 = X, s3= Y, s4 = Z are orthonormal vector

tangent to S(f), they are Γ-Lorentz orthonormal basis at a point in M. Then we

have the following form Q :

This form satisfies (2) of Corollary in §1.
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PROPOSITION. Suppose that M is Robertson-Walker space-time. If we choose T =

-βi on M, then Jτ is integrable on P.

2. We remark that, if there is an example of M with a form

Q =

— x
0

0

X

0

0

0

- y
0

0

y
0

0
0

x + y

0

0

— x — y

X

0

0
— x

0

0

0

y
0

0

- y
0

0
0

- x - y

0

0

χ + y

\

I
then M is not conformally flat, but P is an integrable twistor space.

We remark that, if we choose the canonical T on M with Taub-NUT metric

or Eguchi-Hanson metric , then Jτ is not integrable on P. Then, note that M is

Einstein.

§5. Final remarks

Remark A:

1. In 3 of §1, we considered the irreducible SO+ (3,1) -decomposition of

algebraic curvature tensor space 31 on A — A RL. The vector space 91 is

20-dimensional and consists of the three invariant subspaces. We obtained the

corollary by the irreducible decomposition of the curvature tensor R of (M, g).

Choose a future-pointing timelike unit vector field T on M. Since

SO+(3,1) 3 SO{1) x SO(3) = 50(3) ,

we can regard 31 as an 50(3)-module. In this section, we subdecompose 31 into

irreducible S0(3)-invariant subspaces and we will restate the conclusion of

Theorem as the vanishing of certain components of the curvature tensor 31.

We have the action of S0+(3,1) on A defined by

p(ά)(u Λ υ) = au Λ av, a e 50+(3,1).

Choose a T-Lorentz orthonormal basis e — (e1

= T; e2, e3, e4) €= TXM. Then we

have the orthonormal basis e of A . With respect to this basis, the action p defines

an exterior product representation

p :S0+ (3,1) 2
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We can restrict the representation to obtain

p:SO(3)->GL(Λ2).

Let

be an element in SO(1) X SO(3) c SO+(3,1), where a' e SO(3). Since

£x, T = eίt we have

We regard S a s a subset of Mat 01) = Mat (6), all 6 x 6 matrices. We have

a' °\I~A -p(a) Rρ(ά) = ^ , ,

- a'A'a' ~ a'B'a'

The transformation defined by S 3 i? ̂  p{a) Rp(a) gives $ the structure of an

50(3)-module. The 3 X 3 matrices A, Bf C are transformed by the conjugate

transformations of ar G 50(3).

Then, we can take another point of view. We regard S as a codimension one

subspace of S {A ), the space of all symmetric 2-tensors on A . Then, in consid-

eration of A — Λt 0 y l s , we have the SO(3)-decomposition

S\Λ2) = S\A)) Θ W? <S> Λ2

S) Θ S2(Λ2

S).

Therefore R has the components decomposed into the above three 50(3)-

invariant subspaces.

2. We recall the real representation theory of S0(3). The real irreducible

representations of SO(3) are of odd degrees as well as that of the complex irre-

ducible representations of SO(3). In 1-, 3-, 5-dimensions, the representations are

realized by conjugate transformations on the vector space Mat(3).

LEMMA. The SO'(3) -module Mat(3) is decomposed into the following three irre-
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ducible subspaces:

Mat (3) = 2>Θ<SΘ2l,

where Φ is the set of all 3 X 3 scαiαr matrices and dim Φ = 1,

© is the set of all 3 X 3 trace-free symmetric matrices and dim 2) = 5,

SI is ί/ie sef of all 3 X 3 skew-symmetric matrices and dim 3) = 3.

Proof. First Mat(3) is decomposed into the symmetric part and the skew-

symmetric part. In the set of all symmetric matrices Sym(3) which is 6 dimen-

sional, for A ^ Sym(3), we have

A =

ig + b +
3

0

0

a + b + c
3

0

0

0

a + b + c

b-

d

a + b + c

\ c —

f
a + b + c

The first term is a scalar matrix and the second term a trace-free matrix. It fol-

lows easily that ©,Sl are irreducible by conjugate transformations of SO(3).

Note that the representation of SO(3) by conjugate transformations

on Mat (3) is equivalent to the tensor product representation τι® τγ on

a 9-dimensional representation space. Here τλ is the 3-dimensional irreducible

representation of SO(3) induced by the 3-dimensional irreducible representation

p2 with the highest weight 2 of SU(2). By the way, according to the

Clebsch-Gordan's formula, τλ ® τx is decomposed into the direct sum of the

irreducible representations of 50(3) :

T, θ r0,
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where deg r2 = 5, deg τx — 3, deg τ0 = 1. This gives the irreducible decomposi-

tion of lemma.

3. As mentioned in §1, R ^ 31 has the components representation decom-

posed into the three irreducible 50+ (3,1) -invariant subspaces:

I-A -B\
R=\ t = W+L+ U.

\'B C I
On the other hand, as mentioned above, R can be regarded as R = A + B + C by

the components of not irreducible SO(3)-invariant subspaces. Put

d .'= {— A: Λt -^ Λt, self-adjoint linear transformation}

= Sym(3) = 3) Θ © = :dD Θ ds,

98 '= {— B : Λs—>Λt, linear transformation, tr = 0}

ίί •= {C : ΛS—>ΛS, self-adjoint linear transformation}

= Sym(3) = S θ S = « I ) θ « s .

Then we have

3? = rf θ 36 θ ^ * 50(3)-decomposition,

= < Θ ^ Θ S S Θ I , Θ ^ Θ ^ irreducible 50(3)-decomposition.

We can make new six irreducible SO(3)-invariant decomposition by transforming

some basis. Then we can remark that JT is integrable on P if and only if the two

components of some 1 dimensional and 5 dimensional SO(3)-invariant subspaces

of R vanish.

Remark B:

1. We recall the construction of [BB-O]. Let % be the set of all complex

structures on R n. A general linear group GL(2n, R) acts transitively on <β by

conjugation.

For a closed subgroup Go of GL(2n, R), let C be a Go-invariant submanifold

of (6. We have C = GQ/HQ. We assume that C has a G^-invariant almost complex

structure.

Next, let M be a 2^-dimensional differentiable manifold, and let Po be a

linear frame bundle over M with structure group Go and a projection ΠT : Po—> M
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Moreover let Z be a fibre bundle with fibre C associated to the principal bundle

Po. Namely, we have Z = Po X GQ C with a projection π : Z—•» M

For a Go-connection on Po, we can consider the associated horizontal lift of M

to Z.

PROPOSITION [BB-0]. There exists a natural almost complex structure Jo on Z.

2. We generalize the above situation. We assume that G ( c GL(2n, R)), in-

cluding Go as a subgroup, acts on C transitively and effectively and that the action

of G restricted to Go coincides with the above-mentioned conjugate action. Then

we have C = G/H= Go/Go Π H = GQ/HQ. Moreover we assume that a linear

frame bundle P with structure group G is reduced to one with structure group Go.

Then we have Z=PxGC = P0XG C. We assume that C has a G-invariant

almost complex structure Jv For a G-connection on P, we can consider the associated

horizontal lift of M to Z. Under the above-mentioned assumptions, we get the fol-

lowing proposition.

PROPOSITION. There exists an almost complex structure J on Z with respect to the

G-connection.

Proof. The right action of GQ on P o x C is as follows. For gQ €= Go,

Λ) x C 3 (pQ, c) » (p0, c)g0 = (£0£0, ^o"1^) ^ P o x C.

Then Z is the set of equivalence classes of Po X C by the equivalence relation ~

defined as follows:

(A>» )̂ ~ (tfo» d) ̂  t n e r e exists ^o e Go such that ^0 = ̂ 0 , d = g0 c.

At £ = [(/>0, c)] ^ Z, the tangent space T2Z is the set of

[(ξ, w)] = [(Rg0*ξ, & > ) ] , ^o e Go, for (ξ, w) e T(,o,c)(Po x Q = T,P 0 x TCC.

With respect to the G-connection on Po c P, TP0 c TP is decomposed into the

vertical bundle V and the horizontal bundle H. Then the class

[(0, v, 0) e Γ(ίo,c)(Po x O = V ί β Θ ^ o Θ TCC]

is equal to the class

[(0, Rg^v, 0) e T ( ί o W c ) ( P o x C) = K t Λ θ f f w , θ T ι

The class
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[(0, 0, w) e= VPo Θ HPo Θ TCC] e TZZ

is equal to the class

[(0, 0, A » e F M o Θ ^ M o Θ Γ,o-,eCl

Therefore we have

TZZ = HPQ@TCC.

We remark that, with respect to the G-connection, we have the decompositions

τzz = xz®γz, az = HPO, vz = τcc.

Since Ji is G-invariant, for [(0, 0, w)] G Vzt we have the following com-

mutative diagram: for g ^ G,

h
w e TCC > TCC B ]γw

- 1 I

g 1

«; Tβ- l cC 3 Λ ^ ' M ; .

Therefore we can define an almost complex structure Jλ on Ύz and V = U 2 e Z y^.

For [(0, fl, 0)] e ^ , we will define an almost complex structure J2. Remark

that c ^ C is a complex structure on R . Since we regard p0 ^ Po as a linear iso-

morphism of R w onto 7yW Or = Ή(p0)), a mapping ^ o ^ o defines a complex

structure on T^M According to ΓXM = HPQ with respect to the G-connection, we

can define a complex structure c on HPQ. On the other hand, g0 c ^ C (gQ ^ Go)

is also a complex structure on R n . From ^ 0 ^ 0 ^ Po, a mapping ( ^ f ) (^ ^

defines a complex structure on TXM We define a complex structure

o ^) o n ^o*o ^ e n a v e ^-ne following commutative diagram: for g0 G GO,

In fact, we will show that (£0~ c) = Rgo*c Rg-i*. From the assumption that the

action of Go on C is conjugation, we can conclude it. Namely, for g0 e Go, we have

^oW = ft %» ώ (c) = gocgό . Therefore we can define an almost complex

structure J2 on Xg and X. Hence an almost complex structure / — Λ Θ Λ is

defined on Z.
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3. This proposition generalizes the result stated before ([BB-O]). In [BB-O],

the integrability condition of the almost complex structures for G-structures of

order 2 is given by the vanishing of a component of the Weyl tensor. In this paper

we treat the case when

R2n = R 4 G = S 0 + ( 3 > 1 ) > G ( ) = 5 O ( 3 ) ) Q g, S \

The choice of the geometrical Tin this paper satisfies the assumption of this prop-

osition. In this case, we express the integrability condition by the vanishing of cer-

tain components of the curvature tensor.

Remark C:

1. If TV is a 3-dimensional oriented Riemannian manifold with constant

curvature, the unit tangent bundle TX(N ) of N admits a normal CR-structure

(cf. [S-Y]). Then we can naturally define the complex structure on Tλ(N ) X R.

As Tλ(N3) = N3 x S\ we have

Γit/V3) x R = (N3 x S2) x R = OV3 x R) x S2.

Put M = N X R. Then M with the canonical Riemannian product metric is

conformally flat, and self-dual. The twistor space of M constructed by

Atiyah-Hitchin-Singer is diffeomorphic to M 4 X S2 = (N3 X R) x S2. Its com-

plex structure coincides with the above one. On the other hand, the space-time M

with the canonical Lorentzian product metric is conformally flat, too. The complex

manifold M X S which is complex 3-dimensional can be regarded as the space

of all null directions. It arises a natural question when a complex structure is de-

fined on the space of all null directions. We want to investigate its condition,

properties, examples and classifications. This is another motivation of this paper.

2. Let M be a 4-dimensional oriented and connected manifold. We restrict a

discussion to a coordinate neighborhood locally. If we give a Lorentzian metric gL

and a unit vector field T(gL{T, T) = — 1) on M, a Riemannian metric gR(T)

called Riemannization is canonically defined by changing norm — 1 into norm 1 of

T. If we give a Riemannian metric gR and a unit vector field S(gR(S, S) — 1) on

M, a Lorentzian metric gL(S) called Lorentzization is canonically defined by

changing norm 1 into norm — 1 of 5.

For a Lorentzian metric gL, the linear frame bundle over M with structure

group GL(4, R) is reduced to a principal bundle Q with structure group

SO(3,1). If we choose T on M, then Q is reduced to Qτ with structure group
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SO(3). We have the twistor space P of M given by

Γ — y X SO(3,1)^ ~ ^T ^

The space P is integrable if and only if the condition of Theorem in §1 is satis-

fied. For a Riemannian metric gR, the linear frame bundle over M with structure

group GL(4, R) is reduced to a principal bundle F with structure group 5Ό(4).

If we choose S on M, then F is reduced to Fs with structure group SO(3). The

twistor space Z of M in [A-H-S] is given by

Z= Fx '

The space Z is integrable if and only if M is a self-dual manifold.

If we can take T == S, the twistor spaces P and Z coincide. But since the hori-

zontal lift to P is given by 50(3,1)-connection and the horizontal lift to Z by

S0(4)-connection, an almost complex structure Jτ=s on P and an almost complex

structure Js=τ on Z do not coincide in general. The twistor space of a conformally

flat Lorentzian manifold is not necessary integrable, but the Riemannization is con-

formally flat and the twistor space is integrable.
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