
1
Category Theory

Elementary category theory is concerned with categories, functors, and nat-
ural transformations. As described in Mac Lane (1998):
“category” has been defined in order to be able to define “functor” and “functor”
has been defined in order to be able to define “natural transformation.”

We shall consider each notion in turn, whilst simultaneously preparing the
grounds for string diagrams to be introduced in Chapter 2.

1.1 Categories

A category consists of objects and arrows between objects. The letters 𝒞,
𝒟, … range over categories, and the uppercase letters A,B, … over objects.
We write A ∶ 𝒞 to express that A is an object of the category 𝒞. Lowercase
letters f , g, … range over arrows, and we write f ∶ A → B ∶ 𝒞 to express
that f is an arrow from A to B in the category 𝒞. The object A is called the
source of f and B its target. If 𝒞 is obvious from the context, we abbreviate
f ∶ A → B ∶ 𝒞 by f ∶ A → B.

For every object A ∶ 𝒞 there is an arrow idA ∶ A → A, called the identity.
Two arrows can be composed if their types match: if f ∶ A → B and g ∶ B →
C , then g ⋅ f ∶ A → C (pronounced “g after f ”). We require composition to
be unital and associative, with identity as its neutral element:

idB ⋅ f = f = f ⋅ idA, (1.1a)
(h ⋅ g) ⋅ f = h ⋅ (g ⋅ f). (1.1b)

1.1.1 Examples of Categories. To make the abstract notion of category
more tangible, we introduce several examples, many of which will accom-
pany us throughout the monograph. We begin with two trivial but useful
categories:

https://doi.org/10.1017/9781009317825.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009317825.002

2 Category Theory

Example 1.1 (0 and 1). There is a category, denoted 0, with no objects
and no arrows. There is also a category 1, with one object and one arrow,
the identity on the single object.

Categories can be seen as generalizations of possibly more familiar math-
ematical objects.

Example 1.2 (Monoids and Preorders). Two extreme classes of categories
are worth singling out.

A monoid (A, e, •) can be seen as a category that has exactly one object.
The arrows are the elements of the monoid: e serves as the identity and •
as composition.

A preorder (A, ⩽) can be seen as a category with at most one arrow
between any two objects, which are the elements of the preorder. There
exists an arrow of type a → b if and only if a ⩽ b; reflexivity ensures the
existence of identities and transitivity the existence of composites.

A category is often identified with its collection of objects: we loosely say
that Set is the category of sets. However, equally if not more important
are the arrows of a category. So, Set is really the category of sets and total
functions. There is also Rel, the category of sets and relations.

Remark 1.3 (Preservation and Reflection of Structure). An arrowpreserves
structure if features of the source allow us to deduce features of the target.
For example, if h ∶ (A, 0, +) → (B, 1, ×) is a monoid homomorphism, and
a + a′ = 0 holds in the source monoid, then h a × h a′ = 1 holds in the
target monoid. This is exactly the motivation for homomorphisms between
algebraic structures: they preserve equations.

An arrow reflects structure if we can infer properties of the source from
properties of the target. Notice the backward direction of travel.

To illustrate this, let us first establish some useful notation that we need
time and again. For a function f ∶ A → B there is a direct image func-
tion taking subsets of A to subsets of B:

f ▸ X ≔ {y ∈ B ∣ ∃x ∈ X . f x = y}.

There is also an inverse image function, mapping subsets in the opposite
direction:

f ◂ Y ≔ {x ∈ A ∣ ∃y ∈ Y . f x = y}.

With this notation in place, if h ∶ A → B is a continuous map of topological
spaces, Y ⊆ B being an open subset of B implies f ◂ Y ⊆ A is an open set

https://doi.org/10.1017/9781009317825.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009317825.002

1.1 Categories 3

in A. So, structure in the target implies structure in the source, and these
topological arrows reflect structure.

Example 1.4 (Sets and Structures). Many examples of categories used in
practice are sets with additional structure, and functions that preserve or
reflect this structure.

Sets with additional structure include monoids, groups, preorders, lattices,
graphs, and so on. In each of these cases the arrows are structure-preserving
maps. For example, Mon is the category of monoids and monoid homo-
morphisms. Notice the difference as compared to Example 1.2. There we
considered a single monoid; here we consider the collection of all monoids
and homomorphisms between them. Likewise, we can form the category
Pre, whose objects are preorders and whose arrows are monotone or order-
preserving functions.

Further examples include Bool, Sup, and CompLat, which are respec-
tively the categories of Boolean lattices, complete join-semilattices, and com-
plete lattices, with homomorphisms preserving the algebraic structure. Note
that, although every complete join-semilattice is automatically a lattice, the
categories Sup and CompLat are different, as the arrows preserve different
structure.

As well as these examples with structure-preserving maps, there are exam-
ples where the arrows reflect structure, such as the categories Top and Met
of topological spaces and metric spaces, with continuous maps as arrows.

The following category, which will accompany us as a running example,
is perhaps slightly more unusual.

Example 1.5 (Category of Actions). Let (M , e, •) be a fixed monoid. The
objects of the category M -Act are pairs (A,◃), where A is a set and (◃) ∶
M × A → A is an operation that respects the monoid structure:

e ◃ a = a, (1.2a)
(m • n) ◃ a = m ◃ (n ◃ a). (1.2b)

The operation is also called a left action of M . An arrow f ∶ (A,◃) → (B,◂)
in M -Act is a function of type A → B that preserves actions:

f (m ◃ a) = m ◂ f a, (1.3)

also known as an equivariant function.

There are many ways of constructing new categories from old, as we will
see in later sections. For now, we consider three useful cases.

https://doi.org/10.1017/9781009317825.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009317825.002

4 Category Theory

Definition 1.6 (Subcategories). A subcategory 𝒮 of a category 𝒞 is a collec-
tion of some of the objects and some of the arrows of 𝒞, such that identity
and composition are preserved to ensure 𝒮 constitutes a valid category. For
example, Set is a subcategory of Rel as every function is a binary rela-
tion. Commutative monoids CMon and commutative, idempotent monoids
CIMon form subcategories of Mon.

In a full subcategory the collection of arrows is maximal: if f ∶ A → B ∶ 𝒞
and A, B ∶ 𝒮, then f ∶ A → B ∶ 𝒮. The category Fin of finite sets and total
functions is a full subcategory of Set.

Definition 1.7 (Opposite Categories). For any category 𝒞 we can consider
its opposite category 𝒞𝑜𝑝. This has the same objects as 𝒞, but an arrow of
type A → B in 𝒞𝑜𝑝 is an arrow of type B → A in 𝒞. Identities in 𝒞𝑜𝑝 are
as in 𝒞, and composition in 𝒞𝑜𝑝 is given by forming the reverse composite
in 𝒞. The process of swapping source and target is purely bureaucratic; it
does not do anything to the arrows.

Definition 1.8 (Product Categories). For any pair of categories 𝒞 and 𝒟
we can form their product 𝒞×𝒟. An object of the product category is a pair
of objects (A, B) with A ∶ 𝒞 and B ∶ 𝒟; an arrow of type (A, C) → (B, D) ∶
𝒞 × 𝒟 is a pair of arrows (f , g) with f ∶ A → B ∶ 𝒞 and g ∶ C → D ∶ 𝒟.
Identity and composition are defined componentwise,

id(A,B) ≔ (idA, idB), (1.4a)
(g1, g2) ⋅ (f1, f2) ≔ (g1 ⋅ f1, g2 ⋅ f2), (1.4b)

in terms of identity and composition of the underlying categories.

1.1.2 Graphical Representation of Objects and Arrows. We have
noted in the prologue that notation matters, so a brief discussion of the
syntax is certainly not amiss. Composition of arrows is a binary operation.
Applications of binary operations or 2-ary functions are variably written
prefix op a b, infix a op b, or postfix a b op, often with additional syntactic
ornaments such as parentheses or commas. We have opted to write com-
position infix as g ⋅ f . Why? Infix notation has a distinct advantage over
the alternatives when expressions are nested as in h ⋅ g ⋅ f . At the outset,
nested infix expressions are ambiguous, consider for example a − b − c. Do
we intend to say (a − b) − c or a − (b − c)? Convention has it that a − b − c
is resolved to (a − b) − c. For composition, however, the problem of am-
biguity dissolves into thin air as composition is associative (1.1b). Here a
bug has been turned into a feature: in calculations we do not have to in-
voke the associative law explicitly; it is built into the notation. By contrast,

https://doi.org/10.1017/9781009317825.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009317825.002

1.1 Categories 5

say we wrote composition prefix; then we are forced to express h ⋅ g ⋅ f as
either comp (h, comp (g, f)) or as comp (comp (h, g), f). The syntax forces us
to make an unwelcome distinction.

Composition of arrows in categories lends itself well to a graphical repre-
sentation using vertices and edges. There are basically two options: objects
can be represented by vertices, and arrows by edges between them, or vice
versa:

Objects Arrows
A B Af versus

Objects Arrows
A fB A

.

The two types of diagrams are related by topological or Poincaré duality,
where vertices become edges and edges become vertices. There are many
variations of the two schemes. Vertices are often drawn as boxes or are not
drawn at all, being replaced by their labels. Edges are often directed to allow
for a more flexible arrangement of vertices. We avoid arrowheads by agreeing
that the flow is from right to left. This choice blends well with the symbolic
notation in that the graphical direction of composition,

ABCD

fgh h g f

D C B A
,

follows the direction in the term h ⋅ g ⋅ f . For reasons of consistency, we
should also write the types backwards: if g ∶ C ← B and f ∶ B ← A,
then g ⋅ f ∶ C ← A. We stick to the customary notation, however, and use
right-to-left types only for emphasis. (An alternative is to change the order
of composition: forward composition f ; g ; h blends well with left-to-right
types. We use both forward and backward composition.)

Like the symbolic notation, the diagrammatic representations have asso-
ciativity (1.1b) built in, as we are simply threading beads on a necklace. We
can further obviate the need for invoking unitality (1.1a) explicitly by agree-
ing that the identity arrow on an object A is represented by the rendition
of A. The same convention is also used in symbolic notation: the identity
on A is often written A ∶ A → A. A distinctive advantage of diagrams over
terms is that they add vital type information. For a monoid a ⋅ b is always
defined. However, as composition is in general partial, our notation should
prevent us from joining arrows together incorrectly.

We have two graphical representations to choose from. But which one to
pick? Different communities have different preferences: theoreticians seem to
prefer the diagrams on the left above (e.g. as parts of commuting diagrams;
see Section 1.7.2), while hardware people seem to prefer the diagrams on

https://doi.org/10.1017/9781009317825.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009317825.002

6 Category Theory

the right (e.g. in the form of circuit diagrams). We favor the latter notation
for reasons that will become clear later.

1.2 Properties of Arrows

We now consider categorical generalizations of injective, surjective, and bi-
jective functions.

1.2.1 Mono and Epi Arrows. An arrow f ∶ A → B is called mono if it
is left-cancelable:

f ⋅ x1 = f ⋅ x2 ⟹ x1 = x2, (1.5a)

for all objects X and all arrows x1, x2 ∶ X → A. In Set these are the injective
functions. Dually, an arrow f ∶ A → B is called epi if it is right-cancelable:

x1 ⋅ f = x2 ⋅ f ⟹ x1 = x2, (1.5b)

for all objects X and all arrows x1, x2 ∶ B → X . In Set these are the surjective
functions. The inverse directions of the cancellation properties (1.5a) and
(1.5b) are Leibniz’s context rules,

x1 = x2 ⟹ f ⋅ x1 = f ⋅ x2, (1.5c)
x1 = x2 ⟹ x1 ⋅ f = x2 ⋅ f , (1.5d)

so implications (1.5a) and (1.5b) can both be strengthened to equivalences.

1.2.2 Split Mono and Split Epi Arrows. For an arrow f ∶ A → B,
a post-inverse of f is an arrow k ∶ A ← B such that

k ⋅ f = idA.

In this case, f is referred to as a split mono. Dually, a pre-inverse of f is an
arrow h ∶ A ← B such that

f ⋅ h = idB.

Such an f is referred to as a split epi.
In pictures, these are arrows that annihilate each other if they touch in

the right order:

k f

A B A
=

A
and

f h
B A B

=
B

.

Observe that the identity arrows are rendered by edges.

https://doi.org/10.1017/9781009317825.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009317825.002

1.2 Properties of Arrows 7

In Set, almost every injective function has a post-inverse. The only ex-
ceptions are functions of type ∅ → A with A ≠ ∅, simply because there
are no functions of type A → ∅. However, every surjective function has a
pre-inverse.

Occasionally it is useful to reinterpret categorical notions using set-theoretic
spectacles. If we partially apply the composition operator, − ⋅ f or g ⋅ −, we
obtain maps over collections of arrows. Using these maps we can reinterpret
the notions of mono and epi. Property (1.5a) captures that f ⋅ − is injective;
likewise, (1.5b) states that − ⋅ f is injective:

(f ⋅ −) x1 = (f ⋅ −) x2 ⟹ x1 = x2,
(− ⋅ f) x1 = (− ⋅ f) x2 ⟹ x1 = x2.

While cancellation properties are related to injectivity, existence of a pre-
or a post-inverse are related to surjectivity:

g ⋅ − injective ⟺ g mono, (1.6a)
− ⋅ f injective ⟺ f epi, (1.6b)

g ⋅ − surjective ⟺ g split epi, (1.6c)
− ⋅ f surjective ⟺ f split mono. (1.6d)

The proofs of (1.6c) and (1.6d) are relegated to Exercise 1.8. The preceding
list of equivalences partially explains why there are four different notions,
rather than only two as in Set.

1.2.3 Isomorphisms. Two objects A and B are isomorphic, written A ≅
B, if there is a pair of functions f ∶ A → B and g ∶ A ← B such that
f ⋅ g = idB and idA = g ⋅ f . If an arrow f ∶ A → B has both a pre- and
a post-inverse, then they coincide, and we denote them f ∘. In this case f is
an isomorphism, iso for short, with inverse f ∘, written f ∶ A ≅ B ∶ f ∘:

f ∘ f

A B A
=

A
and

f f ∘

B A B
=

B
.

In Set, the isos are exactly the bijective functions.
The relation ≅ is an equivalence relation: it is reflexive, symmetric, and

transitive. Furthermore, it is compatible with most constructions on objects.
Reflexivity is established by identity arrows:

idA ∶ A ≅ A ∶ idA.

Symmetry is shown by exchanging the isomorphisms:

f ∶ A ≅ B ∶ f ∘ ⟹ f ∘ ∶ B ≅ A ∶ f .

https://doi.org/10.1017/9781009317825.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009317825.002

8 Category Theory

mono epi

split mono bimorphism
mono & epi split epi

split mono & epi split epi & monoisomorphism
split mono & split epi

Figure 1.1 Properties of arrows.

Transitivity is established by suitably composing the witnesses:

f ∶ A ≅ B ∶ f ∘ ∧ g ∶ B ≅ C ∶ g∘ ⟹ g ⋅ f ∶ A ≅ C ∶ f ∘ ⋅ g∘.

To prove that the composites are isomorphisms, we first annihilate the inner
arrows and then the outer ones.

f ∘ g∘ g f

A B C B A
=

f ∘ f

A B A
=

A
.

The proof for the reverse direction is entirely analogous.

Figure 1.1 relates the various properties of arrows – an isomorphism is an
arrow that is both split mono and split epi; an arrow that is both mono and
epi is called a bimorphism. The identity has all the properties, and all the
properties are preserved by composition. Exercise 1.11 asks you to establish
the relations and to show that the inclusions are proper.

The attentive reader may have noted that categorical concepts come in
pairs. An epi in 𝒞 is a mono in 𝒞op; a split epi in 𝒞 is a split mono in 𝒞op; the
concept of an iso is self-dual; an iso in 𝒞 is an iso in 𝒞op. Duality means that
we get two concepts for the price of one. The next section provides further
evidence for the economy of expression afforded by duality.

1.3 Thinking in Terms of Arrows

A category consists of objects and arrows. However, these entities are not
treated on an equal footing: category theory puts the conceptual emphasis
on arrows. Indeed, to master the subject one has to learn to think in terms of
arrows. To illustrate, let us define some additional infrastructure: initial and
final objects, products and coproducts, and exponentials. In each case, the

https://doi.org/10.1017/9781009317825.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009317825.002

1.3 Thinking in Terms of Arrows 9

defined object is characterized in terms of its relationship to other objects. In
a sense, category theory is the most social of all mathematical foundations.

1.3.1 Initial and Final Objects. Let 𝒞 be a category. An object 0 ∶ 𝒞
is called initial in 𝒞 if, for each object A ∶ 𝒞, there is exactly one arrow
from the initial object 0 to A. This property is referred to as the universal
property of initial objects.

Dually, 1 ∶ 𝒞 is a final or terminal object in 𝒞 if it satisfies the universal
property that, for each object A ∶ 𝒞, there is a unique arrow from A to 1. A
final object in 𝒞 is an initial object in 𝒞op.

An object that is simultaneously initial and final in 𝒞 is called a zero
object.

Example 1.9 (Preorders). An initial object in a preorder category is a
least element. Dually, a final object is a greatest element. If the preorder is
a partial order, meaning the relation ⩽ is also antisymmetric, then initial
and final objects are unique.

Example 1.10 (Sets and Structures). In Set, the empty set is initial and
any singleton set is final. In Mon, the singleton monoid ({()}, (), •) with
() • () = () is both initial and final, as homomorphisms have to preserve the
neutral element: the singleton monoid is a zero object.

The examples demonstrate that, in general, initial and final objects are
not unique. They are, however, unique up to a unique isomorphism. If A
and B are both initial, then there are unique arrows of type A → B and
B → A, whose compositions are necessarily identities.

1.3.2 Products and Coproducts. A product of two objects B1 and B2
consists of an object written as B1 × B2 and a pair of projection arrows:

outl ∶ B1 × B2 → B1 and outr ∶ B1 × B2 → B2.

These three entities have to satisfy the following universal property: for each
object A and for each pair of arrows f1 ∶ A → B1 and f2 ∶ A → B2, there
exists an arrow f1 ▵ f2 ∶ A → B1 × B2 (pronounced “f1 split f2”) such that

f1 = outl ⋅ g ∧ f2 = outr ⋅ g ⟺ f1 ▵ f2 = g, (1.7)

for all g ∶ A → B1 × B2. The equivalence captures the existence of an arrow
satisfying the property on the left and furthermore states that f1 ▵ f2 is the
unique such arrow. The following commutative diagram (see Section 1.7.2)

https://doi.org/10.1017/9781009317825.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009317825.002

10 Category Theory

summarizes the type information:

B1

B1 × B2 A

B2

outl

outr

f1▵f2

f1

f2

.

The dotted arrow indicates that f1▵f2 is the unique arrow from A to B1 ×B2
that makes the diagram commute. Informally, the universal property states
that for anything that “looks like” a product there is a unique arrow that
factorizes the look-alike product in terms of a “real” product. Section 5.2
makes the notion of a universal construction precise.

The construction of products dualizes to coproducts, which are products
in the opposite category. The coproduct of two objects A1 and A2 consists
of an object written as A1 + A2 and a pair of injection arrows:

inl ∶ A1 → A1 + A2 and inr ∶ A2 → A1 + A2.

These three entities have to satisfy the following universal property: for each
object B and for each pair of arrows g1 ∶ A1 → B and g2 ∶ A2 → B, there
exists an arrow g1 ▿ g2 ∶ A1 + A2 → B (pronounced “g1 join g2”) such that

f = g1 ▿ g2 ⟺ f ⋅ inl = g1 ∧ f ⋅ inr = g2, (1.8)

for all f ∶ A1 + A2 → B. Reversing the arrows in the previous product
diagram, we obtain the corresponding diagram for coproducts:

A1

A1 + A2 B

A2

inl

g1

g1▿g2

inr

g2

.

Remark 1.11 (Bigger Products and Coproducts). We have introduced bi-
nary products. Clearly, we can also define ternary products, with three pro-
jection arrows, and a corresponding universal property. These can be built
by nesting binary products, with the order of composition unimportant, as

https://doi.org/10.1017/9781009317825.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009317825.002

1.3 Thinking in Terms of Arrows 11

the two choices are isomorphic:

(X1 × X2) × X3 ≅ X1 × (X2 × X3).

This game can be repeated to form the product of any finite collection of
objects. As the notation will quickly become clumsy, we write the indexed
product of an I -indexed family of objects Xi∈I as ∏i∈I X𝑖.

It is then natural to broaden things further, considering infinite products,
where i ranges over an infinite set, although these cannot be formed by
iterating the finite construction, and so a category with finite products may
not have these larger ones. In general, we have a set of projection arrows,
indexed by i, and for every family of arrows f𝑖 ∶ A → X𝑖 a unique mediating
arrow of type A → ∏i∈I X𝑖, generalizing f1 ▵ f2.

Dually, we can form iterated, potentially infinite coproducts, over some
index set I ; these will be denoted ∑i∈I X𝑖.

Example 1.12 (Preorders). In preorder categories, products are greatest
lower bounds or meets, and coproducts are least upper bounds or joins. The
meet of b1 and b2, written as b1 ⊓ b2, is defined by the equivalence

a ⩽ b1 ∧ a ⩽ b2 ⟺ a ⩽ b1 ⊓ b2. (1.9a)

Dually, the join of a1 and a2, written a1 ⊔ a2, is defined by

a1 ⊔ a2 ⩽ b ⟺ a1 ⩽ b ∧ a2 ⩽ b. (1.9b)

The uniqueness conditions are trivially satisfied as there is at most one arrow
between any two objects.

Example 1.13 (Sets). In the category of sets and total functions, the prod-
uct is given by the Cartesian product:

B1 × B2 ≔ {(b1, b2) ∣ b1 ∈ B1, b2 ∈ B2 }.

The split operator and the projection functions are defined by

(f1 ▵ f2) a ≔ (f1 a, f2 a) and
outl (b1, b2) ≔ b1,
outr (b1, b2) ≔ b2.

The coproduct corresponds to the disjoint union of sets:

A1 + A2 ≔ {(0, a1) ∣ a1 ∈ A1 } ∪ {(1, a2) ∣ a2 ∈ A2 }.

The injection functions and the join operator are defined by

inl a1 ≔ (0, a1)
inr a2 ≔ (1, a2)

and
(g1 ▿ g2) (0, a1) ≔ g1 a1,
(g1 ▿ g2) (1, a2) ≔ g2 a2.

https://doi.org/10.1017/9781009317825.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009317825.002

12 Category Theory

The injection functions “tag” their arguments; the join operator performs a
case analysis on the tag.

The category Rel has the same coproducts as Set. However, the products
differ: as Rel is self-dual, coproducts and products coincide.

Observe that the duality of the “interfaces” – the universal properties (1.7)
and (1.8) are like abstract interfaces – is not reflected in the “implementa-
tions” – the concrete definitions of the functions in Set. This leads to a
second observation. A proof about products that is conducted in terms of
the interface dualizes effortlessly to a proof about coproducts. A proof that
is couched in terms of the concrete implementation is unlikely to enjoy the
same reuse.

Like initial and final objects, products and coproducts are only defined
up to isomorphism. (This statement can be sharpened, see Exercise 1.14.)

1.3.3 Exponentials. The exponential of two objects X and B in a category
with products consists of an object written BX and an arrow apply ∶ BX ×
X → B. These two entities have to satisfy the following universal property:
for each object A and for each arrow f ∶ A × X → B there exists an arrow
Λ f ∶ A → BX (pronounced “curry f ”) such that

f = apply ⋅ (g × idX) ⟺ Λ f = g, (1.10)

for all g ∶ A → BX . The product of arrows is defined h × k ≔ (h ⋅ outl)▵ (k ⋅
outr), see also Example 1.19. Like for products, the equivalence captures the
existence of an arrow satisfying the property on the left and furthermore
states that Λ f is the unique such arrow, as shown in the following diagram:

BX × X A × X

B
apply

(Λ f)×idX

f
.

Example 1.14 (Preorders). In a Boolean lattice the exponential bx is given
by b ⊔ ¬ x. It satisfies the following equivalence:

a ⊓ x ⩽ b ⟺ a ⩽ b ⊔ ¬ x.

In the smallest, nontrivial Boolean lattice 𝔹, the exponential is often written
as an implication: b ⇐ x ≔ b ⊔ ¬ x.

Example 1.15 (Sets). In Set, the exponential BX amounts to the set of
total functions from X to B. The operation Λ turns a two-argument func-
tion into a so-called curried function, a single-argument function of the first

https://doi.org/10.1017/9781009317825.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009317825.002

1.4 Functors 13

parameter that yields another single-argument function, which receives the
second parameter.

1.4 Functors

Every worthwhile algebraic structure comes equipped with corresponding
structure-preserving maps; so do categories, where these maps are called
functors. We let F, G, … range over functors. Since a category consists of
two parts, objects and arrows, a functor F ∶ 𝒞 → 𝒟 consists of a mapping on
objects and a mapping on arrows, called the object map and the arrow map
respectively. It is common practice to denote both maps by the same symbol.
The two parts of a functor have to be consistent; for one thing, the action on
arrows has to respect the types: if f ∶ A → B ∶ 𝒞, then F f ∶ F A → F B ∶ 𝒟.
Furthermore, a functor has to preserve identities and composition:

F (idA) = idF A, (1.11a)
F (g ⋅ f) = F g ⋅ F f . (1.11b)

These are called the functor laws. Equation (1.11a) is the functor identity
law, and Equation (1.11b) is the functor composition law.

A simple example of a functor is the identity Id𝒞 ∶ 𝒞 → 𝒞, defined as

Id𝒞 A ≔ A,
Id𝒞 f ≔ f .

Functoriality is preserved under composition: given two functors F ∶ 𝒞 →
𝒟 and G ∶ 𝒟 → ℰ, their composite G∘F ∶ 𝒞 → ℰ is defined as

(G∘F) A ≔ G (F A),
(G∘F) f ≔ G (F f).

Categories and functors between them themselves form a category, called
Cat. To avoid paradoxes similar to Russell’s paradox, this construction is
subject to size constraints, see I.6 of Mac Lane (1998).

We will revisit functor composition in Section 2.1.

1.4.1 Examples of Functors. As we did with categories, we now consider
some examples of functors to make things more concrete.

Example 1.16 (Functors between Monoids and Preorders). We saw in Ex-
ample 1.2 that monoids and preorders can be seen as categories. A functor
between monoid categories is a monoid homomorphism; a functor between

https://doi.org/10.1017/9781009317825.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009317825.002

14 Category Theory

preorder categories is a monotone function. So, in this case, functors are the
usual notion of homomorphism.

Example 1.17 (Functors from 0, and to 1). In Example 1.1 we introduced
the empty category 0. This category has the special property that there is
exactly one functor to any category from 0, as there is no data to specify.
Similarly, the one object category 1 has the special property that there is
exactly one functor from any category to 1, as there is only one choice for
where to send every object and arrow. In other words, 0 is the initial object
in Cat and 1 is the final object.

Example 1.18 (Functors from and to Product Categories). A product cat-
egory comes equipped with two projection functors, Outl ∶ 𝒞1 ×𝒞2 → 𝒞1 and
Outr ∶ 𝒞1 × 𝒞2 → 𝒞2, defined as Outl (A1, A2) ≔ A1, Outl (f1, f2) ≔ f1 and
Outr (A1, A2) ≔ A2, Outr (f1, f2) ≔ f2. A functor from a product category
such as Outl and Outr is sometimes called a bifunctor , a contraction of the
more unwieldy term binary functor (see also Exercise 1.23).

The diagonal functor Δ ∶ 𝒞 → 𝒞 × 𝒞 is an example of a functor into a
product category. It duplicates its argument:

Δ A ≔ (A, A), (1.12a)
Δ f ≔ (f , f). (1.12b)

We have Outl∘Δ = Id𝒞1
and Outr∘Δ = Id𝒞2

.

Example 1.19 (Products and Exponentials). If the product B1 × B2 exists
for every pair of objects, − × = can be turned into a bifunctor with arrow
map:

g1 × g2 = (g1 ⋅ outl) ▵ (g2 ⋅ outr).

Likewise, if the exponential BX exists for every object B, (−)X can be turned
into a functor with arrow map:

f X = Λ (f ⋅ apply).

Exercise 1.24 asks you to fill in the details.

Many common mathematical constructions are functorial.

Example 1.20 (Powerset). Given a set A, we can form its powerset 𝒫 A
consisting of all subsets of A. This extends to a functor Pow ∶ Set → Set,
referred to as the covariant powerset functor , with action on arrows:

Pow f ≔ f ▸.

https://doi.org/10.1017/9781009317825.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009317825.002

1.4 Functors 15

In fact, still taking the powerset construction on objects, we can extend
this in a second way to a functor 2(−) ∶ Set𝑜𝑝 → Set:

2f ≔ f ◂.

This is referred to as the contravariant powerset functor , as it reverses the
direction of arrows: 2g⋅f = 2f ⋅ 2g. The notation is inspired by the notation
for exponentials: if we represent a set X ∶ 𝒫 A by its characteristic function
χ ∶ A → 2, then the action on arrows reads 2f ψ = ψ ⋅ f , and consequently
2f (2g ψ) = 2f (ψ ⋅ g) = ψ ⋅ g ⋅ f = 2g⋅f ψ.

The relationships between categories are important, and functors allow us
to describe these relationships by showing how one can be transformed into
the other.

Example 1.21 (Algebra and Order Theory). A bounded join-semilattice
is a partially ordered set with a bottom element, denoted ⊥, and such that
every pair of elements x, y has a least upper bound, or join, denoted x ⊔ y
(see Example 1.12).

Every commutative, idempotent monoid gives rise to a bounded join-
semilattice, with order defined by x ⩽ y ⟺ x • y = y. The construction
is functorial, as we can define:

Ord (A, e, •) ≔ (A, ⩽) where x ⩽ y ⟺ x • y = y,
Ord h ≔ h.

Conversely, given a bounded join-semilattice, we can define a commuta-
tive, idempotent monoid functorially, with the monoid operations given by
the bottom element and joins:

CIMon (A, ⩽) ≔ (A, ⊥, ⊔),
CIMon h ≔ h.

In fact, Ord∘CIMon = Id and CIMon∘Ord = Id, so these constructions are
inverse to each other, and we say that the categories of commutative, idem-
potent monoids and bounded join-semilattices are isomorphic.

For many functors there are often natural ways to travel back in the
opposite direction. We return to monoids for an instructive example.

Example 1.22 (Free and Forgetful). The category Mon is based on the
category Set by adding more structure. This informal statement can be
made precise via a functor. The underlying or forgetful functor U ∶ Mon →

https://doi.org/10.1017/9781009317825.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009317825.002

16 Category Theory

Set is defined as
U (A, e, •) ≔ A,

U h ≔ h.
(1.13)

The definition uses the fact that arrows in Mon are total functions. Since the
action on arrows is the identity, the functoriality requirements are trivially
satisfied.

The functor U has a counterpart, which takes an arbitrary set to the free
monoid on the set. For that reason it is called the free functor Free ∶ Set →
Mon and is defined as

Free A ≔ (A∗, [], ++),

Free f ≔ h where
⎧{
⎨{⎩

h [] ≔ [],
h [a] ≔ [f a],

h (x ++ y) ≔ h x ++ h y.

Here, A∗ is the set of all finite lists, whose elements are drawn from A. Lists
can be constructed in three different ways: [] is notation for the empty list,
[a] for the singleton list containing a, and ++ concatenates two lists. Concate-
nation is associative with [] as its neutral element, so (A∗, [], ++) is indeed
a monoid. Furthermore, Free f is a monoid homomorphism by definition. It
applies f to every element of a given list.

Composing the two functors gives an endofunctor on Set, which we call
List ≔ U∘Free ∶ Set → Set. The prefix “endo” emphasizes that source and
target category of the functor are identical.

Example 1.23 (Polynomial Functors). A useful class of functors that com-
monly occur in practice are the polynomial functors on Set. These are func-
tors built out of the iterated coproducts described in Remark 1.11, and
exponentials. A polynomial functor is a functor of the following form:

X ↦ ∑
i∈I

XA𝑖.

Here, the A𝑖 are fixed sets. If we think of coproducts and exponentials as
adding and raising to powers, the analogy with polynomials is clear.

Clearly the identity functor, X ↦X2, and X ↦X +X are examples of poly-
nomial functors. Perhaps more surprisingly, the functor List of Example 1.22
is isomorphic to the polynomial functor:

X ↦ ∑
n∈ℕ

Xn.

https://doi.org/10.1017/9781009317825.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009317825.002

1.4 Functors 17

As Xn is a tuple of n elements, our polynomial functor contains tuples of
all potential lengths, exactly capturing lists of elements of X .

One of the great strengths of category theory is its ability to build bridges
between different areas of mathematics and computer science. The following
miniature example points in that direction.

Example 1.24 (Category of Actions). Recall that a monoid (M , e, •) can
be seen as a category ℳ. A functor ℳ → Set is morally the same as an
action of M ; see Example 1.5. Since a monoid category has exactly one
object, F selects a set and sends the monoid elements to endofunctions over
that set. The coherence conditions for actions (1.2a) and (1.2b) correspond
to the two functor laws.

1.4.2 Graphical Representation of Functors. Let us extend the graph-
ical representation of objects and arrows to functors. The coherence of the
object and arrow maps and the functor laws allow us to push applications
of functors inwards. Thus, a simple but slightly unimaginative approach is
to label diagrams with functor applications:

F h F g F f

F D F C F B F A
.

One could argue that the use of complex terms as labels mixes symbolic and
diagrammatic notation. A more attractive alternative is to draw the functor
as a separate wire extending diagrams to two dimensions. The application
of a functor F to an object A and to an arrow f is rendered:

F A

AF

F A

f

BF

.

For reasons to become clear in Chapter 2, we have additionally rotated the
diagrams 90∘ counterclockwise. We have also moved the labels to the ends
of the wires to avoid cluttering the middle of the diagram.

Quite pleasingly, the functor laws are built into the notation, in the sense
that equal terms have the same diagrams. Both sides of the identity functor
law (1.11a) have the same depiction (1.14a). Similarly, both sides of the
functor composition law (1.11b) correspond to diagram (1.14b):

https://doi.org/10.1017/9781009317825.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009317825.002

18 Category Theory

F A

AF

(1.14a)

F A

f
g

CF

. (1.14b)

Diagram (1.14b) can be divided into four parts as follows:

F A

f
g

CF

.

The functor composition law (1.11b) implies that it does not matter whether
we assemble the parts first horizontally and then vertically, or vice versa.

1.5 Natural Transformations

Category theorists never study objects in isolation; they always consider
what the right arrows between those objects should be. To this end, in
Section 1.4 we introduced functors as the arrows between categories. As
we have now introduced functors, we can play this game again. We should
ask ourselves, what should the arrows between functors be? Answering this
question leads to the definition of natural transformations. Before getting
into the formal bureaucracy, we start with an example.

Consider the function that maps an element to a singleton list, a ↦ [a],
and observe that the definition does not depend in any way on the nature
of the element a. In particular, the map works uniformly across all possible
element types. This characteristic can be made precise using the notion of a
natural transformation.

Let F, G ∶ 𝒞 → 𝒟 be two functors. A transformation α ∶ F → G ∶ 𝒞 → 𝒟
is a family of arrows, so that for each object A ∶ 𝒞 there is an arrow α A ∶
F A → G A ∶ 𝒟. The arrow α A is called a component of α. A transformation
can be seen as a map from objects to arrows.

A transformation is natural, written α ∶ F →̇ G ∶ 𝒞 → 𝒟, if

G h ⋅ α X = α Y ⋅ F h, (1.15)

for all arrows h ∶ X → Y ∶ 𝒞. Given α and h, there are essentially two ways
of turning F X entities into G Y entities. The naturality condition demands
that they are equal. We let α, β, … range over natural transformations.

https://doi.org/10.1017/9781009317825.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009317825.002

1.5 Natural Transformations 19

Condition (1.15) is equivalent to requiring commutativity of the following
diagram:

G X F X

G Y F Y

G h

α X

F h

α Y

.

Such a diagram is termed a naturality square.
As always, it is important to consider identities and composition. For any

functor F ∶ 𝒞 → 𝒟 the identity arrows idF X ∶ F X → F X form an identity
natural transformation of type F →̇ F,

idF X ≔ idF X ,

with the naturality condition becoming trivial. Given three parallel func-
tors F, G, H ∶ 𝒞 → 𝒟 and natural transformations α ∶ F →̇ G and β ∶ G →̇ H,
we can form their vertical composite β ⋅ α with components

(β ⋅ α) X ≔ β X ⋅ α X .

The naturality condition follows immediately from the naturality of the two
components. For fixed categories 𝒞 and 𝒟, functors of type 𝒞 → 𝒟 and
natural transformations between these functors form a category, the functor
category 𝒟𝒞.

Remark 1.25. We have seen product categories in Definition 1.8. In fact,
they are the categorical products in Cat, and functor categories are the
corresponding exponentials. This is a way of seeing that natural transfor-
mations are the right choice of arrows between functors.

We will revisit composition of natural transformations in Section 2.2. In
particular, we shall see that there are also horizontal composites, and that
the terms “vertical” and “horizontal” correspond to the graphical depiction
of these different forms of composition.

1.5.1 Examples of Natural Transformations. As with the other mem-
bers of the trinity of categorical concepts, we consider explicit examples of
natural transformations. We begin with our usual favorites.

Example 1.26 (Monoid and Preorder Naturality). For monoids, a natural
transformation between monoid homomorphisms f , g ∶ X → Y is an ele-
ment α of Y such that g x ⋅ α = α ⋅ f x. That is, the two homomorphisms
are related pointwise by conjugation by the element α.

We saw that functors between preorders are monotone functions. In this

https://doi.org/10.1017/9781009317825.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009317825.002

20 Category Theory

special case there can be at most one natural transformation between such
functors. In fact, for f , g ∶ X → Y there is a natural transformation f →̇ g if
and only if f x ⩽ g x for all x ∈ X . That is, if f is below g pointwise: f ⩽ g.
The naturality condition is trivially satisfied as there is at most one arrow
between any two objects.

When categories are specialized to preorders, coherence conditions such
as (1.15) are often vacuous. Turning things around, category theory can be
seen as order theory with coherence conditions (Backhouse et al., 1998). An
“order” between two objects, say A and B, is witnessed by one or more
arrows of type A → B. The coherence conditions ensure that the choice
of the witness is compatible with the basic operations of category theory,
identifying witnesses if necessary.

We saw in Example 1.20 that the powerset construction is functorial.
Many operations on subsets are natural.

Example 1.27 (Operations on Sets). The singleton set functions,

single A a ≔ {a},

form a natural transformation single ∶ Id →̇ Pow. The naturality condition
Pow f ⋅ single A = single B ⋅ f holds by definition. Similarly, taking unions
gives a natural transformation ⋃ ∶ Pow∘Pow →̇ Pow.

Many common computational tasks are natural.

Example 1.28 (Reducing Lists). For each monoid (A, e, •) there is a monoid
homomorphism, which reduces a list to a single element of A:

reduce (A, e, •) ≔ h where
⎧{
⎨{⎩

h [] ≔ e,
h [a] ≔ a,

h (x ++ y) ≔ h x • h y.

Instantiating the monoid to (ℕ, 0, +), it sums a list of natural numbers.
For (𝔹, true, ∧) it forms the conjunction of a list of Booleans. Its type is
Free A → (A, e, •), which is equivalent to Free (U (A, e, •)) → (A, e, •). And,
indeed, reduce is natural in the monoid (A, e, •), that is, reduce ∶ Free∘U→̇Id.
Given h ∶ (A, 0, +) → (B, 1, ×), the naturality condition is

h ⋅ reduce (A, 0, +) = reduce (B, 1, ×) ⋅ Free (U h).

This says that reducing a list using monoid A and then converting it to
monoid B using h is the same thing as converting all the elements of the list
to B using h, and then reducing the list using monoid B.

https://doi.org/10.1017/9781009317825.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009317825.002

1.5 Natural Transformations 21

An application of reduce worth singling out is join, which flattens a list
of lists of elements (recall that List = U∘Free):

join A ≔ U (reduce (Free A)) ∶ U (Free (U (Free A))) → U (Free A).

The function is natural in A, that is, join ∶ List∘List →̇ List.

Example 1.29 (Category of Actions). Continuing Example 1.24, a natural
transformation between functors of type ℳ → Set is morally the same as
an equivariant map; see Example 1.5. The coherence condition (1.3) cor-
responds to the naturality square (1.15). Overall, the category M -Act of
actions is isomorphic to the functor category Setℳ.

Example 1.30 (Nonnatural Transformation). We have observed in the in-
troduction that forming a singleton list is a natural transformation of type
Id →̇ List. There is, however, no natural transformation of type List →̇ Id, as
there is no natural way to define the image of the empty list. In a sense, we
have to invent an element of the target type. This cannot be done uniformly
– for the target type 0 this is even impossible.

1.5.2 Graphical Representation of Natural Transformations. Turn-
ing to the graphical representation, we depict the component α A of a natural
transformation, as on the left in the following diagram:

F A

α

G A

F A

f

BF

.

The diagrams for α A and F f exhibit a nice symmetry: both consist of two
parallel lines, one of which has a “bead” on it. We have noted above that
the graphical notation silently deals with applications of the functor laws.
The same holds true of the naturality condition (1.15) if we agree that
diagrams that differ only in the relative vertical position of “beads,” arrows
and natural transformations, are identified:

F A

G B

α
f =

F A

G B

α f =

F A

G B

α
f . (1.16)

This convention is a natural one, as the two strings are drawn in parallel,
suggesting that the corresponding actions are independent of each other.

https://doi.org/10.1017/9781009317825.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009317825.002

22 Category Theory

1.6 Properties of Functors

Like for arrows, we now consider categorical generalizations of injective,
surjective, and bijective functions.

Since a functor is an arrow in Cat, it can be a (split) mono or a (split) epi.
However, often weaker properties are more useful. Recall that a functor F ∶
𝒞 → 𝒟 consists of an object and an arrow map. If the former is injective
(surjective), then F is said to be injective (surjective) on objects. If the latter
is injective (surjective), then F is said to be injective (surjective) on arrows.

Two objects that exhibit exactly the same relationships cannot be distin-
guished: they are isomorphic. Isomorphism is a better notion of “sameness”
for objects, rather than equality. The categorically natural properties of ob-
jects, such as being a terminal object, a product, or an exponential, are car-
ried across isomorphisms. Consequently, we obtain more appropriate notions
of “injective (surjective) on objects” if we replace equality by isomorphism.

1.6.1 Essentially Injective and Surjective Functors. A functor F ∶
𝒞 → 𝒟 is essentially injective (on objects) if

F X1 ≅ F X2 ⟹ X1 ≅ X2, (1.17a)

for all objects X1, X2 ∶ 𝒞.
A functor F ∶ 𝒞 → 𝒟 is called essentially surjective (on objects) if

∀B ∶ 𝒟 . ∃A ∶ 𝒞 . B ≅ F A. (1.17b)

A functor is essentially bijective if it is both essentially injective and essen-
tially surjective.

1.6.2 Faithful and Full Functors. While the object map of a functor is
a single map, the arrow map is really a family of maps:

FA,B ∶ (A → B ∶ 𝒞) → (F A → F B ∶ 𝒟),

with one member for each pair of objects. In fact, these maps are natural in
both A and B, meaning that the following equation holds:

F k ⋅ FA,B f ⋅ F h = FA′,B′ (k ⋅ f ⋅ h),

which is an immediate consequence of the second functor law.
The functor F is faithful (full) if each of these maps is injective (surjective):

F faithful ⟺ FA,B injective for all A and B, (1.18a)
F full ⟺ FA,B surjective for all A and B. (1.18b)

https://doi.org/10.1017/9781009317825.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009317825.002

1.7 Equational Reasoning 23

A functor that is injective on arrows is also faithful, but not necessarily the
other way round; see Exercise 1.31. For a subcategory 𝒮 of 𝒞, the inclusion
functor 𝒮 → 𝒞 is both faithful and injective on objects. It is furthermore
full if and only if 𝒮 is a full subcategory.

For a functor that is fully faithful (full and faithful), the maps FA,B form
a natural bijection:

A → B ≅ F A → F B. (1.19)

A functor preserves isomorphisms; a fully faithful functor also reflects
isomorphisms:

A ≅ B ⟺ F A ≅ F B. (1.20)

In other words, a fully faithful functor is essentially injective on objects.

1.7 Equational Reasoning

Category theory is essentially an algebraic theory: propositions take the
form of equations, whose proofs are conducted using equational reasoning.
Equational proofs are attractive for several reasons. First and foremost they
are simple in the sense that they do not involve a lot of machinery – the basic
step is to replace equals by equals. To establish f = g one seeks intermediate
terms h0, …, hn such that f = h0 = ⋯ = hn = g.

1.7.1 Symbolic Calculational Proofs. The following proof format, at-
tributed to Wim Feijen (Gasteren, van, 1988, p. 107), is used throughout the
monograph:

term1

= { hint 1 }
term2

= { hint 2 }
term3.

Each step of the calculation is justified by a hint, enclosed in curly braces.
The hints should enable the reader to easily verify that the calculation con-
stitutes a valid proof.

It is instructive to work through a concrete example. (We will revisit
the example in Section 2.4.1 once our graphical calculus is in place. Sec-
tion 3.5 generalizes the example to a more abstract setting.) A common
list-processing function is filter p ∶ List A → List A, which takes a list as an

https://doi.org/10.1017/9781009317825.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009317825.002

24 Category Theory

argument and returns the list of all those elements, in order, that satisfy the
predicate p ∶ A → 𝔹. It is defined as

filter p ≔ join A ⋅ List (guard p), (1.21)

where guard p ∶ A → List A takes an element to a singleton list, if the element
satisfies p, or to the empty list otherwise.

Our goal is to show that filter satisfies the following property:

filter p ⋅ join A = join A ⋅ List (filter p), (1.22)

for all objects A and for all arrows p ∶ A → 𝔹. The equation can be para-
phrased as follows: given a list of lists it does not matter whether we first
flatten the lists and then filter the result, or we first filter the element lists
individually and then flatten the filtered lists.

For the proof of (1.22) we need a fundamental property of flattening:

join A ⋅ List (join A) = join A ⋅ join (List A), (1.23)

which states that the two ways of flattening a list of lists of lists of elements
(a cubed list) are equivalent. We reason,

filter p ⋅ join A
= { definition of filter (1.21) }

join A ⋅ List (guard p) ⋅ join A
= { join is natural (1.15) }

join A ⋅ join (List A) ⋅ List (List (guard p))
= { property of join (1.23) }

join A ⋅ List (join A) ⋅ List (List (guard p))
= { List is a functor (1.11b) }

join A ⋅ List (join A ⋅ List (guard p))
= { definition of filter (1.21) }

join A ⋅ List (filter p).

Observe that the proof makes implicit use of Leibniz’s context rules; see
Section 1.2.

When writing or reading an equational proof, it is customary or even
advisable to start at both ends, applying some obvious rewrites such as
unfolding definitions. In the preceding example, we note that the loose ends
can be connected by applying Property (1.23).

The previous calculation exemplifies an equational proof. The proof for-
mat works equally well for arbitrary transitive relations, for example ⩽, <,

https://doi.org/10.1017/9781009317825.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009317825.002

1.7 Equational Reasoning 25

or ⟹. The following calculation demonstrates that f is mono if g ⋅ f is
mono:

f ⋅ x1 = f ⋅ x2

⟹ { Leibniz (1.5c) }
g ⋅ f ⋅ x1 = g ⋅ f ⋅ x2

⟹ { assumption: g ⋅ f mono (1.5a) }
x1 = x2.

1.7.2 Commutative Diagrams. Category theory has a strong visual fla-
vor. Diagrams can be used to visualize not only arrows, but also properties
of arrows, and to conduct proofs. We shall see that diagrammatic proof is
an attractive alternative to symbolic proof.

Recall that a composite arrow can be visualized by a one-dimensional
drawing of a path. To visualize an equality between two composite arrows,
we can connect the corresponding paths at both ends, obtaining a two-
dimensional drawing. As an example, the following equation on the left can
be represented by the diagram on the right:

g ⋅ f
= { hint }

k ⋅ h

X

B hint A

Y

g f

hk

.

As noted before, the advantage of diagrammatic over symbolic notation is
that it adds vital type information.

A diagram where all paths from the same source to the same target lead
to the same result by composition is called a commutative diagram. A com-
mutative diagram can represent an equation (see the definition of products
and coproducts), but it can also serve as a proof. To illustrate, here is a proof
of (1.22) framed as a commutative diagram. (For clarity, the unfolding of
definitions is omitted and List is abbreviated to L.)

https://doi.org/10.1017/9781009317825.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009317825.002

26 Category Theory

L (L A) L A

(1.15)

L A (1.23) L (L (L A)) L (L A)

(1.11b)

L (L A)

joi
n A

L (guard p)

join (LA)

L (jo
in

A)

L (L (guard p))

join A

L (join A⋅L (guard p))

join A

The outer pentagon represents the conclusion, the to-be-shown equation; the
inner squares and triangles constitute the assumptions. One can show that,
for the entire diagram to commute, it is sufficient that the inner diagrams
commute.

Commutative diagrams work well for objects and arrows, but less so for
categories, functors, and natural transformations. This is already evident in
the previous example, where complex terms are used as labels, mixing sym-
bolic and diagrammatic notation. We argue that string diagrams, developed
in Chapter 2, are a better alternative.

Summary

A category consists of two components, objects and arrows. Functors are
structure-preserving maps between categories, and natural transformations
can be seen as mappings between functors. Categories, functors, and natural
transformations form a so-called 2-category.

Categories generalize both monoids and preorders:

in Cat in Mon in Pre
category monoid preorder
functor monoid homomorphism monotone map
natural transformation pointwise conjugation pointwise preorder

There are many ways of constructing new categories from old: subcate-
gories, opposite categories, product categories, and functor categories. Oppo-
site categories are at the heart of the duality principle: categorical concepts
come in pairs; duality cuts down the work by half. Product categories allow
us to capture 𝑛-ary functors, and functor categories higher-order functors –
functors that take functors as arguments or yield functors as results.

https://doi.org/10.1017/9781009317825.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009317825.002

Exercises 27

Further Reading

The basic concepts of category were introduced by Eilenberg and MacLane
(1945), and this article is still very relevant.

The standard modern reference for basic category theory is the excel-
lent Mac Lane (1998), although it does require a certain amount of math-
ematical experience to understand the examples. Stronger expository ac-
counts are Awodey (2010), Leinster (2014), and the more computer science
oriented Crole (1993). The recent Spivak (2014) is written specifically with
practitioners outside mathematics in mind.

Modern encyclopedic accounts of large parts of category theory include
Borceux (1994a,b,c) and Johnstone (2002a,b).

We use order theory and lattices in many of our examples. An enjoyable
introduction to the fundamentals is Davey and Priestley (2002). Backhouse
et al. (1998) provided an explicit development of category theory as a gen-
eralization of order theoretic notions.

Exercises

1.1 Summarize the contents of this chapter in your own words.
1.2 Precisely define the categories mentioned in Section 1.1. What are

the objects, what are the arrows? How are the identity arrows and
composition of arrows defined?

1.3 Define a category whose objects are natural numbers and whose
arrows of type n → m are real-valued matrices of dimension m × n.

1.4 The category Rel features relations as arrows. Relations can also be
part of the object data. Consider triples (A1, R, A2), where A1 and A2
are sets and R ⊆ A1 × A2 is a binary relation. These triples form
the objects of a category; an arrow between objects (A1, R, A2) and
(B1, S , B2) is then a pair of functions (f1, f2) with f1 ∶ A1 → B1 and
f2 ∶ A2 → B2 such that

∀a1 ∈ A1 . ∀a2 ∈ A2 . (a1, a2) ∈ R ⟹ (f1 a1, f2 a2) ∈ S .

In words, the functions take related arguments to related results. Fill
in the details by finding a suitable notion of composition, and identity
arrows. Show that composition is both associative and unital. This
category underlies Wadler’s “Theorems for Free!” (Wadler, 1989).

1.5 Are Mon and Pre subcategories of Cat? If yes, are they full?
1.6 (a) Let 𝒞 be a monoid category. What is the opposite category 𝒞𝑜𝑝?

(b) Let 𝒞 be a preorder category. What is the opposite category 𝒞𝑜𝑝?

https://doi.org/10.1017/9781009317825.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009317825.002

28 Category Theory

1.7 (a) Let 𝒞 and 𝒟 be two monoid categories. What is the product
category 𝒞 × 𝒟? (b) Let 𝒞 and 𝒟 be two preorder categories. What is
the product category 𝒞 × 𝒟?

1.8 Prove that g is split epi if and only if the partial application g ⋅ − is
surjective (1.6c). Also show the dual statement (1.6d).

1.9 Show that, if f has both a pre- and post-inverse, they must coincide.
1.10 (a) Show that the isos in Mon are exactly the bijective monoid

homomorphisms. (b) Show that the isos in Pre are not the same as
bijective, monotone functions.

1.11 Prove the relations summarized in Figure 1.1 and show that the
inclusions are proper: prove that a split mono is a mono and exhibit a
mono that is not a split mono, and so on.

1.12 Explain why the notions of mono, epi, split mono, and split epi give
rise to only seven different concepts (which ones?), even though there
are 24 = 16 different combinations of four properties.

1.13 Find a category with multiple distinct initial and final objects.
1.14 Show that the product of B1 and B2 is unique up to a unique iso-

morphism that makes the diagram

B1

B1 × B2 B1 ×′ B2

B2

outl

outr

≅

outl ′

outr
′

commute. (It is not the case that there is a unique isomorphism per se.
For example, there are two isomorphisms between B × B and B × B:
the identity idB×B = outl ▵ outr and outr ▵ outl.)

1.15 Define the coproduct of two categories, dualizing the product of
categories; see Definition (1.8). Hint: tag the objects and arrows; see
Example 1.13. You must find a sensible way to define identity and
composition.

1.16 Hint: you need to solve Exercise 1.15 first. (a) Let 𝒞 and 𝒟 be two
monoid categories. What is the coproduct category 𝒞 + 𝒟? (b) Let 𝒞
and 𝒟 be two preorder categories. What is the coproduct category
𝒞 + 𝒟?

1.17 Linear maps between two vector spaces form again a vector space.
Does this imply that Vect (𝕂) has exponentials? Hint: you may want
to peek at Exercise 4.7 first.

https://doi.org/10.1017/9781009317825.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009317825.002

Exercises 29

1.18 Does Mon have initial and final objects? What about coproducts
and products (see also Exercises 1.7(a) and 1.16(a))? And exponentials
(see also Exercise 1.25(a))?

1.19 Does Pre have initial and final objects? What about coproducts and
products (see also Exercises 1.7(b) and 1.16(b))? And exponentials (see
also Exercise 1.25(b))?

1.20 Does Rel have initial and final objects? What about coproducts and
products? And exponentials?

1.21 This exercise aims to fill in some of the details of Example 1.21. Let
A be a set, • a binary function on A, and e a fixed element in A. Define:

x ⩽ y ⟺ x • y = y.

Show that:

• ⩽ is reflexive if • is idempotent.
• ⩽ is antisymmetric if • is commutative.
• ⩽ is transitive if • is associative.
• If e is the unit element, then it is the least element of the order ⩽.
• If h ∶ (A, •, e) → (B, •, e) is a homomorphism of idempotent monoids,

show that it is monotone with respect to ⩽.

1.22 Show diagrammatically that split monos and split epis are preserved
by functor application. Conclude that functors preserve isomorphisms:

A ≅ B ⟹ F A ≅ F B.

Are all monos and epis preserved by functors?
1.23 If we fix one argument of a bifunctor, we obtain a functor. The

converse is not true: functoriality in each argument separately does not
imply functoriality in both. Rather, we have the following: the map
− ⊗ = ∶ 𝒞 × 𝒟 → ℰ is a bifunctor if and only if the partial application
− ⊗ B ∶ 𝒞 → ℰ is a functor for all B ∶ 𝒟, the partial application
A ⊗ − ∶ 𝒟 → ℰ is a functor for all A ∶ 𝒞, and if furthermore the two
collections of unary functors satisfy the exchange condition,

(f ⊗ B″) ⋅ (A′ ⊗ g) = (A″ ⊗ g) ⋅ (f ⊗ B′), (1.24)

for all f ∶ A′ → A″ ∶ 𝒞 and g ∶ B′ → B″ ∶ 𝒟. Given f and g there are
two ways of turning A′ ⊗ B′ things into A″ ⊗ B″ things. The exchange

https://doi.org/10.1017/9781009317825.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009317825.002

30 Category Theory

condition (1.24) demands that they are equal:

A′ ⊗ B″ A′ ⊗ B′

A″ ⊗ B″ A″ ⊗ B′

f ⊗B″

A′⊗g

f ⊗B′
f ⊗g

A″⊗g

.

The arrow part of the bifunctor, the diagonal, is then given by either
side of the equation. Prove the so-called exchange lemma.

1.24 Fill in the details of Example 1.19. In particular, show that the arrow
map of the bifunctor − × = satisfies the typing requirements and the
functor laws. Dualize to coproducts. Show that (−)X is functorial.

1.25 (a) Let 𝒞 and 𝒟 be two monoid categories. What is the functor
category 𝒟𝒞? (b) Let 𝒞 and 𝒟 be two preorder categories. What is the
functor category 𝒟𝒞?

1.26 Continuing Exercise 1.24, show that outl and outr are natural trans-
formations. Dualize to coproducts. Show that apply ∶ BX × X → B is
natural in B.

1.27 How many natural transformations are there of type Id →̇ Id, where
Id ∶ Set → Set? And of type Id →̇ P, where P A = A × A? And if we
flip source and target: P →̇ Id?

1.28 Continuing Exercise 1.23 show that functor application and functor
composition are bifunctors:

Apply ∶ 𝒟𝒞 × 𝒞 → 𝒟 and −∘= ∶ ℰ𝒟 × 𝒟𝒞 → ℰ𝒞.

1.29 Does Cat have initial and final objects? What about coproducts and
products? And exponentials?

1.30 Show that the following are equivalent for a category 𝒞:

• For every category ℬ and pair of functors F, G ∶ ℬ → 𝒞, every trans-
formation between F and G is natural.

• 𝒞 is a preorder category.
1.31 Give an example of a functor that is fully faithful, but not injective

on arrows. Hint: solve Exercise 1.15 first.
1.32 Show the following implications:

F∘G is essentially surjective ⟹ F is essentially surjective,
F∘G is faithful ⟹ G is faithful.

https://doi.org/10.1017/9781009317825.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009317825.002

Exercises 31

1.33 Show that h ∶ List A → List B where

h ⋅ join A = join B ⋅ List h

is a monoid homomorphism over the free monoid, assuming suitable
properties of join. Conclude that filter is a homomorphism.

https://doi.org/10.1017/9781009317825.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009317825.002

https://doi.org/10.1017/9781009317825.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009317825.002

