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Summary

Quantitative trait loci (QTL) are usually searched for using classical interval mapping methods
which assume that the trait of interest follows a normal distribution. However, these methods
cannot take into account features of most survival data such as a non-normal distribution and the
presence of censored data. We propose two new QTL detection approaches which allow the
consideration of censored data. One interval mapping method uses a Weibull model (W), which is
popular in parametrical modelling of survival traits, and the other uses a Cox model (C), which

avoids making any assumption on the trait distribution. Data were simulated following the structure
of a published experiment. Using simulated data, we compare W, C and a classical interval mapping
method using a Gaussian model on uncensored data (G) or on all data (G’'=censored data analysed
as though records were uncensored). An adequate mathematical transformation was used for all
parametric methods (G, G’ and W). When data were not censored, the four methods gave similar
results. However, when some data were censored, the power of QTL detection and accuracy of QTL
location and of estimation of QTL effects for G decreased considerably with censoring, particularly

when censoring was at a fixed date. This decrease with censoring was observed also with G, but it
was less severe. Censoring had a negligible effect on results obtained with the W and C methods.

1. Introduction

QTL (Quantitative trait loci) detection methods are
used to search for chromosomal regions having an
effect on traits of interest. This type of analysis has
two main aims. First, information on markers linked
to a QTL can be considered in selection programmes
(Boichard et al., 2000). From a more fundamental
point of view, detected chromosomal regions can be
used to search for gene(s) involved in the biological
mechanisms influencing the trait under study.
Classical QTL interval mapping methods assume
that traits follow a normal distribution (Lander &
Botstein, 1989; Knott et al., 1996; Elsen et al., 1999;
etc). However, traits in animals and plants are often
non-normally distributed. For example, categorical
data (e.g. dead or alive) and survival data (e.g. length
of life) are often recorded to describe resistance
to diseases. For such traits, classical QTL detection
methods have a low power and a bias in estimates
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of effects and of position of the QTL. Interval map-
ping methods have been proposed to analyse discrete
traits (Kadarmideen et al., 2000), but these do not
apply to survival data.

Survival data are positive random variables (called
failure time hereafter) describing in some sense the
length of the interval between a point of origin and an
end-point. Survival analysis takes into account dis-
tributional forms (often far from normal distribution)
and censoring (i.e. the fact that the end-point is not
observed for a part of the data). When using classical
interval mapping methods, either censored data are
excluded from the analysis or they are incorrectly
considered as not censored. To estimate fixed effects,
proportional hazard models are classically used in
survival analysis. They can be either parametric such
as the Weibull regression model (Kalbfleisch &
Prentice, 1980) or semi-parametric such as in the Cox
model (Cox, 1972). In a recent study, Diao et al.
(2004) proposed use of a Weibull model to search for
QTL with an interval mapping method. In the present


https://doi.org/10.1017/S0016672305007366

C. R. Moreno et al.

paper, both Weibull and Cox models were used to
search for QTL with an interval mapping method. In
order to compare these methods with each other and
with the classical method assuming a normal distri-
bution, experimental data from an F2 population
(Sebastiani et al., 1998) were used to produce simu-
lated data where QTL effects and percentage of cen-
sored data were variable.

2. Model definitions

In this section, the QTL detection methods are
developed for inbred crosses and they are generalized
to outbred crosses in the appendix. Methods are pres-
ented in two parts. First, the general form of the
likelihood and the expression for the contribution of
one observation to the likelihood are described for an
interval mapping method using a Gaussian model.
With this method and data that conform to a normal
distribution, it must be emphasized that only un-
censored data can be legitimately included. Therefore,
censored data were excluded from the analysis (G) or
were incorrectly viewed as uncensored (G’). Second,
the new interval mapping methods using a Weibull
model (W) and a Cox model (C) are presented. In the
latter methods, both uncensored and censored data
were included.

(1) General expression for the likelihood

In an F2 population, assuming that individuals are
produced by heterozygote parents, each animal & has
four possible QTL genotypes (1,1), (1,2), (2,1), (2,2),
denoted as g=1, ...,4. As described by Lander &
Botstein (1989), the general form of the likelihood at a
chromosomal location z can be written (supposing
that observations are mutually independent) as:

A=1] {Zp(d/i:gle) : l(klg)} (1)

k g

where di is a random variable and p(di=g|M,)
is the probability that individual k& has genotype
g conditional on its flanking marker information.
The contribution to the likelihood I(k|g) of the
observation on individual k£ depends on the assumed
distribution of the trait (#;). Let Q (2=1,...,N)
represent the set of uncensored (2,..=1, ..., M)
and censored observations k (2.cns=Nne+ 1, ..., N):
Q=9 ong U Qe

In the remainder, we consider three alternatives cor-
responding to the Gaussian, Weibull or Cox models.

(i1) Interval mapping method using a Gaussian
model: G and G’

In (1), the contribution /(k|g) of individual k& with
genotype g to the log-likelihood, using a classical
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interval mapping method (Lander & Botstein, 1989),
can be easily written only for an uncensored obser-
vation: k € Q,,,.. Thus, the contribution to the likeli-
hood is:

1
I(k € Quuclg)= o
X exp [ % (”’ _’“‘_’Z‘B_q”g))z} @)

where #; is the trait (failure time) of individual k, u is
the mean, o is the standard deviation, f is the (n,. x 1)
vector of covariate effects, n,. is the number of levels
of covariate effects, x; is the kth row of the (N, n.)
incidence matrix X, and the QTL effect, ¢t/,, is equal
to—aifg=1,dif g=2or 3 and a if g=4, where a and
d are additive and dominance effects, respectively.

We distinguished between two different Gaussian
approaches: G considered only uncensored infor-
mation in the likelihood (k € ,,,.) —i.e. censored re-
cords are deleted —and G’ included all information
(k € ), so the censored observations were assumed
to be uncensored at censoring time.

(iii) Interval mapping methods using Weibull
and Cox survival models: W and C

Survival analyses allow censored observations to be
considered properly. Generally, a random (i.e. non-
informative) censoring is assumed (Kalbfleisch &
Prentice, 1980). Some useful definitions of functions
are recalled here. Let 7 represent the actual failure
time, f{(¢) the density function, S(¢) the survivor func-
tion and /A(7) the hazard function representing the rate
at which failure occurs at time ¢ (Kalbfleisch &
Prentice, 1980).

To associate covariate effects and hazard function,
proportional hazard models are the most popular.
These models postulate that the hazard function of an
individual & is equal to the product of a baseline
hazard function (%y(¢)) and a positive function of the
covariates (exp(x;p)). Two families of proportional
hazard models can be used. The first family comprises
parametric models which use a parametric baseline
function, such as the two-parameter Weibull hazard
function. The second family includes semi-parametric
models, such as the Cox model. Semi-parametric
models require no assumption on the functional form
of the baseline hazard function, so they are more
flexible than parametric models.

In a parametric Weibull regression model, the haz-
ard function is:

h(t) =Ap(Aty)* ™" - exp (xiP),

where 1 and p are positive Weibull parameters.
The contribution to the likelihood of an uncensored
observation k (k€ £, is the density function at
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failure time which can be written as the product of the
hazard function and the survivor function. The con-
tribution to the likelihood of a censored observation
k (ke .., is the value of the survivor function
at censoring time S(z;) (Kalbfleisch & Prentice, 1980).
Then the likelihood can be written:

L= [ )™ < [S(z0)) (3)
k

where 0,=1if ke Q2,,.and 0,=0if k € Q,.,.;.

Therefore, the contribution of the individual k&
with genotype g to the general form of the likelihood
in the interval mapping method (expression 1) using a
Weibull model (W) can be written as:

I(k € Q|g) o< [(1)]™ x [S(10)]

o [p- 7 (exp (plog A+ xiB +qil,))] O
x exp [ —17(exp (plog A+ X} B+ qtl,))] 4)

where 6, =1ifk e Q,,,.and 6, =01if k € Q.,,, t; 1s the
failure time or censoring time of the individual k.

The Cox model allows estimation of the regression
coefficients in  without making any assumption
about the form of the baseline hazard function. The
procedure developed by Cox (1972) to estimate cov-
ariate effects assumes no tie (i.e. all failure times are
distinct) and relies on the definition of what he calls
a partial likelihood function which is the part of the
full likelihood function that does not depend on the
baseline hazard function. In this expression, only un-
censored observations have a non-zero contribution,
and censored observations participate in the denomi-
nator of the contribution expression. When there are
few ties, Peto (in the discussion of Cox, 1972) pro-
posed an approximation, which is an expression for
the exact likelihood function when the baseline haz-
ard function is assumed to be piecewise constant (i.e.
constant over each interval, after partitioning the time
axes into intervals with bounds equal to observed
failure times). Peto’s version of the Cox’s partial like-
lihood is:

-]

k€Qupe

exp (xi5)
>, exp(xi,B)

ka€R(1)

)

where R(z;) is the set of censored or uncensored in-
dividuals k, at risk at time 1, i.e. the set of individuals
known to be alive just prior to #,. The product is over
all uncensored observations rather than over all dis-
tinct failure times as in the Cox (1972) procedure.

In the interval mapping model, there are four terms
for each individual k,, one for each possible genotype.
Then to obtain an expression equivalent to (5), the
terms in the denominator must be weighted by the
probability that individual k& has genotype g con-
ditional on its marker information (p(d; =g4|M,))-
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By analogy with (5), the contribution of individual k&
to the likelihood in interval mapping using a Cox
model (C) can be written as:

Ik € Quclg)
(exp (x}B+tl,)

< Y, Lpldi,=galMy,) - exp (xi B+ ng)ﬂ

ka€R(ty) &a
(6)

where R(#;) is the list of individuals at risk at time #;_
The subscript dis used to identify terms k and g which
come from the sum of the denominator of the func-
tion (6).

~
~

3. Data and simulations
(1) Experimental design

Data were simulated following the structure of a
published experiment (Sebastiani et al., 1998). One
hundred and ninety-one F2 animals were produced
using two inbred mouse lines. Their survival times
were measured after inoculation with a pathogenic
bacterium, Salmonella typhimurium. All animals died
at the end of the experiment, so no data were cen-
sored. Sebastiani ez al. (1998) used two approaches to
search for QTL. In the first approach, data were log-
transformed and analysed using an interval mapping
method assuming a normal distribution. In the second
approach, a Cox regression model was used to test the
marker effects. When using these two methods, they
found QTLs located in similar regions and having
similar effects.

Here, data were simulated based on the survivor
distribution and marker genotypes observed in this F2
population, in order to compare the results obtained
with the four different interval mapping methods
previously presented: G, G, W and C.

The failure time distribution of this design (Fig. 1)
was used as the basal survival data. A QTL effect and
a censoring process were added to this basal distri-
bution as described in the following section. Marker
genotypes for chromosome 1 were used. This chro-
mosome had the longest typed region (Fig. 2) and a
mean percentage of missing genotype by marker equal
to 9%.

Simulations were carried out either under the null
hypothesis (no segregating QTL) or under the H1
hypothesis of one segregating QTL. Data were cen-
sored in two ways: at a fixed date or at random dates.
Censoring at a fixed date mimics censoring at the end
of the experiment. The censoring at random dates
allows consideration of, for example, censoring due to
the death of an animal not related to the disease under
study or different starting dates (e.g. birth dates or
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Fig. 1. Survivor distribution of the experimental data used
in the simulation process.

inoculation dates). Five scenarios of censoring were
considered: uncensored data, 20 % and 40 % of cen-
sored records at random dates, and 20 % and 40 % of
censored records at a fixed date. Under the HO hypo-
thesis, 1000 simulations were performed for the five
types of censoring. Under the H1 hypothesis, a single
QTL was assumed at 43-5 ¢cM on the chromosome.
The QTL was given an additive effect ‘add’ of 0-3 or
0-5 and either no dominance (dom=0) or complete
dominance (dom=add). Then for each scenario of
censoring, four situations with different values of
dominance and additive effects were considered (500
simulations each time). Therefore, under H1, a total
number of 20 situations were studied.

(i1) Simulation process

Simulated data were generated using values of
uncensored failure times of the experimental design
(Sebastiani et al., 1998). For an easier presentation, let
tr (k=1,...,n) be the observed failure times and
T[I] < T[g] <...< T[i] <...< T[m] be the ordered distinct
failure times (m<n).

First, the survival function S(f), which is the
probability of being alive at time ¢, was estimated
using the Kaplan—Meier estimator (Kaplan & Meier,

1958):
(Vm —am> )
i Ty <t YU

SKM(I) = H

where v, is the number of animals known to be alive
just prior to time 73, and ap; is the total number
of animals dying at time 7y;. This estimate of Sxp(?)
was considered to be the baseline survival function:
So(2) = Ska(?).

Considering a proportional hazard model, this
baseline survival function was used to build the
survivor function S(#]g) conditional on each QTL
genotype (g). Additive and dominance effects (add
and dom) of the simulated QTL were then included
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Fig. 2. Chromosomal location of markers on chromosome
1. Cumulative map distances come from the consensus
map in the Mouse Genome Database (http://www.
informatics.jax.org).

as effects in the proportional hazard model, as:

S(flg=1)=S,(1)
S(tlg=2)=S(tflg=3)= [SO(Z)]CXp(add+zion1)
S(t|g=4) =[Sy (1) * )

The generation of simulated records was realized in
two steps: first, the choice of a QTL genotype and,
second, the choice of a survival time value. For each
animal, the probability of the four QTL genotypes
was calculated conditional on flanking marker infor-
mation: p(di =g|M}) (see 1). Using the three proba-
bilities p(d; = 1|M}.), p(di =2, 3| M) and p(d] =4|My),
a QTL genotype was drawn from a trinomial distri-
bution. The simulated record was then generated
using the inverse-transform method (Law & Kelton,
1982). Knowing the genotype g, an ordinate U of the
survival function value was drawn from a [0,1] uni-
form distribution. The observed survival time #, was
obtained as the value such that S(#)=U, ie. t;,=
STY(U). In almost all cases, the simulated U values
did not correspond exactly to an originally observed
value of S(.), since S(.) is based on the estimates of
survivor function at a specific date. Therefore, to ob-
tain realistic #; values, a linear interpolation between
the original observed #, values or an extrapolation
beyond the smallest ¢, value of S(#;|g) was applied.
This approach allowed the generation of simulated
records from a realistic survivor distribution without
any particular assumption on the true parameter dis-
tribution.

(iii) Definition of QTL effects

Standardized QTL effects are classically used in
simulation studies. For example, additive and domi-
nance simulated effects equal to a fraction of the
phenotypic standard deviation are chosen. Here, the
use of a realistic but non-standard survivor distri-
bution as a baseline distribution does not allow
simulation of such standardized QTL effects. In the
case of W or C, the value of additive and dominance
simulated effects previously defined (add and dom) can
be compared with the QTL estimated effects, called d
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and d in the model definition section. Unfortunately,
such a direct comparison is not possible under G or
G’. The only way to interpret estimates of QTL effects
under G or G’ is to compare these to estimates under
W. Because the Weibull model can be described as
a log-linear model with a residual proportional to
an extreme value distribution (Kalbfleisch & Prentice,
1980), standardized QTL effects under G and G/,
— a/6, were compared with standardized QTL effects
under W, a/p.

In other words, add=0-5 and dom=0-5 define
effects on a non-specific scale, not related to the trait
variability.

(iv) Censoring process

Fixed or random date censoring was applied to the
simulated data. When a rate of v% of censoring at a
fixed date was chosen, the v% largest failure times
were censored and the censoring time was set equal to
the largest uncensored time. When a rate of v% of
censoring at random dates was applied, records were
randomly drawn from a binomial distribution (p=
v%) and the censoring time for record k was drawn
from a [4, #;] uniform distribution (4 days being the
smallest observed survival time).

(v) Computational techniques

Simulated data were transformed to perform the
analysis with G, G’ and W. With G and G, a logar-
ithmic transformation was used to partly normalize
the data. With W, a translation of the data was
necessary because there were no failure observations
between days 0 and 4 (Cox & Oakes, 1984). To choose
the translation ((1—t*=t—7) to obtain an approxi-
mate Weibull distribution, several transformations
were applied. A graphical test of the adequacy of a
Weibull distribution was performed. This test consists
of checking whether a plot of log [ —1og(S(7))] against
log(¢) gives a straight line. The best transformation
was found to be r*=¢—39 for failure time (Fig. 3).
The likelihood function was maximized using a
quasi-Newton algorithm implemented as a NAG
subroutine (E04JYF) for the three methods. The em-
pirical distribution of the likelihood ratio test statistic
was generated in the same manner for each censoring
situation under the null hypothesis. A significance
level of 0-95 was chosen for all analyses. The empirical
threshold value was defined as the 95th percentile of
the empirical distribution of the likelihood ratio test
statistic under HO. Under H1, the power was defined
as the percentage of replicates in which the null
hypothesis was rejected at the 5% significant level.
The difference between two power estimates is sig-
nificant (at 5%) if this difference is higher than

1.96\/14(1 —u) - (i + L), where u is the proportion

my
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Fig. 3. Graphical test of the Weibull assumption using
t=0and —3-9 as the origin (a straight line is synonymous
with a good Weibull fit; Cox & Oakes, 1984).

of runs above the significance threshold pooled across
methods, and m, and m, are the number of runs for
each method (Baret ef al., 1998). Powers, mean esti-
mates of the additive effect, dominance effect and
location of QTL were calculated based on the maxi-
mum likelihood estimates of all 500 H1 simulations
whatever the approach used (G, G’, C or W).

4. Results

The G, G, W and C methods were compared
by considering their power, and their estimates of
the additive effect, dominant effect and location
of QTL.

(1) Comparison of QTL detection power

In Fig. 4, the differences in power among the four
approaches are presented as functions of the QTL
effects for the five situations of censoring. Whatever
the censoring situation and the values of simulated
QTL effects, the difference between the power of C
and W never exceeds 6 %. All these differences are non-
significant, except in two cases where they are signifi-
cant but weakly so.

When there is no censoring or censoring at random
dates, there is no significant difference between
the power of G and G’, but these approaches are
less powerful than C and W. The difference between
the power of the survival approaches and the
Gaussian approaches is significant in 6 of 24 situ-
ations considered under no censoring or censoring
at random dates. When censoring is applied at a
fixed date, C and W are clearly much more power-
ful than G and G’ for 40% of censoring, G being
always the least powerful approach. This trend in-
creases dramatically with the rate of censoring at
a fixed date and the value of the dominance QTL
effect. All differences between the power of the
Gaussian and the survival approaches are significant.
In the extreme case of 40 % of censoring at a fixed
date and additive and dominance effects equal to
0-5, the difference in power of C is 86% with G
and 24 % with G'.
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Fig. 4. QTL detection power with G, G, W and C methods, as

, add=5, add=3, add=.5
dom=0 dom=.3, dom=.5

a function of simulated QTL effects for the five situations

of censoring (the QTL has an additive effect add and a dominance effect dom).

(1) Comparison of QTL location estimated
Table 1 presents means and standard deviations

of QTL location for all situations simulated. Most
estimated locations tended to be biased towards the
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centre of the chromosome. This observation is classi-
cal in interval mapping analysis (Walling et al., 2002).
For W and C, this bias and the accuracy of QTL
location were barely influenced when censoring
rate increased. However, the bias decreased and the
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Table 1. Mean estimates (+ empirical standard deviations over 500 replicates) of QTL location for the simulated
situations (true QTL location=43-5 cM) with methods using a Gaussian model excluding censored observations

(G), a Gaussian model including censored observations as though they were uncensored (G"), a Cox model (C) and
a Weibull model (W)

Model add dom C w G G’
QTL location (cM)
No censoring 03 0 49+19 47+22 49+21 -
0-5 0 43+10 42+11 43+12 -
03 0-3 45+15 45+16 45+15 -
0-5 0-5 43+6 43+7 41438 -
Random censoring =20 % 0-3 0 50+21 50+23 49 +21 49+23
0-5 0 44411 42+12 43413 45+15
0-3 0-3 46+ 15 46 +17 46+ 16 47418
0-5 0-5 43438 42438 4249 42+10
Random censoring =40 % 0-3 0 52423 49423 53426 53426
0-5 0 44+13 43+13 44+16 47418
0-3 0-3 46+ 17 47+19 46+ 19 50422
0-5 0-5 44+10 42+10 42+10 44+14
Fixed date censoring =20 % 0-3 0 48420 51+22 59+29 52425
0-5 0 44+12 43+12 56427 45+14
03 0-3 48+17 48 +18 60 +28 49422
0-5 0-5 4449 43438 59427 44+11
Fixed date censoring =40 % 0-3 0 52423 51423 62+31 57+27
0-5 0 45+15 45+ 14 62+29 46417
0-3 0-3 50420 51421 63+31 544723
0-5 0-5 45+ 12 45+ 11 63+30 47+ 16

(=), when there is no censoring G and G’ models are identical.

accuracy increased when QTL effects increased. A
slightly more pronounced trend was observed for G'.
Similar results were obtained with G when no cen-
soring or censoring at random dates was applied.
However, with censoring at a fixed date, the accuracy
of G decreased and its bias increased with the pro-
portion of censoring, particularly for situations where
a dominance QTL effect was simulated.

(iit) Comparisons of additive and dominance
QTL effects estimated

Table 2 presents the means and standard deviations
of the estimated additive QTL effects for the 20
simulated situations. Results on dominance effects
are not presented in Table 2 because they followed
the same trends as the estimates of the additive
QTL effect. With W and C, estimates of QTL effects
were similar between the different censoring situ-
ations. The estimates were only slightly biased or were
unbiased.

Comparing the standardized estimates (see Section
3.i1) G or G’ and W, the values were slightly under-
estimated for G and G’ when censoring was not
applied or was at random dates (showing that the
standardized solutions in the absence of censoring are
relatively consistent). A different situation was found
when censoring was at a fixed date: the G estimates of
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the effects were 2 or 3 times smaller than the W esti-
mates. The accuracy was also considerably affected.
On the other hand, censoring at a fixed date did not
greatly affect the G’ estimates.

5. Discussion
(1) Selection of the model

If an adequate transformation is used in the para-
metric models (logarithmic transformation in G or G’
and translation transformation in W), the differences
between models did not appear critical when censor-
ing was not applied or was at random, at least in the
example considered here. In these situations, even
though survival approaches were slightly better than
the Gaussian approaches, all methods gave quite
similar results, in terms of detection power, accuracy
and bias of the estimates. When censoring at a fixed
date was applied to the data, the situation changed.
The G approach was strongly affected by censoring
at a fixed date. This effect increased when there was
a dominant QTL effect. In the latter case, extreme
data — which were censored — were the most informa-
tive for estimating QTL effects. In the situations
where censoring is at a a fixed date (for example due
to the end of the study) a classical method such as G
is not at all adequate. In G’, regarding censored data


https://doi.org/10.1017/S0016672305007366

C. R. Moreno et al. 146
Table 2. Mean estimates (+ empirical standard deviations over 500 replicates) of additive QTL effects with
methods using a Gaussian model excluding censored observations (G), a Gaussian model including censored
observations as though they were uncensored (G"), a Weibull model (W) and a Cox model (C)
Standardized estimated additive
Estimated additive QTL effect QTL effect
P P alp —a/é —a/é
C w w G G’
Model add dom (1) ) (3) 4) (5)
No censoring 03 0 0-35+0-13 0-39+0-18 0-2740. 12 0-29+0-13 -
05 0 0-55+0-11 0-60+0-14 0-394+0-09 0-474+0-10 -
03 03 0-34+0-14 0-38+0-16 0-25+0-10 0-324+0-13 -
05 05 0-54+0-12 0-61+0-14 0-394+0-09 0-50+0-10 -
Random 03 0 0-34+0-16 0-394+0-21 0-26+0-13 0-30+0-14 0-254+0-13
censoring =20 %
05 0 0-57+0-13 0-63+0-16 0-404+0-10 0-47+0-11 0-404+0-11
03 03 0-36+0-14 0-40+0-18 0-25+0-11 0-33+0-14 0-28+0-14
05 05 0-57+0-14 0-61+0-16 0-384+0-10 0-50+0-12 0-434+0-11
Random 03 0 0-37+0-18 0-43+0-22 0-274+0-14 0-30+0-18 0-23+0-14
censoring =40 %
05 0 0-61+0-16 0-66+0-18 0-404+0-11 0-47+0-15 0-36+0-11
03 03 0-39+0-17 0-43+0-21 0-26+0-13 0-33+0-18 0-25+0-14
05 05 0-61+0-17 0-67+0-19 0-394+0-11 0-50+0-13 0-39+0-11
Fixed date 03 0 0-33+0-14 0-33+0-16 0-204+0-10 0-144+0-15 0-26+0-12
censoring =20 %
05 0 0-53+0-13 0-52+0-13 0-314+0-08 0-234+0-16 0-41+0-11
03 03 0-334+0-15 0-31+0-14 0-19+0-09 0-11+0-18 0-23+0-14
0-5 05 0-52+0-15 0-51+0-14 0-304+0-09 0-17+0-18 0-36 +£0-11
Fixed date 03 0 0-344+0-19 0-324+0-18 0-19+0-10 0-08+0-21 0-21+0-14
censoring =40 %
05 0 0-53+0-16 0-524+0-15 0-31+0-09 0-124+0-20 0-344+0-11
03 03 0-33+0-18 0-31+0-19 0-184+0-11 0-07+0-21 0-18+0-13
05 05 0-54+0-17 0-53+0-17 0-32+0-11 0-:09+0-21 0-284+0-12

add and dom denote the true values of simulated QTL effects. The means of the additive QTL effect estimates for C and W
models (columns 1 and 2) can be compared with the true values add. However, the simulation process does not allow the
direct comparison of the means of QTL effect estimates obtained with G or G’ methods directly with the true value add.
But the means of standardized additive effect estimates (—a/6) of G and G’ methods can be compared with the means of
standardized additive effect estimates (a/p) of the W method. Thus columns 4 and 5 are comparable to column 3.

as though they were uncensored substantially im-
proved the power and the estimates of location and
QTL effects. However, this G" approach is statistically
incorrect and it is more affected by censoring at a fixed
date than W and C. Recently, Diao et al. (2004) pro-
posed a QTL mapping approach using a parametric
Weibull model in QTL interval mapping methods
(W,), but they did not compare it with others by
simulations. They used these methods to analyse ex-
perimental data (30% of censored information at
fixed data) previously analysed by Broman (2003)
with a non-parametric method (NP) and a two-part
method (2-part) and also a standard interval mapping
method for only uncensored data (QT). QTL were
found on chromosomes 1, 5, 13 and 15 at a significant
level with at least one of these methods. W, found the
most significant LRT for the QTL on chromosomes 5,
13 and 15 but the least LRT for QTL on chromosome
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1. The result on chromosome 1 is surprising and it
could be interesting to understand why this situation
is so unfavourable to W,,.

(1) Including censoring in the likelihood for interval
mapping using a Gaussian model

In principle, it is possible to include censored records
in the likelihood under the normal distribution, in a
similar way to the model presented by Carriquiry et al.
(1987). However, the likelihood expression becomes
more complicated because it involves a cumulative
distribution, which does not have a closed form, and
computational time is increased. More importantly,
the Gaussian model with censored data is very sensi-
tive to small values of the trait (Cox & Oakes, 1984).
Sorensen et al. (1998) proposed a Bayesian analysis
of censored observations for a Gaussian mixed effects
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model and Gibbs sampler, treating censored records
as missing data. An adaptation of this approach
to QTL detection could be interesting but certainly
computationally demanding, particularly for the
computation of the thresholds (1000 estimations
under HO).

(iii) Choice of the simulation method

In order to compare G, G, W and C, experimental
data were used to generate simulations. Without
censoring, the four methods led to similar results,
showing that this simulation process did not favour
any of them. However, this simulation process also
had a drawback related to the difficulty of interpreting
the QTL effects. To overcome this problem, data
could be simulated assuming an exponential distri-
bution. Then the estimated QTL effects and the
simulated QTL effects could be compared directly
with the three methods used. However, this simu-
lation process tends to favour parametric methods
(G and, above all, W which includes the exponential
distribution as a specific case).

(iv) Computational time and maximization method

W and C have higher computational requirements
than G or G'. The most time-consuming part was the
likelihood maximization. With the Weibull and Cox
models, the calculation of the first derivative instead
of its finite difference approximation used here, might
speed up the maximization process. To find the
maximum likelihood estimator with the Weibull
model, Diao et al. (2004) proposed applying the EM
algorithm, which could be an interesting approach to
decreasing computational requirements.

6. Conclusion

The QTL detection methods developed in this study
consider Cox or Weibull survival models. When part
of the data is censored at a fixed date, these methods
substantially improve the power of QTL detection
and the accuracy of QTL location and QTL effects,
compared with classical approaches assuming a nor-
mal distribution of the uncensored data. An alterna-
tive is to use a Gaussian model, treating censored data
as though they were uncensored. In this case, results
were closer to, but not as good as, C and W.

Therefore, the use of QTL methods taking into ac-
count the characteristics of survival traits is attractive
for the study of traits such as genetic resistance to a
disease and longevity in animal populations. This
approach can, for example, be applied to detect QTL
related to scrapie incubation time in sheep, the length
of productive life or time until occurrence of first
mastitis in ruminants, or the length of competitive life
of sport horses.
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Appendix. Likelihood expressions for QTL
mapping methods for a full-sib design

Assume now that the population consists of n sire
families (=1, n) with n;, mates for each sire i, (j— 1 n;)
and n; progeny for each dam ij. Let N= Z M
be the total number of individuals. All dams and sires
are considered unrelated and a dam is assumed to be
mated with only one sire. Let 75 be the failure time of

At a chromosomal location z, the general form
of the likelihood used here was described before by
Le Roy et al. (1998) in animal breeding designs:

A= HH[Zp(h ilhs M) T

hd;; keQ
X {Zp(d;;k =g|hs;, hdy, M) z(z'jk|g>H (A1)
4

Where M, is the vector of marker information on
sire family 7, and &s; and hdy are the genotypes of
markers of sire i and dam jj. hs; corresponds to
the most probable maximum /4s; conditional on M.
In fact, in animal breeding designs, the large number
of progeny per sire allows the assumption that the
sire genotype is correctly rebuilt from the marker
information (Mangin et al., 1999). p(djx=g) is the
probability that individual i receives one of both
grand parental segments (denoted 1 and 2) from its
sire 7 and its dam j, where dj; is a random variable
and g=1, ..., 4 correspond to (1,1), (1,2), (2,1), (2,2)
progeny QTL genotypes, [(ijk € 2|g) is the contri-
bution to the likelihood of f;; which depends on
the distribution assumed. See Le Roy er al. (1998)
for more details on the computation of the probability
terms.

When using the Gaussian or Weibull parametric
model (G and W), the contribution to the likelihood
has an expression equivalent to the F2 design (A2
and A3). The contribution to the likelihood for the
G model is:

.. 1
1 (i —ty—XiuB—qtlz) \*
% expl_2<yjk /t] O—Al/kﬁ q Jg)) ] (A2)

where o; is the standard deviation of sire family i,
Xy 1s the ijkth row of the (V. n.) incidence matrix
X, and

=[as;+ad]/2if g=1,

[—as;+ady]/2if g=2,

las;—ad;]/2 if g=3,

[—as;—ady]/2 if g=4.
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with as;/o; and adj/o; being the sire and dam
standardized QTL substitution effects. The other
notations are the same as for the F2 design.

The contribution of individual ijk with genotype g
to the likelihood for the W model is:

I(ijk € Q|g)
Ojjk
. [p-yg.lzl(exp (p logﬂ.+X,}kB+qllUg))}

x oxp| — 3 (exp (plogA+xuB+atly)|  (A3)
where 0 =1 if ijk € Q,,, and 0, =0 if ijk € 2,015

To develop an interval mapping method assuming
the Cox model (C), the expression for the global
likelihood must take into account both the familial
structure and the order in which individuals die. The
latter is necessary for constructing the set of animals
at risk at any time (see expression 5). The general
form of the likelihood (A1) is too complex to be used
directly. Without any approximation, the complete
likelihood in the interval mapping method must con-
sider the Cox partial likelihood for each genotype
combination of the global population (dam haplo-
types and QTL genotype of offspring). Let ¢ be one
such combination (¢=1, ..., N.). The number of
combinations (N,) is equal to the number of possible
dam haplotype combinations in the population
multiplied by the number of possible QTL genotype
combinations of offspring conditional on the dam
haplotypes of the combination c¢. In fact, the dam
haplotype and the genotypes of her progeny must be
compatible for each combination ¢. The probability
of combination ¢ can be written as:

ple)= H H p(hdye| his;, M)

x | [ p(diy. =glhsi, hdye, M)

keQ

(Ad)

where hdj;, is the haplotype of the dam ij for combi-
nation ¢ and djj, is the QTL genotype of the indi-
vidual ijk for combination c.

The global expression for the likelihood is then:

w-s{wo I 11

i J  keQunc

(A5)

e (bt }
XYY exp(XiyuB+qil)

ia Ja ka€ R(tj)

l(l]k S Qim'|g)
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where R(#;) is the set of censored or uncensored pro-
geny kg of sire iy and dam j, at risk at time 7, and
gtly. is the QTL effect, corresponding to combi-
nation c.

The number of combinations (N,) rapidly becomes
extremely high even for a small population size. Thus
the computation of (A5) is virtually impossible. If we
consider:

Cijke = €XP (XI/'jkl5 + q[lijc) (A6)
Eje=% Y [expXuB+aqtli)] (A7)
ia Jja ka€ R(tj)
Then (AS5) can be written as:
z Cijke
A=Y= [T TI 2 (A8)
¢ i j keQune EU/‘"

We cannot factorize this expression to obtain the gen-
eral form of the likelihood (A1) because the denomi-
nator term, Ey., depends on both the combination ¢
and the familial structure. To allow such a factoriz-
ation, we considered an approximation of (A8) where
the denominator term (E;) is independent of the
combination ¢. This denominator term is the weighted
mean of the population at risk at time #;3.

. Cijke
A NZF: U)(C)] x HH H z [p(Cd,‘jk)Eijkcdi/k]

i j keQunc
Cd,‘,k

(A9)
where p(cd;p) is the contribution of each possible
genotype combination (cdy) of individuals (ijzk,) at
risk at time t; (igska € R(t;)). This probability
p(Cd,/k) iS:
pledy) = Z ZP (hdi‘(/'dcd,»/k |/:lsi(/> M/r,,)

la Jd

X Z p (di:[jdkc, =8 |/1S,'(,, hdi((/'ulfd% Ml}/)

kq € R(tix)

(A10)

where hd, .4, is the haplotype of dam iyj, for the
combination cdy and d, kacde is the QTL genotype of
individual jjk for the combination cd.

We can consider genotypes within families to sim-
plify the likelihood (A9). Thus using the general form
of likelihood in equation (A4), the contribution of

individual ijk with genotype g to the likelihood is as:

(exp (X +qtly,))

IHIPY

ia Ja hd;,

[P(hdil,/,,/ ilsz;,; M;,) x (

ka€R(tijk) &a
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(A1)
Z Zp(d;:zf</k[/ :gll"hsl}i’ hd’lzllr’ Ml}/) 2NY (X;(I/[//\’(zﬁ + qtll'(z/[/g(z)) ]
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