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FARTHEST POINTS AND MONOTONE OPERATORS

U. WESTPHAL AND T. SCHWARTZ

Dedicated to H. Berens on the occasion of his sixtieth birthday

We apply the theory of monotone operators to study farthest points in closed bounded

subsets of real Banach spaces. This new approach reveals the intimate connection

between the farthest point mapping and the subdifferential of the farthest distance

function. Moreover, we prove that a typical exception set in the Baire category sense

is pathwise connected. Stronger results are obtained in Hilbert spaces.

1. INTRODUCTION

Let X be a real Banach space with norm ||-|| and dual space X*, and let K be a

nonempty closed bounded subset of X. The farthest distance function TK '• X —} K

associated with K is denned by

rK(x) = Sup{\\x-k\\;k£K} (z € X).

An element fc € K is said to be a farthest point of x £ X, if ||x — fc|| = TK(x). This gives

rise to a set-valued mapping QK : X —t 2K defined by

QK{x) = {keK;\\x-k\\=rK{x)} (x € X),

which is called the farthest point mapping from X to K. A simple observation shows

that each point in the domain of QK lies on a ray all points of which have a common

farthest point. We call this phenomenon the "ray property" of QK (see Section 3).

The purpose of this paper is to study farthest points by monotonicity methods.

Indeed, as the farthest distance function TK is convex and continuous, its subdifferential

3TK is a maximal monotone operator from X to X*. It extends the monotone operator

F , where F means the duality mapping of X and is the operator of "ray
r.K TK

directions" related to the ray property of QK- If X is even a Hilbert space, a further

monotone operator is available: The negative of the farthest point mapping, —QK, is then

monotone and has a unique maximal monotone extension, which is the subdifferential of

a continuous convex function. The latter has a counterpart for nearest points in Hilbert
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spaces. Originating from Asplund [2], several papers of Berens-Westphal [9], Berens [8],
Westphal-Frerking [25], and Vesely [24] considered the aspect of monotony of the metric
projection and its relations to best approximation in Hilbert spaces in some detail. These
papers were stimulating for the present one. However, our results go definitely beyond
mere analogues. In contrast to the situation of best approximation, it is possible in
the context of farthest points to apply the theory of monotone operators also in non-
Hilbert spaces owing to the convexity of r# in an arbitrary Banach space. Thus, it is the
subdifferential drj< which is the main object of investigations in this paper.

Before describing the content of each section let us introduce some notation.

The open ball, closed ball, and sphere with centre x £ X and radius r > 0 will be
denoted by B{x ; r) , B{x ; r) , and S(x ; r) , respectively. The symbols B*(x"; r), ~B*(x'; r),
and S"(x* ; r) stand for the corresponding subsets of X*. The closed convex hull of a set
M C X will be denoted by coM, its cardinality by \M\.

The paper is organised as follows. In Section 2 we review some basic facts on
monotone operators. Section 3 is concerned with the farthest point mapping, especially
with its ray property. In Sections 4 and 5 we study the subdifferential of rx- We start
with a result on its range sharpening the well-known fact that all subgradients of r^
are contained in the closed unit ball of X*. Then the relationship of the subdifferential
drx to the farthest point mapping is analysed. For this, we distinguish between those
subgradients of TK lying on the boundary and those contained in the interior of the unit
ball of X*. Among others, we show that if X is a reflexive Banach space satisfying certain
geometrical properties, then

drK(x)ns'(o-,i) = F ( * r ^ ( g ) ) (* e X),

which implies that the inverse image of a subgradient of norm one is actually a ray. In
Section 5 we apply the resolvent theory for monotone operators to prove that in each
reflexive Banach space X the set

which is a typical exception set in the Baire category sense, is pathwise connected. This
generalises a result of Balaganskii [3] on the set of discontinuity points of the farthest
point mapping. In Section 6 we obtain stronger results in Hilbert spaces involving the
monotony of —QK-

2. MONOTONE OPERATORS

In this section we recall some basic results on monotone operators; for details we
refer to [6, 11 , 14, 26]. Some of the statements below, such as Proposition 2.1 and
formula (2.1), are modelled for our purposes.
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Let X be a real Banach space. The symbol (-,-) will denote the canonical bilinear

form on X x X*. If X is a Hilbert space, it will be identified with its dual, and then (•, •)

stands for the inner product of X.

Let us first recall the duality mapping of X which is actually an example of a maximal

monotone operator. It is the set-valued mapping F : X —¥ 2X' defined by

F(x) = {x* E X* • (x, x*) = \\x\\2 = ||x*||2} (x € X).

F is surjective if and only if X is reflexive; in this case we identify the duality mapping
of X* with the inverse F'1 of F. The duality mapping reflects the metric geometry of
the underlying space; see for example, the book of Cioranescu [12]. Indeed, X is smooth
[strictly convex] if and only if F is single-valued [injective]. Moreover, the norm of X
is Frechet differentiate on ^ \{0} if and only if F is single-valued and norm to norm
continuous. Note that the dual norm is Frechet differentiable at each nonzero point of
X" exactly when X is reflexive, strictly convex, and satisfies the Kadec property which
means that for sequences in the unit sphere weak and norm convergence agree. Such a
space has been called "strongly convex" in the Russian literature.

A set-valued mapping A : X —1 2X' with domain D{A) and range R(A) is usually
identified with its graph in X x X*. It is said to be monotone, if

( x - y , x * - y * ) ^ 0 V(x,x*),(y,y*)e/1.

A monotone mapping is called maximal monotone, if it has no proper monotone extension
in X x X*.

Let A be maximal monotone. Then it is demiclosed, that is, if (xn,x*) 6 A such
that xn —>• x and x* —*• x* (in the weak* topology of X*), then (x,x*) G A. Moreover,
for each x € D(A), Ax is a convex and weak* closed subset of X*. Finally, A is norm to
weak* upper semicontinuous on the interior of its domain.

Now, let A' be a reflexive space. Then a mapping A : X —> 2X' is maximal monotone
if and only if its inverse A'1 : X" —¥ 2X is so. In this case, D(A) and R(A) are convex
subsets of X and X*, respectively. Moreover, every monotone operator B : X —>• 2X'
has a maximal monotone extension A such that D(A) = coD(B). If B is densely defined
on X and the domain of A is all of X, then one even gets uniqueness of the maximal
monotone extension. For later reference we state the following proposition.

PROPOSITION 2 . 1 . Let X be a reflexive Banach space, and let B : X -> 2X' be
a monotone operator such that D(B) = X. If there exists a maximal monotone extension
A of B such that D(A) = X, then, for each x € X, the set Ax can be represented by

and A is the unique maximal monotone extension of B. Moreover, R(A) = coR(B).
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Now, in addition to reflexivity, suppose that X is strictly convex and smooth. If
A : X —» 2X' is a maximal monotone operator, then, for each positive number A, its
resolvent

as well as its Yosida approximation

A

are single-valued operators and defined on all of X. The range of J\ is D(A), and

(jxx,Axx)eA V i e x

Moreover, for each x 6 D(A),

(2.1) lim

Concerning continuity, the resolvent J\ : X —) D(A) is norm to weak continuous, and if,
in addition, the norm of X* is Frechet differentiable, then J\ is even norm to norm con-
tinuous. The Yosida approximation A\ : X —> X* is a maximal monotone mapping and
hence norm to weak* continuous; if, in addition, the norm of X is Frechet differentiable,
then A\ is continuous with respect to the norm topology of both X and X*.

If X is a Hilbert space, maximal monotone operators are characterised by Minty's
theorem which says that an operator A : X —>• 2X is maximal monotone if and only if,
for each A > 0, the resolvent J\ = (I + XA)-1 is a contraction denned on all of X.

An important class of maximal monotone operators is given by the subdifferentials of
proper, lower semicontinuous, convex functions. If ip : X —> (—oo, oo] is such a function,
then its sub differential at x € X is defined by

d<p{x) := {x* € X*; v(x) + (y-x, x") ^ y>(y) Vy 6

the elements x* £ d<p(x) being called the subgradients of <p at x. In this paper we are
concerned with real-valued convex functions which are continuous on the whole space X.
In this case, the domain D(d<p) = | x G X; dip(x) ^ 0} is all of X.

Note that the subdifferential of the function x i-> ||x||2 /2 is just the duality mapping
oiX.

3. T H E FARTHEST POINT MAPPING QK

This section contains some basic facts on the farthest point mapping QK which will
be used in the sequel. In particular, we discuss what we call the "ray property" of QK as
far as it is important for investigating the subdifferential of the farthest distance function
rK.
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Suppose K is a nonempty closed bounded subset of a Banach space X. Obviously,
the farthest distance function of K and its closed convex hull always coincide, that is

1~coK = rK-

The corresponding result for the farthest point mapping is true under assumptions which
guarantee that every farthest point in coK is a strongly exposed point of coK (see
[17, 21]). For instance, if the norm of X" is Frechet differentiate, then

(3.1) Qsx = QK-

Extending results of Edelstein [16] and Asplund [1], Lau [21] showed that for any
weakly compact subset K of an arbitrary Banach space X the domain of QK contains
a dense Gs set of X. This implies that in a reflexive space QCSK is densely defined on
X. Moreover, if the norm of X* is Frechet differentiable, then by (3.1) D(QK) = X. For
further results on generic existence of farthest points see [15, 27].

Concerning the range of QK, one has

(3.2) COR(QK) = coK,

if the norms of both X and X* are Frechet differentiable. This result goes back to
Edelstein [16]; see also Lau [21].

Continuity and single-valuedness of the farthest point mapping were studied for
example, by Blatter [10] and Zhivkov [27, 28]; for a systematic discussion of this subject
and its relation to differentiability of the farthest distance function see Fitzpatrick [18].

We now turn to the "ray property" of QK- For this, suppose that \K\ ^ 2. If

x 6 D(QK) and k. 6 QK(X), set u := — — . Obviously, k is also a farthest point
rK(x)

of all points on the ray originating from x and running in the direction of u, that is,
k € Qh-{k + tu) for each t ^ rK{x). Let

t0 := inf{< > 0 ; k £ QK{k + tu)}.

As \K\ ^ 2, t0 is a positive number and even a minimum. Hence, given k € R(QK), the
set QK~1(^) of all elements having A; as a farthest point is the union of pairwise disjoint
rays of the form

(3.3) {k + tu;t^tu},

where u is a unit vector indicating the direction of the ray and tu is a positive real number.
The set of all ray directions u arising in this way from the elements of R(QK) 'S the range

of the set-valued mapping , which assigns to each x £ X the set ——. The
rK rK[x)

following proposition states that if X is strictly convex, then any two rays in D(QK) of
the form (3.3) fail to be parallel.
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PROPOSITI ON 3 . 1 . Let X be a strictly convex Banach space. Ifu G R ( —),

then there exists a unique element k G K such that k £ Qn{k + tu) for all sufficiently

rK

where t0 := min{< > 0; k G QK(k + tu)}. Ift > t0, then k = QK(k + tu).

x — k
PROOF: By assumption, there exists {x,k) G QK such that u — — — . Set t0 :=

rK(x)
minjf > 0; k € QK(/: + <u)| and yt := k-\- tu for t > t0. We know that k G Qnivt) for
all t ^ to and thus

\
Now let t > t0 and k' G Qxivt)- Then

rK{yt) = \\yto-k' + (t-t0)u\\

< l|y*.-fc'll + (*-*o)IHI
(3-4) ^ \\yt0 - k\\ + (t - t0) = rK(yt).

Thus, equality holds throughout these estimates, implying, in particular,

Hence, A;' G Qi<(yto)- Finally, by the strict convexity of X, we obtain from (3.4) that
k' = k. Thus, if t > t0, the ray points yt have the unique farthest point k.

To conclude the proof, it suffices to show that if (xi, fci) G QK such that u =

then k\ = k. Indeed, for some t > to we have

ri<{yt) + rK(xl) = \\yt - k + xi - ki\\

< \\Vt - Ai|| + \\xi - k\\ < rK{yt) + rjf (n) .

This yields ||y( — fci|| = rjc(yt), that is, ki G <9/f(j/()- But k is the unique farthest point
of yt. Hence, k\ = k. U

4. THE SUBDIFFERENTIAL OF THE FARTHEST DISTANCE FUNCTION

Let K be a, nonempty closed bounded subset of a Banach space X. It is well-known
that the subdifferential drK of the farthest distance function rK is a maximal monotone
operator whose domain D(drf<) is all of X and whose range R(dr/<) is contained in the
closed unit ball of X'\ moreover, if X is reflexive, then R{drfc) is a convex set. If, in
addition, X is a smooth space, we can even show that R(drx) is dense in 5*(0;l).
For this we need the following simple lemma on the asymptotic behaviour of drj<(x) for
Hxll ->• oo.
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LEMMA 4 . 1 . Let ((xn,Xn))neN be a sequence in drjf such that lim | |xn | | = oo.

Then, for each y £ X,

(4.1) lim / | |
X " ~ y

| | , x ; \ = lim IKH = 1.

Thus, for each 5 e (0,1) , the set ( a r A : ) " 1 (F" (0 ; 1 - 8)) is bounded.

PROOF: If y G X, then we have, for each n € N,

Ikn - y\\ < rK(xn) + rK(y)

and

rK(xn) + (y - xn, x*n) ^ rK(y).

Combining these two inequalities and dividing them by \\y — xn\\ yields

2rK(y) ^ rK(xn) - rK(y) / xn-y *\ < u .„ < •,
1 — » M ^ ii fi ^ \ ii i T ' X W ^ X » ^ l>

\\xn-y\\ \\xn-y\\ \ | | * » - y | | /

from which (4.1) follows as n —> oo. U

THEOREM 4 . 2 . If X is reflexive and smooth, then the range R(drn) of dr^ is a

convex set satisfying

S*(0; 1) C R(drK) and B (0 ; 1) = R(drK).

PROOF: We first deduce the last assertion. By the convexity of R(drx) it suffices

to show that S*(0 1) C R(drK).

Suppose u* 6 5*(0; 1) and u € 5 ( 0 ; 1) such that u" € F(u). For each n € N, choose

x* £ ^ ^ ( n u ) . Then, by Lemma 4.1,

l im(u ,x*) = lim ||x*|| = 1.

The sequence (x*) contains a subsequence which is weakly convergent to a limit tha t

belongs to the weakly closed set R^BTK) as well as to F(u). Since, by the smoothness of

X, F(u) is a singleton, this limit has to be the element u*. Thus u* € R(drx).

Now, let x* be an element of the open unit ball B * ( 0 ; l ) . By what we have

just proven, there exists a sequence ((xn,x*n))n£N in drK such that lim x* = x'. By

Lemma 4.1, the sequence (xn) is bounded in X, and thus has a weakly convergent sub-

sequence with limit, say x. Since ( d r ^ ) " 1 is demiclosed, we have (x,x*) € drx, which

proves that x* belongs to the range of drj<.

As X' is strictly convex, the relation £ * ( 0 ; l ) C R{drK) C S*(0 ; l ) implies that

R(drji) is a convex set. D
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To get more information on the inverse image of a single subgradient of TK we now

consider the relation between the subdifferential drx and the operator of "ray
re-

directions".

Suppose from now on that K contains at least two elements. Then the subdiffer-

ential 3TK extends the monotone operator F . Indeed, if (x,k) € QK and x" £

( £ £ \
—— ), then | |i*| | = 1 and (x — k,x*) — rx(x). Hence we have, for each y £ X,

rK{x)J

TK{X) + (y-x, x') = (y-k, x') ^ \\y - k\\ \\x'\\ < rK(y).

Thus x* € drK(x).
Since the farthest distance function of K and co/i" coincide, the above observations

remain true if QK is replaced by QZSK- Furthermore, as D(QCOK) is dense in a reflexive
space X, we obtain from Proposition 2.1:

PROPOSITION 4 . 3 . Suppose X is reflexive. Then dr^ is the unique maximal

monotone extension of the operator F , and for each x £ X,
r

(4.2) drK(x) =

Furthermore, R{drK) = co
K

If, in addition, the norm of X* is Frechet differentiable, then the proposition holds

true with QCSK replaced by QK.
As the range of F and F ^—, respectively, is contained in the unit

rK rK

sphere of X", it seems reasonable to distinguish between those subgradients of r^ which
lie on the boundary of the unit ball of X' and those which are contained in its interior.

As a first result on subgradients lying on the unit sphere we have the following lemma,
which extends the ray property of the farthest point mapping to the subdifferential of
rK.

LEMMA 4 . 4 . Suppose u* G drK(x)C\S'(0;l) for some x € X, and let u 6 5(0; 1)
be such that u* € F(u). Then, for each positive number t,

PROOF: Set xt := x + tu for t > 0. Then (xt - x,u*) = \\xt - x\\ = t. Combining

this with
rK(x) + (xt - x,u') < rK(xt) < rK(x) + \\xt - x\\

gives r/<-(x() = rK(x) + t, whence u" S drK(xt) immediately follows.
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Now, let x* e drK(xt) for some t > 0. Then the inequality

0 ^ rK(x) - rK(xt) -{x- xux") = -t + t(u, x*) < t(\\x*\\ - l) ^ 0

implies that ||a;*|| = 1. D

Under suitable conditions on the underlying space all subgradients of rK that lie on
I - QKthe unit sphere belong to the range of the mapping F . In fact, if X is reflexive

and locally uniformly convex, then

(4.3) drK(x)nS*(0;l) = F (X ~ ^ x A Vx G X.

This formula can be obtained from Asplund [1], though it is not explicitly stated there.
We shall prove a generalised version of (4.3) under different assumptions on the Banach
space X.

PROPOSITION 4 . 5 . If X is reBexive and has a Frechet differentiable norm,
then, for each x € X,

(4.4) drK(x) n S ' ( 0 ; l ) =

If, in addition, also the norm of X* is Frechet differentiable, then (4.4) holds with

replaced by QK-

PROOF: We give a proof that uses the representation (4.2) for dr^.

If x e X and u* e drK(x) n S"(0; 1), let u G 5(0; 1) be such that u* = F(u). For
n € N define

Then Un has nonempty intersection with the half-space

For, otherwise the complementary half-space X*\Hn would contain the set Un and conse-
quently also its closed convex hull, implying u* € X*\Hn, which contradicts (u, u*) = 1.
Hence, for each n € N, we can choose u* € Hn n Un. Then lim (u, u*) = 1. As the norm
of X is Frechet differentiable at u with derivative u*, the sequence (u*) strongly converges
to u*. Moreover, since u* 6 £/„, there exists (yn,zn) € QCOK such that \\yn - x|| < 1/n

and u' 6 F I ̂ —.—^ I. The sequence (yn) converges to x, and (zn) has a subsequence
\rK(yn)) _

which is weakly convergent to a limit, say z, in coK. Hence, (x — z,u*) = TK{X) and
z € QCSK(X), which proves that
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If we pass to the inverse operators in (4.4), we obtain, under the assumptions of
Proposition 4.5,

{drKy\u) = (I~r
QJ5K) ' -F-V) Vu' G 5'(0 ; 1).

If, in addition, X is strictly convex and u" £ R(drfc) (~\ 5*(0;l), we can apply Propo-

sition 3.1 to ^" ' (u*) € R I ~ ~ )• This shows that the set of elements having u'
\ rK )

as a subgradient of TK is actually a ray. This result is stated in the first part of the
following theorem. For convenience, we sharpen the assumptions on the space X such
that the farthest point mapping of the set K itself, instead that of its closed convex hull,
is involved. The second part of the theorem concerns those subgradients of r^ which lie
in the open unit ball of X".

THEOREM 4 . 6 .

(i) Suppose either X is reflexive and locally uniformly convex or both X and
X* have a Frechet different! able norm. If u* € R(drK) D 5*(0;l), then
there exists a unique element k € K such that k £ QK{^ + tF*1^*)) for
all sufficiently large t, and (drx)~l(u*) is the ray

+ tF-\u'); t > t0],

where t0 := min{< > 0 ; k € QK{k + tF~\u*))].

(ii) If X is uniformly convex and smooth, then the restriction of the mapping
(drx)~ to the open ball B*(0; 1) is single-valued and continuous with
respect to the norm topologies of X and X*.

PROOF: By the remarks preceding the theorem it is enough to prove the second
part. Thus, let x" 6 5*(0; l) . By Theorem 4.2, the set {drK)~l{x") is nonempty. If it
were not a singleton, it would contain a line segment with endpoints, say xo and x\. Set
xa :— (1 — a)xo + ctxi for 0 ^ a ^ 1. By the subgradient property, we obtain, for each

o e [ o , i ] ,

(4.5) rK(xa) - rK(x0) = {xa-xOlx',)

whence
= (1 - a)rK(x0)

follows. Now choose a such that (1 — a)ri((xo) — ar/c(xi), and let (kn) be a maximising
sequence in K for the corresponding i a , that is, lim ||xQ — fcn|| = rx{xa). This implies

xo-kn xi- kn
= 2.
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By the uniform convexity of X, it follows that

(4.6) hm —-— -—7- = 0.
»->°°\rK(x0) rK(xi)J

This shows that xo — Xi, if nf(z0) = nf(z i)- Otherwise, (4.6) implies that the sequence
(kn) strongly converges to a limit k € K and that

xo — k xi — k

where w€ B(0;l). Then

xl-x0 =

Combining this with (4.5) for a = 1, we obtain (u,x*) = 1, which contradicts the fact
that ||x*|| < 1.

As for the continuity of {drx)~ on B*(0; 1), let (x*) be a sequence in B*(0; 1) which
converges to a point x* £ B*(0;l). Set xn := (dr}i)~1(x^) and x := (drx)~l(xm). As
(drx)~l is maximal monotone, we know that the sequence (xn) weakly converges to x.
We have to show that it is even strongly convergent. For each n G N and each a € [0,1],
we have

(4.7) rK{x) + a(xn - x, x*) < rK ((1 - Q)X + axn) ^ rK(x) + a(xn - x, x*n).

For a = 1 and n —¥ oo this implies that lim r^-(xn) = r^-(x). Now we proceed similarly
as in the proof of the-single-valuedness. For each n £ N, we choose an 6 [0,1] such that
(1 — an)rx{x) — anrA-(xn). Then lim an = 1/2, and from (4.7) with a replaced by an,
we obtain, as n —> oo,

Jirn r/c((1 - an)x + anxn) = rK(x).

Hence, there exists a sequence (A;n) in K such that

lim |(1 - an)x + anxn - kn\\ = rK(x)
n—•oo l l II

implying

n—•oo

lim
X Kn Xn Kn

(x) rK(xn)

and thus lim xn = x, by the uniform convexity of X.
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5. T H E CONTINUITY SET CK AND ITS COMPLEMENT

At the end of the previous section we described the inverse image of a single subgra-

dient of TK depending on whether it belongs to the boundary or the interior of the unit

ball of X*. With this in mind one might consider the sets of elements of X which have

either at least one or all subgradients in the interior and the boundary of the unit ball of

X*, respectively. Among the four cases that can occur we are mainly interested in the

set

CK := {x € X ;drK(x) C S*(0;l)}

and its complement

{dTKY1 (B*(0 ; 1)) = {x € X; drK(x) n B'(0; 1) ± 0}.

Under suitable assumptions on the underlying space, CK is a set of continuity points, see

below. In any case, CK contains the set of points at which TK is Frechet differentiate

(see [18]) and thus a dense Gj-set of X, if X is reflexive. The set CK itself is then a

dense Gs of X. If, in addition, the norm of X is Frechet differentiate, then CK is exactly

the set of Frechet differentiability points of TK (see for example [19, 22]). Moreover, by

Proposition 4.5, CK is contained in the domain of (Jco/f and

i s a Singleton and
rK(x)

c, (y - QcoK(y)\ . . . . , 1
y *-t r \ T—r—- is upper semicontinuous at x >.

\ rK(y) ) )
If, in addition, also the norm of X* is Frechet differentiable, then

(5.1) CK = \x € X; QK(%) is a singleton and QK is upper semicontinuous at x\,

see [18]. Thus, in this case, CK is the set of elements x for which the optimisation
problem to maximise the distance from x within the set K is well-posed in the sense that
x has a unique farthest point in K, which depends on x continuously.

The set CK has a counterpart for nearest points, say C'K- Structural properties of

the complement X\C'K have been studied by several authors under various assumptions

on the space X and by different methods. See for example Bartke-Berens [7], Balagan-

skii [3, 4], Westphal-Frerking [25], Vesely [24], Konyagin [20], and the survey article of

Balaganskii-Vlasov [5]. Balaganskii [3] also deals with farthest points. He shows that

X\CK is pathwise connected, if the norms of X and X* are Frechet differentiable. In the

case that X is uniformly convex and smooth, it follows from Theorem 4.6 (ii) that X\CK

is the continuous image of a convex set and thus pathwise connected. In the following

theorem we prove that this connectedness property remains true in any reflexive Banach

space.
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THEOREM 5 . 1 . If X is reflexive, then X\CK is pathwise connected.

PROOF: For abbreviation, set A :- (drK)~l and G := B*(0; 1). Let x, y £ X\CK =
A[G) and x*, y* £ G such that (x*, x), {y% y) 6 A.

Since X is reflexive, we may pass to an equivalent Frechet differentiable norm on X
which induces a Frechet differentiable dual norm on X* (see [13], p. 160). This has the
advantage that the resolvent J\ : X* —> X* and the Yosida approximation A\ : X* —> X
of A (corresponding to the new norms) are single-valued and continuous with respect to
the strong topologies of X and X".

For each A > 0 define px : [0,1] -> X* by

px{t) := (1 - t)(x" + XF(x)) +t(y* + \F(yj).

Then the mapping Ayp\ is a path in X with initial point x and endpoint y, and we shall
see that if A > 0 is small enough, then A\p\(t) belongs to the set A(G) for each t £ [0,1].
Indeed, it is sufficient to take A such that J\p\(t) £ G, since (Jxpx(t), A\p\(t)) £ A.

To obtain a suitable choice for A, observe that the line segment

is contained in the convex set D{A) D G and recall that by (2.1) for each w" £ D(A),

J\V* converges to w* if (v",X) tends to (w*,0+). Since G is an open neighbourhood
of the compact set P, there are real numbers TJ, Ao > 0 such that J\v* £ G whenever
dist(u*, P) <rj and 0 < A < Ao.

If we take A such that

0 < A < Ao and A • max|||x|| , | |y| | | < 77,

then we have, for each t £ [0,1],

\\Px(t) - ((1 - t)x' + ty') I = A|(l - t)F(x) + tF(y)\\ < r,,

that is, d\st(px(t), P) < r\. Thus, J\p\(i) is in G, as desired. D

Concerning the set G in the proof above, note that one only needs that G is open
and convex to conclude that the image A(G) under a maximal monotone operator A is
pathwise connected. A slight modification of the proof yields this assertion even under
the hypothesis that G is open and G PI D(A) is connected. This extends a theorem of
Vesely [24] for Hilbert spaces to arbitrary reflexive Banach spaces.

By Theorem 5.1 it is clear that X\CK is uncountable, if it contains at least two
points. It may happen, however, that X\CK is a singleton. Indeed, if the closed convex
hull of K is a closed ball, say, coK = B(x; r) for some x £ X and some r ^ 0, then, for
each y £ X, rK(y) = r + \\y - x\\, implying drK(y) = F[- ) and thus y £ CK, if

_̂  Mly-*ll/
y 7̂  x, and drx(x) = B (0; 1), hence x £ X\CK- The following proposition shows that
under appropriate assumptions on X this case is the only exception.
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PROPOSITION 5 . 2 . If X is a reflexive, strictly convex space and its norm is
Frechet differentiable, then X\CK is a singleton if and only ifcoK is a closed ball.

PROOF: If x e X such that X\CK - {x}, then, by Theorem 4.2, drK(x) = 5*(0; 1),

implying F[ c° ) = S"*(0;l), by Proposition 4.5. As the duality mapping F is
v rK(x) ' _

bijective, the latter gives QCOK(X) = S(x ; rK(x)), and hence coA' = B(x ; rK{x)). D
We conclude this section with some remarks on rays in the set CK- If u' is a

subgradient of TK of norm one, then by Lemma 4.4, for every x € (3r/f)~1(w*) and every
u £ F~l{u*), the ray R := {x + tu ;t > 0} is contained in CK^(drK)~l{u"). Without loss
of generality we assume that min | i € R; u* € 3TK{X + tu)\ is zero such that R = R U{x}
is a maximal ray in (9rif)-1(u*). Then the question arises whether the initial point x

of R also belongs to CK or not. The following two examples show that both cases are
possible. Let X be the Euclidean plane and K = | (1 — ip3)(cosip,s\nip) ;0 Sj <p ^ l } .
Then u* = u :— (—1, 0) generates the ray R = U—t, 0); t > 0 | in CK whose initial point
(0,0) also belongs to CK- On the other hand, if K is a closed ball with centre x in
an arbitrary Banach space X and u* is any unit vector in X*, then every u £ F~'(u*)
generates the ray R = {x + tu; t > 0} and x 6 X\CK-

6. T H E FARTHEST POINT MAPPING IN HILBERT SPACES

Hilbert space, then not only the op

—QK itself. Indeed, if (ii,fcj), (22,^2) £ QK, then

I -QK
If X is a Hilbert space, then not only the operator is monotone, but also

0.

More generally, —QK is cyclically monotone, that is, if (xo,fco), (xi,A;i), . . . , (xn,kn) €

QK, then

3=0

where (xn+i,fcn+i) := (xo,A:o). The operator —QK has a unique maximal monotone
extension, which is described in the following theorem. For this and further information
see also [23].

THEOREM 6 . 1 . If X is a Hilbert space, then —QK has a unique maximal mono-

tone extension in XxX, namely the subdifferential dipK of the continuous convex function

ipK • X -»• R, defined by

x) := supji p||2 - <x, k); k e K} = \rK{x) - \ ||x||2.

The domain ofdij>K is the whole space X; its range satisfies R(8IPK) = — co~K. Moreover,

for each x £ X,

(6.1) x + diPK{x) = 3 ( | 4 ) (*) = rK(x)drK(x).
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PROOF: By definition, I/>K is the upper envelope of a family of affine functions and
thus has to be convex.

If (x,k) € QK, then if>K(x) = \\k\\2 /2 - (x,k), and, for each y £ X,

1>K(x) + (y-x, -k) = i ||fcf - (y, k) ^ 4>K(y).

This shows that the subdifferential dx/iK is actually a maximal monotone extension of
—QK- Its uniqueness follows from Proposition 2.1, which also gives that R(dxpK) =
COR(-QK), the latter being equal to —coA", by (3.2).

The relation (6.1) between di/>K, d(rK/2), and dr^ is evident from the definition of

1>K- D
The function II>K is the counterpart of a function, say px, which is related to nearest

points and was introduced by Asplund [2] in 1969 for studying the convexity of Chebyshev
sets in Hilbert spaces. Indeed, if AT is a closed subset of a Hilbert space, then ipx is defined
by

<pK(x) := sup{(z,A:) - 11|*||3;* G K] = \ \\x\\" - \dK\x\

where dn(x) :— inf| | |x — fc|| ; k £ K\ is the usual distance function. The subdifferential
dipx is the unique maximal monotone extension of the nearest point mapping PK • More-
over, as was observed by Berens-Westphal [9], PK is maximal monotone if and only if K
is convex.

Maximal monotony of —QK for a bounded set K is characterised by the next propo-
sition, which is an immediate consequence of Minty's theorem.

PROPOSITION 6 . 2 . Suppose X Is a Hilbert space. Then -QK is maximal
monotone if and only if K is a singleton.

The interplay between the two subdifferentials we are concerned with here allows us
to sharpen and to extend some of the results that are true for non-Hilbert spaces. The
following proposition is an improvement of Theorem 4.6 (ii).

PROPOSITION 6 . 3 . If X is a Hilbert space, then, for each S € (0,1), the map-
ping (pTK)~l satisfies a Lipschitz condition on 5 (0 ; 1 — S). Thus any two points ofX\CK
can be joined by a Lipschitz curve completely contained in X\CK-

PROOF: For fixed S £ (0,1), let

M := snp{rK(x); x € ( d r * ) - 1 ^ ; 1 - 5))}.

For i = 1,2 choose y{ £ B(0; l -5) and set z,- := {drK)~l{yi). By (6.1), we have
rK{xi)yi £ xt + drpK{xi), which implies J(rK(i;)yO = x,-, where J denotes the resolvent
(/ + 8IPK)~1 °f dipK- By the contraction property of J as well as of rx, we obtain
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< M\\yi-y2\\ + (l-6)\\Xl-x2\\

from which

\\xi -x2\\ ^ -j ||i/i — 3/2II

is deduced. D

The next theorem describes the resolvent (/ + 5T/'K)~1 on rays starting at the origin.

THEOREM 6 . 4 . Suppose X is a Hilbert space and \K\ ^ 2. Let J denote the

resolvent (I + 30/f)"1 of BIJJK- Then, for each u 6 5(0 ; 1), the mapping

[ 0 , o o ) 9 ( i 4 J(tu)

is a Lipschitz curve which starts at the Chebyshev centre of K, that is, the unique point
in X at which TK attains its infimum, and runs to infinity.

If u ^ R(drj(), then the curve is completely contained in the set X\CK-

If u € R{drx), then there is a positive number to such that

(6.2)

If t --
(6.2)

P R O O F :

= 0, this
implies

For t ^

gives 0

i 0 set xt :

G drK(x0

1 V \ f1

U'e\CK
if 0 < t < t0,
if t > t0.

= J(tu). Then by (6.1),

tu E rK{xt)drK(xt).

) and hence x o G X\CK. If xt K for some t > 0, then

(6.3) rK(xt) = t and u € drK(xt).

Thus xt E X\CK for each t > 0, if u <£ R(drK).

On the other hand, if u e R(drK), then by Theorem 4.6 (i) there is a point k 6 K
such that (drKyl(u) = {fc + tu;t^ t0} where t0 = minjt >0;fc <E QK(k + tu)}. Then
for each t ^ to, we have rn{k + tu) = t, and by (6.1), tu £ (/ + dipi(){k + tu) implying
xt = k + tu. By Lemma 4.4, xt £ CK for each t > t0. If xt belonged to CK also for some
t 6 (0,to), then (6.3) would hold for this t, and by the representation of (9rK-)-1(u) as a
ray, xt = k + <iu for some ti > i0- As r/f(xt) = t and rif(fc + txu) = t i , we have t = *!,
which is a contradiction. Hence, xt € X\CK for each t £ [0,<o)-

D
Note that the pathwise connectedness of the set X\CK in case X is a Hilbert space can
be deduced also from Theorem 6.4.
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