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Abstract. We give an algorithm for deciding the existence of epimorphisms of finitely
additively generated Z[f] modules and dimension groups. This shows that the
existence of eventual right resolving shift factor maps for mixing finite type shifts
is decidable.

1. Introduction
In [8], it was established that shift equivalence is decidable for matrices over Z +

(nonnegative integers) where elements a and b of a semigroup are shift equivalent
provided that there exist semigroup elements r and s and neZ+ such that ra = br,
as = sb, rs = b", sr = a". This work made use in turn of [7], by reducing shift
equivalence over Z + to shift equivalence over Z and also made use of [5], [6] to
find finite sets of generators for certain matrix groups and their cosets.

Shift equivalence is essentially the existence of an isomorphism between dimension
groups, where the dimension group associated with a linear transformation T of an
abelian group G is the direct limit G of G under r a s a Z[r]-module.

Definition. For matrices A, B, of sizes moxmo, nox n0 we define modules MA, MB

to be Z"1", Z"° with T acting on the right by A, B respectively.

We define dimension groups £),*, ® B to abstractly be the direct limits of MA, MB

under the T action, i.e., the quotients of

by the relations ( 0 , . . . , 0, x, 0 , . . . , 0) ~ ( 0 , . . . , 0, TX, 0 , . . . , 0) whenever x, rx appear
in coordinates (i, i + l) for some i e Z + .

As subgroups of MA®Q and MB®Q we define ® A , ® B to be

U {z^K U (Z^B1,,
ieZ* ieZ
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where Ad, Bd are Drazin inverses of A, B, i.e., AdA = AAd, BdB = BBd, AdA
n+x = A",

BdB
n+l = B" for some n e Z+, Rank (Ad) = Rank (An), Rank (Bd) = Rank (Bn).

Equivalently one can say [1] that the dimension group ®A is the set of all vectors
t; e Qm" in the image of all large powers of A such that vAr e Zm° for some r e Z+.

In [9], we showed that the existence of epimorphisms of finitely additively
generated modules over finitely additively generated commutative rings in general
is undecidable.

In [5] it is proved that among much else the existence of the isomorphism of
such modules is decidable. Here we prove that an algorithm exists to construct
epimorphisms of modules over the ring Z[f] and that the same procedure serves
to decide the existence of epimorphisms of dimension groups. This extends the
isomorphism result of [4].

Definition. The subshift of finite type associated with an n-square (0, l)-matrix M is
t h e s u b s e t o f N z = { ( . . . , a _ 2 , a ~ i , a 0 , a , , a 2 , . . . ) : a t e N } , N = { l , 2 , . . . , n } s u c h
that for all i, the a,, ai+l entry of M is 1. It is topologized by the product topology
of Nz, N discrete. The shift map sends (*,-) to (yi), yt = x,+1 for i e Z.

Definition. A Shift map from one subshift to another is a continuous map commuting
with the shift.

Definition. A factor map is continuous onto shift map. That it is right closing means
if Xj = y, for all n<ri for some n'eZ and f(x) =f(y), then x = y.
Boyle et al. [1] proved that the existence of right closing factor maps for some
power of a subshift is equivalent to the existence of an epimorphism of dimension
groups provided the entropies are equal and the matrices are primitive.

The entropy of a shift is the logarithm of the largest eigenvalue of a matrix. A
matrix A is primitive if A" > 0 for some n e Z+. The epimorphism condition on
dimension groups can be restated as existence of integer matrices R, S and an
integer n e Z+ such that

AS = SB, RS = B".

(An epimorphism of modules says RS = I. Here / is an identity matrix.)
We work with arbitrary matrices A, B, over Z. But the topological applications

are only for primitive nonnegative A, B. Our method for treating this problem is to
split it into separate problems at the different eigenvalues of B. Then we can reduce
to the nilpotent case.

The structure of nilpotent modules M over il[t] where ft is an algebraic number
ring is rationally determined by the filtered abelian group M/tM. filtered by its
intersection with Ker (/"). Thus existence of congruence classes of near epimorph-
isms (maps with bounded cokernel) on M reduces to the same problem for the
filtered fl-module M/tM, and in fact to one for epimorphisms. For existence of
epimorphisms which modulo an ideal / are given of finitely generated torsion free
filtered modules M to N such that the alteration subgroups are pure (not divisible)
we find an explicit criterion. This is that

Rank (M/M,) > Rank
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and if equality holds

and that g from M/Mj to Jf/Jfj has as a determinant the modulo J reduction of a
unit. The construction splits M into a direct sum of ideals and constructs a lifting
of g on each in turn.

We avoid the division algebra problems of [8] by our primitivity assumption.
They occur only shift equivalence of nonnegative nonprimitive matrices. That

requires a little more than dimension group isomorphism. Sometimes we use the
terms integrally, rationally to indicate whether fractions occur.
Definition. A homomorphism / from M to JV of modules over a ring il exists
rationally (integrally) means/ exists over from M®Q to Jf®Q (from M to Jf).
Basic constructions giving effective computability for linear algebra and field theory
can be found in [2], [4]. We need to be able to solve linear equations and congruences
in algebraic number rings and fields, compute polynomials, find integral and rational
bases, construct fields based on specific eigenvalues, determine Galois group action
on specific elements, factor ideals in algebraic AO, A2, A6, A9, A10, All , A14, A15,
of [4] cover these. We give additional algorithms for rings fl[l/w] in § 3.

2. Reduction to a single eigenvalue
Considering matrices A and B, for each eigenvalue w of A there exists a polynomial
e«,[t] defining a projection on the eigenspace of a> and vanishing on all other
eigenspaces of A, B. If an epimorphism ®A to ®B or MA to MB exists rationally,
the eigenvalues of B must be a subset of those of A To find ea, it suffices to have

ejt)2-ejt) = 0 (mod c(t))y

where c is the characteristic polynomial ofA,ew((o)^0,eai(wi) = 0 for all eigenvalues
u>{ T^ti) of A We can find em by taking a polynomial

c(t)

(t-w)'

and multiplying by an inverse in the ring of polynomials modulo (f-w)s .
We use finite systems of congruences on a set X understood as contained in a

finitely generated module M over some integral domain So. This means a finite
module Mt over X, a module homomorphism M^MX specified in terms of generators
and a subset of Mx understood as the image of X. These congruences are said to
involve a prime ideal & of 3 0 if 9MX^Mx. We also allow finite systems of
congruences on a product of such sets X] x • • • x Xn. By this we mean a system for
each Xj as above which is a subset Y, of a module Mx(i) together with a subset of
y , x - - - x y ; .

On a finitely generated module M, a property depends on a finite system of
congruences if for some element m e S 0 , the property is invariant under addition
of an element of mJl and So/w^o is finite. Let R, S, give an epimorphism of
dimension groups from A to B. Let Au = ell>(A)A, B^ = ew(B)B, /?„ = eO3(B)Rem(A),
Sol = eJA)Sem(B). Then A = ZAa>, B = Y,Ba,, since 5>w is the identity. Also
Z Sw = Z eJA)S = S. However Z K * R in general.
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Let Q(<o) be the algebraic number field generated by the eigenvalue <o over the
rationals. Let £!„ denote the ring of algebraic integers of Q(<o).

THEOREM 2.1. Let K be the field generated over Q by all eigenvalues of a matrix B.
Assume that the minimal polynomial ofB divides that of A. Let S be an m0 x n0 matrix
over K where A and B are m0x m0 and noxno.

Rationally S gives an epimorphism of dimension groups from ®A to £>B {MA to
MB) if and only if S^ = ew(A)S does so for all eigenvalues to of B. The matrix S is
rational over Q if and only if Sw are conjugate for conjugate eigenvalues a> and in
Q(<o). The condition that S be integral and that some integral R exist can be stated
as (i) a finite system of congruences on the Sa only over fla; (ii) a bound on the
denominators ofSw; (iii) S^ are epimorphisms except at a finite given set of primes of
flw. In the dimension group case Sa will be a matrix over €lm{\/ w) and congruences
will be to moduli not dividing a>, the bound will be on the factors of denominators
relatively prime to a>.
Proof. From AS = SB, we have

= Aa>eJA)S = AeJA)S = ASeJB) = SBeJB) =

= eu(B)ReJA)Sea(B) = eai(B)RSea>(B)2,

if #„ , S^ are denned as above so if 5 gives an epimorphism of dimension groups
so does each Sa. Conversely, let each Sa give an epimorphism of dimension groups
rationally, and Sm = eo>{A)Soleul{B). We can define /?„ by the existence of an epi-
morphism, such that Rm = eo,(B)Ro>ew{A). Then

I A» I 5 .= IAA=ISA=Z Sw I Bw,
! « . ! s» = Z RJS* = 1 B : = ( I BJ".

So X Sw defines an epimorphism of dimension groups. If S is rational over Q then
eu(A) are conjugate for conjugate o> and so are Sm. Conversely, if 5,,, are conjugate
for conjugate w then X Su is invariant under the Galois group entrywise. If S is
integral then Sa will have denominators arising solely from the fixed matrices ew{A).
The condition £ Su is integral given that this bound on the denominators amounts
to a finite system of congruences and that each Sm modulo integral matrices belongs
to a congruence class such that the sum of those congruence classes is integral.

In the dimension group case, for A" £ Sw to be integral for sufficiently large n
we may as well assume each Sw is integral at primes dividing <w, since for n large
A"Sm has this property. Then at any prime n we have that Z , ^ Sa is integral which
is equivalent to a finite system of congruences.

The matrix 5 gives the mapping, existence of R says that it is an epimorphism
on dimension groups, more precisely that the image of 5 on integer vectors contains
the image of A" for some n. This property can be localized. Let G,, G2 be the
dimension groups (contained in some Q") of A, B.

Let {? be any algebraic number field and il^ the localization of its ring of algebraic
integers at any prime it. Consider S as a mapping from a group G, to a group G2.
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Then the cokernel of S over £!„ is

G2®njs(Gl)®n7r - G2/s(Gt)®nn

by right exactness of tensor products of abelian groups [2, Proposition 2.4.5].
Suppose S is not epic. If the cokernel is nontorsion then for all 77, (by [2, Proposition
7.2.1]), G2/S(Gi)®il7r is nonzero. If the cokernel is torsion and has a nonzero p
primary part Cp, Cp is then a summand and for all TT dividing p, Cp®Clv is direct
limit of F®iln where F are the finite subgroups of Cp, under inclusion. Each
F®il^ is nonzero and we have monomorphisms on them induced by inclusion. So
Cp®O,n # {0}. So it suffices that 5 be an epimorphism locally at all 77, in fact one
77 from each conjugacy class since conjugate v divide the same p. Here we take
primes n in the field K.

If R, S exist then Sm must be an epimorphism at all primes not dividing m or
any denominator of ew because of the existence of /?„, and the fact Ba is invertible
on the dimension group at these primes. At all other primes not dividing w we must
have a bound on the order of the cokernel (at all primes in the module case) from
the bound on the denominators of Rw. As fi^-modules the dimension groups will
have finite rank and bounded denominators in 77.

The global dimension groups are not finitely generated as modules over any
subring of il®Q in general. However, we can explicitly find a spanning set for the
local dimension groups

U (a J"vc
i

at each prime ir not dividing a>. The matrices A~' exist over the complete ring £!„
since n does not divide Det (Aw). So we can find a finite spanning set, in fact /,
Am>..., A™°~1 span. Moreover, we can explicitly find the congruences such that

over 77 not dividing w is TT integral, in terms of such a spanning set.
At primes not dividing any <a or denominator of em, integrality of Sa and

epimorphism of S^ implies those properties for S since we have a direct sum splitting
of the dimension groups by ew. In the case of finitely generated modules at the
finitely many other TT, we have bounds on denominators and sizes of cokernels. S
will be a epimorphism at TT if and only if it is an epimorphism modulo some
IT" (mod 77 into the dimension group) which is a finite system of congruences. Next
we give details.

In the dimension group, the matrices ew(B) represent the dimension group for B
as a subset of a direct sum over a>. This subset is specified by X v^BZ being integral
for sufficiently large n, where vw = vea(B) fort) in the dimension group. For conjugate
<o, the vw must be conjugate, so we work with 1 representative for each conjugacy
class. Let x = {&>: 77 does not divide &>}. The term vwBZ will always be integral for
large n, at 771 ID since Bw to some power is divisible by 77. Integrability of

for n large since denominators are bounded, can be stated in terms of finite
congruences on these vw, whose modulus is a power of 77.
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The matrix £ Su will be then epic locally at IT if and only if it is rationally epic
and X^S,,, is epic since any rational vector vw, wix is >n t n e image. Then
Z*. S^ will be epic if and only if it is epic modulo n into this portion of the
dimension group locally at TT. This condition is equivalent to a finite system of
congruences. •

COROLLARY. TO decide if an epimorphism of Z[t]-modules or dimension groups exists
it suffices to be able to decide for all algebraic number rings £l0, all nonzero w e ft0,
all finite sets xo of primes of ft and all nilpotent finitely generated ilo[l/a), t] modules
Mx, M2 whether a module homomorphism Mx -> M2 exists which is an epimorphism at
all primes of the complement \0 o/«;0

 ana" satisfies a finite set of congruences in primes
not in Xo nor dividing o>. (For modules a> = 1.)

Proof. In the dimension group case, the modules Mx, M2 are D1eat(A), D2ew(B)
where D, , D2 are the two dimension groups, taken over ft^l/w]. They are acted
on by (An —<ol), ( £ „ , - « / ) which are nilpotent. They are finitely generated since
if m0 is the dimension of A

but we can bound all denominators in A"' at primes not in w, independently of i.
The condition that S^ map Mx into M2 bounds all denominators not dividing w.
The condition that X e^AYS^ for large n be integral amounts to a finite set of
additional congruences as in the previous proof. And the condition that the sum
be an epimorphism at the finite set of primes IT not dividing a> but occurring in
denominators of ea is another finite set of congruences. For the module case, these
hold except that we have only bounded denominators at primes dividing ID. •

Definition. A near epimorphism of Q,o[\/a>, f]-modules (dimension groups) is an
epimorphism except at a given specified set of primes provided with a bound on
the cokernel at those primes (exclusive of a> in the dimension group case).

So it suffices to decide the congruence classes of near epimorphisms.

3. Properties of il-modules

Let ft = fto[l/
tt)] where fi0 is an algebraic number ring, nonzero a>efl0. The

following results can be found in Serre [10]. From here on modules are left modules.

Definition. A pure submodule Jf of Ji is one such that M/Jf is torsion free.

THEOREM 3.1. Let il be fl0[l/co] for an algebraic number ring il0, nonzero a> e fl0.
Then (1) torsion free finitely generated Cl-modules are projective; (2) a pure sub-
module is a summand; (3) every such module is a direct sum of ideals; and (4)

two ideals 3\, $>2 of D..

THEOREM 3.2. If Mx, M2, M3 are finitely generated torsion free (l-modules and
M1®M3 = M2®M3 thenMx=*M2.

We need various background algorithms for working in rings £lo[l/w~\ = £l. We
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suppose modules finitely generated and given by generators and relations; module
homomorphisms given by the image of some generating set.

Algorithm 1. Given a module M over ft we can find a module Mo over ft0 such that
M0®O,[l/<a] = M. We just take the same generators and relations as for M, but
multiply relations by a power of o>0 until they are integral.

Algorithm 2. Given a module M over ft we can find its torsion submodule. We can
construct Mo® Q using linear equations and embed it in Q". Then we construct the
map Mo-* Mo® Q. Choose a free module ZF0 whose basis is in 1-1 correspondence
with generators of Mo. Find generators of the kernel Ko of SF0->M0->J(0®Q by
expressing the map as a matrix B over Z and writing B as B0D0B^ where B, are
unimodular, Do diagonal. Let Ro be the subgroup of relations. Write out generators
for Ro as Z-module, multiplying the given relations by an additive basis for ft0 over
Z. Now we find generators for Ro n Ko as abelian group. These can be found by
linear algebra over Z.

Algorithm 3. Given a torsion module M we can compute its order and express it
as a direct sum ft/J?,ft for ideal •/,-. We obtain Mo. We compute its order by obtaining
generators and relations over Z and its module structure. Then we try all possibilities
for its structure in terms of the finite number of ideals $, whose norms divide the
order. Let Sj be powers of primes. To pass back to M we divide out all summands
Sj is a power of a prime dividing w.

Algorithm 4. Given a homomorphism M->Jf we can determine its kernel, image,
and cokernel. To do this we pass to Mo over ft0 then solve the problem over Z.

Algorithm 5. We can determine the rank of a module. This is linear algebra over Q.

Algorithm 6. Given a homomorphism from M to a finite module SF (i.e., congruences)
we can determine if any element of 2f lifts to M and if so find an element of its
inverse image. It suffices to solve this problem for Mo. But that reduces to a linear
problem over Z.

Algorithm 7. Given S* projective and an epimorphism Jt-*3P we can determine a
splitting Jt — 8P®K. To do this we compute the finitely generated ft-modules
Horn (3P, M) Horn (0*, 9>) and the induced mapping, and use Algorithm 6 lift the
identity map 9 to 9.

Algorithm 8. Given a pure submodule 9 of M we can express M ~ K® <3>. We follow
Algorithm 7 but use Horn {M, 9), Horn (0>, 9>). These means (2) constructive use
A13 of [4] to make i , n f l 0 , 2̂<">fto relatively prime and apply Algorithm 7 to the
map J']®J2-*^ sending (x,y) to x+y. Here ^, = ( ^n f t o )®n since if ye$j the
yto" eJjnil0 for n sufficiently large. A finitely generated ft-module M can be
uniquely expressed as a direct sum of copies of ft and a single ideal whose class
is unique by Theorems 3.1, 3.2.

Algorithm 9. We can express any torsion free module M as a direct sum of copies
of ft and a single ideal J*f, if M is nonzero. To do this, take a single generator xeJt.
Let Jf be the submodule spanned by {x/a: aeflo,x/ae Mo}. There are only a finite
number of possibilities for a, apart from units, considering the torsion subgroup of
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M/Clx. By A12, A10 of [4] we can write out each a and test x/a over Z to be in
MQ. Then Jf is a rank 1 pure submodule, therefore a summand. Any rank 1 torsion
free module can be mapped into Cl®Q monomorphically and then into ft. Now
use (4) to adjust the summands.

Algorithm 10. We can determine the ideal class group of ft and the class of any
ideal. For ft0, this is A10, All, A12 of [4]. The class of an ideal $ is the image of
the class of 3* n ft0 • An ideal $0 in ft0 is principal in $ if and only if its class is a
product of classes of primes dividing w. All primes dividing <o become ft. Conversely
if J>0£l = ft then w" e Jo and Jo involves only primes of w.

An exact duality exists for torsion free finitely generated ft-modules sending M
to Homn {M, ft). A map is a monomorphism with pure image if and only if it has
a left inverse if and only if its dual is an epimorphism.

PROPOSITION 3.3. For M, Jf torsion free Cl-modules and a nonzero ideal $ of ft any
homomorphism

f-.M/SM^Jf/SJf

lifts to an il-homormorphism f: M ̂  Jf.

Proof. It suffices to check this for two ideal classes. But realize them by ideals whose
norms are relatively prime to $ by Algorithm 13 of [4] then modulo $ both are
isomorphic to ft. Take a map ft to ft realizing the map modulo $. Compose with
maps M to ft, ft to Jf which are isomorphisms modulo 3. ' •

PROPOSITION 3.4. Let 3, $ be nonzero ideals of ft, M a module of rank greater
than 1. Then any monomorphism from $!$•$> to M/3M can be realized by a
monomorphism from $ to M with pure image.

Proof. Write Ji as a direct sum
k

® <t
cri

i = l

of ideals. Assume by symmetry that the map $1 $•$ to $\l$$\ is nonzero. Choose
any lifting from $ to / , . It is nonzero, so it is a monomorphism whose image is
pure except primes Pj of torsion ^Jh(^). For i> 1, require the map / from $ to
© $i to lift the given mapping modulo $ and at all primes Pj not in 3, require it
to be a monomorphism from ^/Pjt0 to ©/ , /P ; / , . Such a monomorphism exists
since the modules ^ , /Pj^ , and $IPj$ are isomorphic and by the Chinese remainder
theorem we can combine different primes. By Proposition 3.3 a lifting exists. Then
at all P, we have pureness from the modulo P, monomorphism. •

LEMMA 3.5. Let M, Jf be isomorphic torsion free Cl-modules, and h an homomorphism
from M to Jf. Choose a given isomorphism g from M to Jf and define det (h) as the
determinant of the ^ vector map

modulo units of ft. Then det(/i) is an algebraic integer and is a unit if h is an
isomorphism.
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Proof. If h is an endomorphism of Jf, then the additive group of matrices spanned
by /, h, h2,..., h" is a subgroup of a finite sum of copies of Z namely Homz {M, Jf),
where / is an identity matrix. Therefore, some finite set is spanning by an ascending
chain condition. So all higher powers of h are integral sums of a finite set of powers.
This implies h and so all its eigenvalues satisfy a monic polynomial with coefficients
in Z. If h is an automorphism of Jf then its determinant is a unit, since the inverse
is also an algebraic integer. The choice of g affects det (h) only by multiplying it
by a unit as a consequence. •

LEMMA 3.6. Let M be a torsion free il-module. Define dt of an element of End (M)
by determinant on the vector space M®Q and determinant d2 on End {Jl/ $M) for
a nonzero H-ideal £ by M/'3>M being a free module over £l/$. Then d2 is the modulo
J reduction of dx.

Proof. It suffices to verify this for $ a power of a prime since the mapping from
fl/^ to © ft/0*" over prime power factors 9" of ^ is a monomorphism. For a
prime ideal ^ the module M over the local ring ftg» is free, and this determinant
agrees with that over il/SP" and over O.®Q, since a basis over ftg* gives a basis
over those coefficients. •

4. Reduction to filtered modules
THEOREM 4.1. For finitely generated torsion free, nilpotent Cl[t]-modules M, Jf let h0

be the composition

Horn (M, Jf) -• Horn (M, Jf/ tJf) -» Horn (M/tJt, Jf/ tJf).

Then Img (h0) lies in the subgroup Hf of filtered homomorphisms for the filtration by
Ker (tn). Img (^o) is computable and can be specified by a finite system of congruences
and linear equations over il®Q. An element f is a near epimorphism if and only if
ho(f) 's- Given any cokemel bound and congruences in Horn (M, Jf) we can find a
cokernel bound and congruences of Hf such that near epimorphism exists with these
data in Horn (M, Jf) if and only if one exists with the data in Hf, which preserves
filtration. Here Hf is the set of filtration preserving homomorphisms.

(In this paper, all sets of congruences mentioned as such are finite.)

Proof Any homomorphism must map the kernel of t" to the kernel of t". We first
show that over ft® Q the image of h0 is equal precisely to Hf. We may assume M,
Jf are in Jordan form. Express each as a sum of cyclic summands. Assume M, Jf
over fi®Q cyclic. Let them have bases t'v, tJa>; i = 0,...,ml,j = 0,...,nl. Then
homomorphism from M to Jf are in 1-1 correspondence with elements

I c,t'a>,
i + m, + l>n 1

which are the image of v, c, € ft® Q. Under h0 this maps to zero, or is onto according
to whether i = 0 may occur, i.e., m ^ l S B ] o r m , + l > « , , i.e., m, > «[. Ker (t" on
M)/tM is zero for n < mj and is spanned by v, n > mx. Ker (t" on Jf)/tJf is zero
for n < M, is spanned by t), , « > « , . Therefore, a filtration preserving homomorphism
form,<n , sends Ker (/m'+1 on M)/tM to zero and is zero. If m ^ n , all homomorph-
isms preserve filtration. Therefore over ft the image of h0 in Hf has finite index.
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The image of h0 can be found by solving a finite system of linear equations. These
amount to congruences on Hf specifying integrality.

More generally, we can find a finite set of congruences by expressing the fact
that / exists satisfying any given finite set of congruences, i.e., we can determine
/io(£) for any coset S of a subgroup of finite index, by linear algebra. Since the
cokernel of the ho(f) from M/tM to Jf/tJf is a quotient of the cokernel of/ from
M to Jf, this gives a bound one way. Given a bound on the cokernel of ho(f) we
have the same bound on the cokernel the map / induces

Hom (t'M/ti+lM)^ Hom (t'Jf/ti+1Jf)

since multiplying by t' is an epimorphism. The product of these bounds the order
of the cokernel M to Jf.

In general, the cokernel of any map of filtered groups has its order dividing the
product of the orders of the cokernels of the map on quotient groups.

If we reduce by this number any more restrictive bound on the cokernel above
can be expressed by a finite system of congruences. As noted above, existence of
an element satisfying these congruences in Hom (M, Jf) can be expressed in terms
of congruences on Hf. If there exists an element in Hf with the given bound on its
cokernel, satisfying these congruences, choose any lifting satisfying the congruences
in Hom (M, Jf). This will be the required near epimorphism. And these conditions
are necessary. •

By restricting to various submodules of finite index of Jf/ tJf we may assume the
problem is to find an epimorphism instead of a near epimorphism of filtered
O-modules, in specified congruence classes. We consider all submodules which have
an index of at most the given bound.

5. Algorithm for filtered epimorphisms
THEOREM 5.1. Let M, Jf be torsion free filtered finitely generated O -modules, filtered
by Mh Jf,:

M = Mn=> Mn_x 3 - o l , 3 { 0 } = l 0

Jf = Jfn^Jfn_^---^Jfx{O} = Jfo
Let each M, be a direct summand of Mx and each Jf, of Jf. A modulo 3 filtered
epimorphism g can be realized integrally (i.e., M to Jf) if and only if (i) the determinant
of g: M/M,-* Jf/Jf, is modulo J> reduction of a unit whenever M/M, and Jf/Jf, are
isomorphic; (ii) M/M, and Jf/Jf, are isomorphic whenever they have equal rank.

Proof. Necessity follows from Lemma 3.7, and epimorphisms of equal rank modules
being isomorphisms. Observe that the map/to be constructed yields epimorphisms
M/Mj to Jf/Jfj but need not yield epimorphims Mj/M, to Jfj/Jfj. The former
condition is guaranteed rationally by modulo J epimorphism since modulo 3 the
ranks of all M, and M/Mt equal their ranks over Q® Q since they are summands.
Any module modulo 3> is isomorphic to a free module.

Assume (i), and (ii) hold. Each Mt is a pure submodule of M and therefore of
all submodules of M containing M,. We split each M{ as 3f,©M,_x and then split
JK, into a sum of copies of £1 and an ideal for some modules 3Ct.
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We first construct/ up to Mj where j is the least integer such that M/Mj —
Let X^3{iaU)®XiMi^x®- ' -©*ii (or 3f, =0, a(i) = 0) where # „ , . . . , XiMi)_x are
isomorphic to ft, SiT̂ o is isomorphic to some ideal of O. We construct / inductively
from Xis to Jft given a mapping on ̂ ,_,, $fn,..., 3T,S_,. We require these 5 properties
to hold. (1) Given / from Xis^x@- • • XiX®Mj-x into Jf,f has maximum rank on
%is@- • •®Xil®Mi-l. (2) The torsion in Jf/f{Xis@- • -®Xn®M,-x) is cyclic at all
primes not dividing $. (3) If/ is rationally onto from Xis®- • •®3/{n@Jti_1 into Jft

then the cokernel of/ from Sif,,©- • • •®XiX®Mi-1 into ^ , if a(i) 5* 0 has torsion
only primes dividing 3>. (4) Modulo ^,/equals g. (5) If Rank (M/Mj) = Rank
then / is an epimorphism J<, to Jft.

The first condition can be restated either a s / is onto from Xis_x@-
into Jf, rationally o r / i s 1-1 on Xis and f(Xis)nf(Xis_x®- • •©3ifnffi^1._,) = {0}.
To guarantee the second condition it will suffice to consider the latter case, since
otherwise the torsion will decrease.

Let 9 be the pure submodule of X{ generated by/(3iTis_,© • • •®X,x@Mi_x). Then
the second condition will follow if we map Xis into JfJSP so that its cokernel has
torsion relatively prime to that of J^i/f(Xis-l®- • •®3Vil®J(i-i) except at the prime
J. Conditions (1), (2) will follow by choosing a map on 3Kjs in a certain congruence
class modulo an ideal Jt corresponding to torsion in ./V,//(;%•„_,© • • •ffi3ifn©^1-_1)
at primes not dividing $, and modulo some other prime ideal 3^. The former can
be chosen to guarantee that 7V,/(^)+/(^f,s)) has no torsion at primes of $x and the
latter to guarantee that/(3Tls) is rationally independent from/(3rfs_,©- • -©3^,©
Mj-X). These can be made compatible with (4) at the prime J1 by the Chinese
remainder theorem and Proposition 3.3.

Moreover, we can guarantee (4) and (3) in the case that / previously constructed
is rationally onto. First solve (3) separately by mapping the ideal 3£is onto the
summand of Jfi/f(3Vis-i®- • •®Xn®Mi-l) at primes not dividing J. Since this
module is cyclic and 3Kis modulo 3>x is £i modulo J, we can do this. Now take the
congruence class of this map modulo Jt and the congruence class at J? of g and
realize them by some map by Proposition 3.3. Here $*x is as above.

If a(i) = 0, then the previously constructed / fulfills all conditions by induction.
Since Jf, is a pure submodule and summand of Jf no new torsion will be introduced
in the cokernel by taking it into V̂, instead of Jf^i. If Rank (M/Mi) = Rank (Jf/Jfi)
and a(i)= 0, so Jtt = Mt-X then the inequality Rank (M/'M^x) > Rank {M/M^x) and
/ f . , c / j imply Rank (Mi/Mi-1) = Rank (Jfi/M'i-X). More generally, next we deal
with (5), that is, the case when Rank {M/M,) = Rank (̂ V/JVf). Then s = a(i). There
are 2 subcases, according to whether/: 5fIS© • • •ffi3ifn©^1-_1 -» J{t is rationally onto
or not. If it is, the procedure above yields a map which is onto except possibility
at primes dividing 3 by (4). But at primes dividing $> the modulo $ reduction is
onto. Therefore, the cokernel cannot have torsion either dividing 3> or not dividing
S. So (5) holds, We show the second subcase is impossible. It will suffice to show
that the kernel of/ rationally from M^x to .A -̂i has rank less than Rank(^ , ) -
Rank(^) since in that case the kernel will have to increase, and since our con-
struction maximizes rank as we extend when we have defined the map on Sif̂ -i
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it must be rationally onto, and the map on 3fcis will be rationally in the previous
image.

Modulo 3 we have an isomorphism M/Mi-*M'/Jfi and an epimorphism which
is not an isomorphism M/Mj-*Jf/Jfj, j<i. All submodules Mit Jft are pure and
rational ranks equal the ranks of modulo 3 reductions. These facts also imply a
modulo 3 epimorphism Jt,-*Jf,. Thus; (1) Rank {Mi)-Rank (Mj)> Rank {Jf,)-
Rank {Jfj) since we have an epimorphism of quotient groups which is not
isomorphism.

We assert that the kernel of / on Mk rationally for k < i has rank

(2) max {0, Rank {Mj) - Rank (.A})}.

This is a lower bound, since the rank of the kernel Mj to Jfj is at least Rank {Mj) -
Rank {Jfj). For j = 0, this gives zero; for j = 1, zero or Rank {Mt) — Rank {Jfx) which
is correct as we have a rational epimorphism Mx to Jfx if Rank {Mt)> Rank
by construction.

Let the kernel have rank r0 from M}_x to Jfj-X. If

(3) Rank {Mj) - Rank {Mj^)< Rank {Jfj) - Rank

then we have a isomorphism on 34T, modulo f{Mj_x) by construction. Therefore, the
kernel on M} has rank r0. In other case, we have an epimorphism and the kernel
on Mj has rank equal to Rank {Mj)— rank (.A}).

Condition (3) can be restated:

Rank {M}) - Rank (./#,•_,) < Rank {Jfj) - Rank {MJ.l)+ r0,
Rank {Mj) - Rank {Jfj) < r0.

This gives an induction establishing formula (2) above. We have Rank (•/#*)-
Rank (^,)> Rank {Mj)-Rank {Jfj) by (1). We have Rank {M,)~Rank ( ^ ) > 0
because otherwise the modulo $ epimorphism g from Mt to Jft gives a modulo $
isomorphism and so a modulo $ isomorphism M io Jf contrary to assumption.
Therefore, Rank {Mt) - Rank {Jft) exceeds the value of formula (2). This concludes
the proof that the second case cannot occur.

Now we have extended the map to Ms such that M/Ms — Jf/Jfs. It suffices to
solve the problem of finding an isomorphism on the quotient groups

equal to g modulo 3>. For if we have such a map, and a map Ms to Jfs we can
obtain an arbitrary g: M-*Jf modulo 3 by adding a map M/Ms-*Jfs which need
only be a homomorphism agreeing with g modulo 3. By Proposition 3.3 this
homomorphism will exist. The isomorphism and epimorphism on quotient groups
imply the total map is an epimorphism.

By the same reasoning it suffices to construct isomorphism

where s{r) = n> s ( r - l ) > • • •> 5(1) = 5 and

Rank {M/Ms(i)) = Rank {Jf/JfH0)
and the sequence s{i) cannot be further refined. As in the last paragraph the difference
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between such maps on the direct sum

and g modulo 3 on M/Ms can be made zero by adding homomorphisms in turn
from Ms{i)/Ms{i_x) to ^VJ(l_,).

So we have reduced the problem to the case Rank (M) = Rank (Jf), and for no s
greater than zero and less than n is

Rank (M/Ms) = Rank (M/Jfs)

We define Xis as before and construct / on them in turn. We require (1') / is
rationally 1-1. (2') / has pure image. (3') / modulo 3 equals g, at each stage.

First suppose Xis is not 3{na(n), the final ideal. We claim the cokernel of/ from
3iTi,s-, © • • • © 3Cn ® -Mi-i into Jft has rank at least 2. If not then Rank (Mt) 2 Rank (Jft)
and with Rank (MIM{)>Rank (M/J^d we have Rank {M,) = Rank (Jft) but we
assumed this did not happen.

If the cokernel has rank at least 2 it is a direct summand since the image is pure.
Define /, into the direct summand C, where C © / ^ ^ © - • •®Mi^l) = Jfi by
Proposition 3.4 so as to lift g modulo f(3Cis-y®- • -@Mj-s) and to have pure image.
Define/2 from Xis i n to /^ s - !©- • ®^,-i) and to have pure image. Define f2 from
3Cis into f(%is-\®- • - © ^ - i ) by Proposition 3.3 so that / , lifts g-(fy(mod3)).
Then /= / ,+ / , satisfies (1'), (2'), (3'). Now suppose Xis is 3CnaM, the final ideal.
Then the cokernel must have rank 1. Define / from 3Cis into the previous image
again by Proposition 3.3 to be a homomorphism lifting g. The cokernel is a single
idea. By the cancellation Theorem 3.2 and the Assumption (ii) of this theorem, it
is isomorphic to jKis. Isomorphisms from the cokernel to Xis are in 1-1 correspon-
dence with units of ft, acting by multiplication to preserve an ideal of ft, and
homomorphisms in 1-1 correspondence with elements of ft. For any homomorphism
/ extending/ on the kernel and lifting g, the determinant of/ is the determinant,
locally at each prime, of a block triangular matrix

V-
L« /.

where fc is the map 3Kis into the cokernel and / is the isomorphism into the image
previously defined. So the determinant is

/c(Det (/)).

Det (/) is a unit since / is an isomorphism. Let / . be a unit such that modulo 3,
(Det(/c))(Det (/)) = ]

which is a unit by Assumption (i) of this theorem. (Observe that if M/Mh

have equal ranks and Ji/Mj, Jf/Jfj have equal equal ranks, i>j then Mt/'M{,
have equal ranks and Assumption (ii) implies that also on them g is the modulo 3>
reduction of a unit.) In defining the determinants we assume the module isomorphism
extends / where it was previously defined. Then fc equals g modulo 3> from 3Cis to
the cokernel since g also satisfies the above determinant equation, since fc is
multiplication by a unit it is an isomorphism. •
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LEMMA 5.2. A map M-*Jf of il-modules is an epimorphism if and only if it is an
epimorphism modulo torsion and an epimorphism modulo m where m = |Torsion (^0|.
Given elements a^ of Horn (M, Jf/torsion) and a2 of Horn (M, Jf/mJf) whose images
under the natural maps to Horn (M, Jf/(mJf+torsion)) are equal, there exists a unique
element a of Horn (M, Jf) yielding al5 a2 under the natural maps.
Proof. To prove existence, let T = Torsion (Jf). Let Jf = T®E. Then

M • Jf/T=*E

I
Jf/ mJf = 7 0 El mE -+ E/ mE

commutes by hypothesis. Let a2(x) = a(x) + fi(x) where a is from M to T, /3 is
from M to E/mE. Then a(x) = a(x) + al(x) is a lifting.

Uniqueness holds since a kernel element would have to be zero modulo torsion
and zero modulo m. If the cokernel of a map is zero modulo m, it must be torsion
relatively prime to m, so the image contains kJf, (k, m) = 1. But it contains mJf if
modulo torsion we have an epimorphism, so it contains Jf. •
THEOREM 5.3. If M, Jf are any filtered il-modules, there is an algorithm giving all
modulo # classes of filtered epimorphisms M to Jf.

Proof. First, let M, Jf be torsion free. Let Mt, Jft be the given nitration. Let
3~, = (Mi®Q)nM, % = (Jfi®Q)nJf. Then any filtered map sends &, to %. We
can decide all congruence classes of epimorphisms of the latter system by Theorem
5.1. A finite set of additional congruences gives the condition Jit to Jff. Let M, Jf
have torsion. We must have an epimorphism

./^/torsion -» Jf/ torsion

and the congruence classes of these can be decided modulo any nonzero ideal of H.
Filtration by the images of Mt, Jff will be preserved. There are a finite set of

possibilities for maps M^> Jf/mM and these by Lemma 5.2 together with the map
modulo torsion determine the map M-> Jf. From the two we can determine con-
gruence classes of epimorphisms but there is still a question of preserving filtration.

We can express filtration preservation by saying that J<, -*Jf-*Jf/Jfl is zero. Over
Q this map will be zero if modulo torsion, filtration is preserved. The torsion portion
has some definite exponent, the order of Torsion (Jf/Jfj), m and it suffices that the
map be zero modulo m. This amounts to a finite system of congruences. •

COROLLARY 1. It is decidable if an epimorphism exists between finitely additively
generated Z[t]-modules.

COROLLARY 2. Epimorphisms of dimension groups are decidable for primitive matrices
over Z.

COROLLARY 3. Existence of isomorphisms of dimension groups are decidable for
primitive matrices over Z.

Proof. For matrices with an equal number of nonzero eigenvalues any rational
epimorphism of dimension groups will be monk. •
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6. Conclusion
We can decide the existence of epimorphisms of Z(f)-modules by splitting into
problems at each eigenvalue with specified congruences. This involves near epi-
morphisms of nilpotent modules over an algebraic number ring, and we reduce this
to a question of filtered epimorphisms of modules over the algebraic number ring.
In the case when the modules are torsion free and the filtration submodules are
pure we are able to obtain explicit necessary and sufficient conditions.
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