ON A RESULT OF S. KOSHITANI

by KAORU MOTOSE

(Received 15th December, 1982)

Let G be a p-solvable group with a p-Sylow subgroup P of order p^a and let t(G) be the nilpotency index of the radical of a group algebra of G over a field of characteristic p. The purpose of this paper is to give an elementary proof of the following result of Koshitani [1, Theorem].

Proposition. Assume that p is odd and P is metacyclic. If t(G) = a(p-1)+1 then P is elementary abelian.

Proof. As in the proof of [2, Proposition 1], we may assume that $O_{p'}(G) = 1$, $|P| = p^3$, $U = O_p(G)$ is elementary abelian of order p^2 and G/U is a subgroup of Aut(U) = GL(2, p). If G/U is reducible then we may assume that G/U is a group consisting of upper triangular matrices, which has a normal *p*-Sylow subgroup. Hence *P* is normal in *G*, which is impossible. Thus *G* acts irreducibly on *U*. By the Frattini argument, we can see $G = N_G(V)U$ where *V* is a *p'*-subgroup such that $O_{p,p'}(G) = UV$. Since $N_U(V)$ is normal in *G* and *U* is a minimal normal subgroup of *G*, we have $N_U(V) = 1$ by $O_{p'}(G) = 1$. Let $\langle w \rangle$ be a *p*-Sylow subgroup of $N_G(V)$, which is a *p*-Sylow subgroup of GL(2, p) and let $\{x, y\}$ be a basis of *U* such that $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ is the matrix of *w* with respect to this basis. Then we obtain that

$$P = \langle w, x, y \mid w^{p} = x^{p} = y^{p} = 1, \ x^{w} = x, \ y^{w} = xy, \ x^{y} = x \rangle.$$

Since p is odd, it follows from these relations that P is of exponent p, contrary to the fact that P is a metacyclic group of order p^3 .

REFERENCES

1. S. KOSHITANI, A remark on the nilpotency index of the radical of a group algebra of a *p*-solvable group, *Proc. Edinburgh Math. Soc.* 25 (1982), 31-34.

2. K. MOTOSE, On the nilpotency index of the radical of a group algebra II, Math. J. Okayama Univ. 22 (1980), 141-143.

Department of Mathematics Faculty of Science Okayama University Okayama, Japan