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Abstract. To any finite group G � SL2ðCÞ and each element t in the center of the group alge-
bra of G, we associate a category, CohðP2

G;t
;P

1
Þ: It is defined as a suitable quotient of the

category of graded modules over (a graded version of) the deformed preprojective algebra

introduced by Crawley-Boevey and Holland. The category CohðP2
G;t
;P

1
Þ should be thought

of as the category of coherent sheaves on a ‘noncommutative projective space’, P
2
G;t
; equipped

with a framing at P
1, the line at infinity. Our first result establishes an isomorphism between

the moduli space of torsion free objects of CohðP2
G;t
;P

1
Þ and the Nakajima quiver variety arising

from G via the McKay correspondence. We apply the above isomorphism to deduce a general-
ization of the Crawley-Boevey and Holland conjecture, saying that the moduli space of ‘rank 1’
projective modules over the deformed preprojective algebra is isomorphic to a particular qui-

ver variety. This reduces, for G ¼ f1g, to the recently obtained parametrisation of the iso-
morphism classes of right ideals in the first Weyl algebra, A1, by points of the Calogero–
Moser space, due to Cannings and Holland and Berest and Wilson. Our approach is algebraic

and is based on a monadic description of torsion free sheaves on P
2
G;t
. It is totally different

from the one used by Berest and Wilson, involving t-functions.

Mathematics Subject Classifications (2000). 14D20 (14A22, 16S38).
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1. Introduction

1.1. NONCOMMUTATIVE ALGEBRAIC GEOMETRY

A standard construction of algebraic geometry associates to any graded, finitely gen-

erated commutative C-algebra A ¼ �i50 Ai; with A0 ¼ C; a projective scheme,

ProjA. A well-known theorem essentially due to Serre says that the Abelian category

of coherent sheaves on ProjA is equivalent to qgrðAÞ :¼ grðAÞ= torðAÞ, the quotient

of the Abelian category of finitely generated graded A-modules by the Serre sub-

category of finite-dimensional modules. Now let A be a noncommutative graded alge-

bra, let grðAÞ stand for the category of finitely generated right A-modules, and put

qgrðAÞ :¼ grðAÞ= torðAÞ. According to the philosophy of noncommutative geometry,

see, e.g., [AZ], [SVB], and [Ve], one thinks of qgrðAÞ as the category of coherent

sheaves on a ‘noncommutative scheme’ ProjA.
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Throughout this paper we assume that A ¼ �n50An is a positively graded not

necessarily commutative Noetherian C-algebra such that all graded components,

An, are finite dimensional over C. A minor novelty of our approach to the ‘noncom-

mutative algebraic geometry’ is that we do not restrict to the case: A0 ¼ C, and allow

A0 to be any finite dimensional semisimple C-algebra, e.g., the group algebra of a

finite group.

Write mod-A for the category of all (not necessarily graded) finitely generated

right A-modules. We will use the following definition, cf. [AZ]:

DEFINITION 1.1.1. An algebra A ¼ �n50An is called strongly regular of dimension

d if A0 is a semisimple C-algebra and, in addition, we have:

(i) The algebra A has finite global dimension equal to d, that is d is the minimal

integer, such that

Ext>dmod-AðM;NÞ ¼ 0; for all M;N 2 mod-A:

(ii) The algebra A is Noetherian of polynomial growth, i.e., there exist integers:

m; n > 0 such that: dim
C
Ai4m 	 ðiþ 1Þ

n; for all i5 0;

(iii) Extimod-AðA0;AÞ ¼
A0ðl Þ; if i=d
0; else

�
, i.e., the algebra A is Gorenstein with para-

meters ðd; l Þ.

Remark. In [AZ], the authors only consider the algebras A such that A0 ¼ C, in

which case they used the notion of a regular algebra similar (but not identical) to

Definition 1.1.1. If A0 ¼ C, it has been effectively shown in [AZ] that any strongly

regular algebra in the sense of Definition 1.1.1 satisfies the following property.

x-condition: dim
C
Extimod-AðA0;MÞ <1; for all i5 0 and M 2 mod-A:

Here is a sketch of proof of this property in the general case of an arbitrary finite-

dimensional semisimple algebra A0. Observe that any finitely generated right A-mod-

uleM can be included in a short exact sequence 0!M0 ! P!M! 0, where P is

a free A-module of finite rank. HereM0 is automatically finitely generated due to the

Noetherian property. Thus, the w-condition can be proved by considering the long
exact sequence of Ext-groups and using the descending induction starting at

i ¼ gl:dimðAÞ; once we know the Gorenstein property. &

Given a strongly regular algebra A, we let p: grðAÞ !! qgrðAÞ be the projection

functor. The objects of qgrðAÞ will be referred to as ‘sheaves on ProjA’, and we will

often write cohðProjAÞ instead of qgrðAÞ.

For a graded A-module M and k 2 Z, write MðkÞ for the same module with the

grading being shifted by k. For each k 2 Z, we put OðkÞ :¼ pðAðkÞÞ; a sheaf on
ProjA. Similarly, for any sheaf E ¼ pðMÞ we write EðkÞ for the sheaf pðMðkÞÞ. Fur-
ther, for any sheaves E;F 2 qgrðAÞ, let ExtpðE;F Þ be the pth derived functor of the

Hom-functor: HomðE;F Þ ¼ HomqgrðAÞðE;F Þ.
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The crucial properties of the category cohðProjAÞ ¼ qgrðAÞ that follow from the

strong regularity of A are:

Ampleness, see [AZ]: The sequence fOðiÞgi2Z is ample, that is, for any E 2

cohðProjAÞ, there exists an epimorphism: Oð�nÞ�m !! E, and for any epi-

morphism: E !! F; the morphism: HomðOð�nÞ;E Þ ! HomðOð�nÞ;F Þ is sur-
jective for n� 0.

?

Serre duality, see [YZ]: There are integers d5 0 (dimension) and l (index of the cano-

nical class) such that one has functorial isomorphisms

ExtiðE;F Þ ffi Extd�iðF;Eð�lÞÞ_; 8E;F 2 cohðProjAÞ ð1:1:2Þ

where ð�Þ_ stands for the dual in the category of C-vector spaces.

Write gr
left
ðAÞ for the Abelian category of finitely generated graded left A-modules,

and p
left
: gr

left
ðAÞ ! qgr

left
ðAÞ :¼ gr

left
ðAÞ= tor

left
ðAÞ; for the projection to the quotient

by the Serre subcategory of finite dimensional modules. Observe that the left action

of the algebra A on itself by multiplication induces, for each i, natural morphisms:

Ak ! HomqgrðAÞðOðiÞ;Oðiþ kÞÞ. This gives, for any E 2 qgrðAÞ, a graded left A-

module structure on the graded space �k5 0HomðE;OðkÞÞ. Thus, HomðE;OÞ :¼
p

left
ð�k5 0 HomðE;OðkÞÞÞ is a well defined object of qgr

left
ðAÞ. This way we have

defined an internal Hom-functor Homð�;OÞ : qgrðAÞ ! qgr
left
ðAÞ. Note that it takes

right modules to left modules, and the other way around. The functor Homð�;OÞ
is left exact, and we write Extpð�;OÞ : qgrðAÞ ! qgr

left
ðAÞ for the corresponding

derived functors. One can check that

ExtpðE;OÞ ¼ p
�M
k5 0

ExtpðE;OðkÞÞ
�
; 8p5 0: ð1:1:3Þ

For a sheaf E 2 cohðProjAÞ, we define HpðProjA;EÞ :¼ ExtpðO;EÞ: One has a

functorial isomorphism: H 0ðProjA ; HomðE;OÞÞ ffi HomðE;OÞ; and also a functor-
ial spectral sequence:

E
p;q
2 ¼ H

p
�
ProjA ; ExtqðE;OÞ

�
¼) Ext�ðE;OÞ:

DEFINITION 1.1.4. (i) A sheaf E 2 qgrðAÞ is called locally free if ExtpðE;OÞ ¼ 0;
8p > 0:

(ii) A sheaf E 2 qgrðAÞ is called torsion free if it admits an embedding into a locally

free sheaf.

The sheaves OðiÞ are locally free. Moreover, HomðOðiÞ;Oð j ÞÞ ¼ Oð j� iÞ.

Remark. It is easy to see that in the case of a smooth commutative projective

variety X the definitions given above are equivalent to the standard ones. &

?For a graded algebra A generated by its degree one component, this is equivalent to condition (4.2.1) in
[AZ].
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1.2. NONCOMMUTATIVE P
2
G

In Section 3 we will study torsion-free sheaves on a particular two-dimensional non-

commutative scheme analogous to P
2. Specifically, let ðL;oÞ be a two-dimensional

symplectic vector space, and G � SpðLÞ a finite subgroup. We form the graded alge-

bra: TL½z� ¼ TL�
C

C½z� denote the polynomial algebra in a dummy variable z

(placed in degree 1) with coefficients in TL, the tensor algebra of the vector space L.

Let ðTL½z�Þ#G be the smash product of TL½z� with CG, the group algebra of G, acting
naturally on TL and trivially on z (thus, as a vector space, one has:

ðTL½z�Þ#G ’ ðTL½z�Þ �
C

CGÞ:
To any element t in ZðCGÞ, the center of CG, we associate following Crawley-

Boevey and Holland [CBH], a graded algebra At as follows.

DEFINITION 1.2.5. At ¼ ððTL½z�Þ#GÞ=hhu� v� v� u ¼ oðu; vÞ 	 t 	 z2iiu;v2L; where
hh. . .ii stands for the two-sided ideal generated by the indicated relation.

It is convenient to choose and fix a symplectic basis fx; yg in L, such that

oðx; yÞ ¼ 1, and to identify L with C
2 and SpðLÞ with SL2ðCÞ. Then TL gets identi-

fied with a free associative algebra on two generators. Writing Chx; y; zi for the free

associative algebra generated by x, y and z, we have

At ¼ ðChx; y; zi#GÞ=hh½x; z� ¼ ½ y; z� ¼ 0; ½ y; x� ¼ tz2ii

The algebra At has a natural grading defined by deg x ¼ deg y ¼ deg z ¼ 1 and

deg g ¼ 0; for any g 2 G. Thus At ¼ �n50A
t
n is a positively graded algebra, such that

At
0 ¼ CG. We will see in Appendix B that the algebra At is strongly regular in the

sense of Definition 1.1.1.

EXAMPLE 1.2.6. (i) If the group G ¼ f1g is trivial then t reduces to a complex
number. The corresponding algebra, At, is a noncommutative deformation of the

polynomial algebra C½x; y; z�.

(ii) If the group G is arbitrary and t ¼ 0 then the algebra At¼0 is C½x; y; z�#G; the
smash product of the polynomial algebra C½x; y; z� with the group G.

We? set P
2
G
¼ Proj ðAtÞ; and write cohðP2

G
Þ ¼ qgrðAtÞ; for the corresponding cate-

gory of ‘coherent sheaves’ on the noncommutative scheme P
2
G
: Further, let P

1
G
¼

ProjðC½x; y�#GÞ be a noncommutative variety corresponding to the graded algebra
C½x; y�#G. The projection At !! At=Atz ffi C½x; y�#G can be considered as a closed

embedding i: P
1
G
,!P

2
G
. Let i �: cohðP2

G
Þ ! cohðP1

G
Þ and i�: cohðP1

G
Þ ! cohðP2

G
Þ be

?Noncommutative projective planes have been considered earlier by various authors, see, e.g., [SVB];
the only new feature of our present version is that the degree zero component of the algebra At is the group

algebra of G rather than the field C.
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the corresponding pull-back and push-forward functors given in terms of modules by

the formulas

i �ðpðM ÞÞ ¼ pðM=MzÞ resp:; i�ðpðN ÞÞ ¼ pðN Þ; with z acting by zero:

In Section 4, we will give a description of torsion free sheaves on P
2
G in terms of

monads, similar to the well-known description of vector bundles on the commutative

P
2, cf. [OSS]. We will see that the linear algebra data given by a monad associated

with a sheaf on P
2
G
is nothing but a Nakajima quiver. This way one obtains a bijec-

tion between the moduli space of torsion free sheaves on P
2
G and the Nakajima quiver

variety, see Theorem 1.3.10 below. Specifically, we introduce

DEFINITION 1.2.7. Let Mt
G
ðV;W Þ be the set of isomorphism classes of coherent

torsion free sheaves E on P
2
G
equipped with an isomorphism i �E ffiW�

CG O (framing

at infinity) and such that H1ðP2
G
;Eð�1ÞÞ ffi V, as G-modules.

1.3. QUIVER VARIETIES

We keep the above setup, in particular, G is a finite subgroup of SL2ðCÞ and L is the
tautological 2-dimensional representation of G. Given a pair ðV;W Þ of finite dimen-
sional G-modules, and an element t 2 ZðCGÞ, consider the set of quiver data

Mt
G
ðV;W Þ � HomG

�
V;V

O
C

L

�
�HomG ðW;V Þ �HomGðV;W Þ; ð1:3:8Þ

a locally closed subvariety formed by all triples ðB; I; J Þ satisfying the following two

conditions:

Moment Map Equation: ½B;B� þ IJ ¼ tj
V
(here ½B;B� 2 EndGV �^

2L ’ EndG V)

Stability Condition: if V 0 � V is a G-submodule such that BðV 0Þ � V 0 � L and

IðW Þ � V 0 then V 0 ¼ V.

The group GGðV Þ, the centralizer of G in GLðV Þ, acts on Mt
G
ðV;W Þ by the formula

g: ðB; I; J Þ 7! ðgBg�1; gI; Jg�1Þ.ThisGGðV Þ-action is free, due to the stability condition.

DEFINITION 1.3.9. The quiver variety is defined as the geometric invariant theory

quotient: Mt
G
ðV;W Þ ¼Mt

G
ðV;W Þ=GGðV Þ.

Thus, the quiver variety above depends only on ½V �, the isomorphism class of the G-
module V, but abusing the notation we will write Mt

G
ðV;W Þ rather than

Mt
G
ð½V �;W Þ.

The relation of the above definition of quiver variety with the original definition of

Nakajima is provided by McKay correspondence. Recall that McKay correspon-

dence, cf. [Re], establishes a bijection between affine Dynkin graphs of ADE-type,

and finite subgroups G � SL2ðCÞ (up to conjugacy). Given such a subgroup G, the
corresponding affine Dynkin graph can be recovered as follows.

QUIVER VARIETIES AND A NONCOMMUTATIVE P
2 287

https://doi.org/10.1023/A:1020930501291 Published online by Cambridge University Press

https://doi.org/10.1023/A:1020930501291


Let Ri, i ¼ 0; . . . ; n; be the complete set of the isomorphism classes of complex

irreducible representations of G. For any i; j 2 f0; . . . ; ng; let aij be the multiplicity
of Rj in the G-module Ri �C L, where L is the tautological two-dimensional repre-

sentation. Since L is self-dual, we have aij ¼ aji. Following McKay, we attach to G
a graph Q ¼ QðGÞ by taking f0; . . . ; ng as the set of vertices of Q, and connecting
i and j by aij edges. The graph QðGÞ turns out to be an affine Dynkin graph of
ADE-type, with Cartan matrix CðQÞ ¼ 2 	 I� kaijk. The Nakajima’s quiver variety

corresponding to QðGÞ coincides with the variety Mt
G
ðV;W Þ defined above.

Remark. The case: G ¼ f1g is somewhat degenerate. In this case QðGÞ should stand
for the quiver with one vertex, and one (rather than two) loop.

Our first important result relates torsion free sheaves on P
2
G
with the Nakajima

quiver variety:

THEOREM 1.3.10. There exists a natural bijection Mt
G
ðV;W Þ�!

 Mt
G
ðV;W Þ.

Remark. It is natural to expect that the bijection of the theorem establishes,

in effect, an isomorphism of schemes. We are unaware, however, of any construction

of a scheme (or stack) structure on the setMt
G
ðV;W Þ, since the formalism of moduli

spaces of sheaves on noncommutative varieties is not yet developed.

The above theorem can be viewed in the following context. Let h :¼ Z0ðCGÞ �
ZðCGÞ be the codimension one hyperplane in ZðCGÞ formed by all central elements
which have trace zero in the regular representation CG. According to McKay corre-
spondence, h �, the dual space, carries a root system associated to the Dynkin graph

QðGÞ. Write W � GLðhÞ for the Weyl group of that root system. The Kleinian sin-
gularity, C

2=G; has a semiuniversal deformation, a family fX �tg of surfaces parame-

trized by the points �t 2 h=W; such that X t¼0 ¼ C
2=G. Making a finite base change

h !! h=W ; t 7! �t; one gets a family fX tgt2h. Now, letW ¼ triv be the trivial G-mod-
ule, and V ¼ CG, the regular representation. For each t 2 h put eX t ¼Mt

G
ðCG; trivÞ.

According to Kronheimer [Kr], the family f ~X tgt2h gives a simultanious resolution:eX t !! X t of the family fX tgt2h: In particular, eX0 !! C
2=G is the minimal resolution.

Kronheimer and Nakajima [KN] showed further that, for arbitrary V andW, and

t 2 h ¼ Z0ðCGÞ, the quiver variety Mt
G
ðV;W Þ is isomorphic to the moduli space of

anti-self-dual connections on ~X�t with a suitable decay condition at infinity. If

t ¼ 0, then there is an alternative, purely algebraic, interpretation of Mt
G
ðV;W Þ as

the moduli space of framed torsion-free sheaves (satisfying an appropriate stability

condition) on X̂ 0, a natural projective completion of ~X 0. Such an interpretation of

Mt
G
ðV;W Þ in terms of moduli spaces of framed torsion-free sheaves on X̂ t doesn’t

seem to be possible, however, for other t 2 h=f0g.
A way to circumvent this difficulty has been suggested by Kapranov and Vasserot,

who proved in [KV] that considering framed torsion-free sheaves on X̂ 0 is equivalent

288 V. BARANOVSKY ET AL.

https://doi.org/10.1023/A:1020930501291 Published online by Cambridge University Press

https://doi.org/10.1023/A:1020930501291


to considering G-equivariant framed sheaves on P
2. Furthermore, Varagnolo and

Vasserot proved in [VV] that G-equivariant framed torsion-free sheaves on P
2

(equivalently, framed torsion-free sheaves on the noncommutative Proj-scheme cor-

responding to the graded algebra A0 ¼ C½x; y; z�#G) are parametrized by the points
of M0

G
ðV;W Þ. Thus, our theorem above is a very natural extension of [VV] to the

case of an arbitrary t.
Notice further, that while the spaces ~X t are only defined for t 2 h ¼ Z0ðCGÞ, the

quiver varietiesMt
G
ðV;W Þ exist for all t 2 ZðCGÞ. This discrepancy has been resolved

by Crawley-Boevey and Holland, who constructed in [CBH] a family of associative

algebras At parametrized by all t 2 ZðCGÞ, and such that the algebra At is iso-

morphic to the coordinate ring of the variety X t, if t 2 h, and is noncommutative
otherwise. From this perspective, our theorem can also be viewed as describing

framed torsion-free sheaves on a projective completion of SpecAt, the noncommu-

tative affine scheme corresponding to the algebra At.

Next we introduce the algebra

B t
¼ At=ðz� 1Þ	At ’

�
Chx; yi#G

��
hh½ y; x� ¼ tii;

which can be thought of as the ‘coordinate ring’ of P
2
G
=P

1
G
, a noncommutative affine

plane.

The algebra Bt comes equipped with a natural increasing filtration, F�Bt, such that

F0Bt
¼ CG. It follows from [Q] that the assignment R 7!R�

CG Bt gives a natural

isomorphism: KðGÞ �!
 
KðBt
Þ; between the Grothendieck group of the category

of finite-dimensional G-modules and that of finitely generated projective Bt-modules.

Further, the map assigning the integer dim
C
R to a finite-dimensional G-module R

extends to a canonical group homomorphism dim : KðGÞ ! Z. Composing this with

the isomorphism KðBt
Þ ’ KðGÞ, one gets a function dimB : KðBt

Þ ! Z.

The second major result of this paper is a classification of isomorphism classes of

finitely generated projective Bt-modules N such that dimB N ¼ 1. In order to formu-

late it we need the following technical result whose proof is given in Section 8.

PROPOSITION 1.3.11. Let R 2 KðGÞ be such that dimR ¼ 1. Then there exist
uniquely determined ðup to isomorphismÞ G-modules W and V, such that in KðGÞ we
have R ¼ ½W� þ ½V � 	 ð½L� � 2½triv�Þ and, moreover, dim

C
W ¼ 1 and V does not contain

the regular representation, CG, as a submodule.

The Theorem below is a generalization of a conjecture of Crawley-Boevey and

Holland, see [BLB], Example 5.7. The conjecture corresponds, when reformulated

in terms of deformed preprojective algebras, see Section 6, to the special case of

the theorem R ¼ ½W � ; V ¼ 0:

THEOREM 1.3.12. Assume that t 2 ZðCGÞ is generic in the sense of ½CBH�, i.e., it does
not belong to root hyperplanes. Let R 2 KðGÞ be such that dimR ¼ 1, and V ; W the G-
modules attached to this class by Proposition 1:3:11Then there exists a natural bijection:
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Isomorphism classes of finitely generated projective
Bt-modules N such that ½N� ¼ R in KðBt

Þ ¼ KðGÞ

� 	
’
G1
k¼0

Mt
G
ðV�CG�k ; W Þ:

Recall that to define ‘root hyperplanes’ in ZðCGÞ, one has to identify the C-dual of

ZðCGÞ with the underlying vector space of the affine root system, Daff � ZðCGÞ �,
associated to the Dynkin graph QðGÞ; see also sections 5 and 6 of [CBH]. The vertices
of Q may be identified with the base of the space ZðCGÞ � formed by the irreducible
characters of G, and the root system Daff is given in this basis by the incidence matrix
kaijk of the graph Q.

To prove Theorem 1.3.12 we observe first that, for generic t 2 ZðCGÞ, any torsion-
free sheaf on P

2
G
is in effect locally free. We show further that ‘restriction’ from P

2
G
to

P
2
G
nP

1
G
, gives, for generic t 2 ZðCGÞ, a bijection between locally free sheaves on P

2
G

and P
2
G
nP

1
G
, respectively. The latter objects being nothing but finitely generated pro-

jective Bt-modules, the result follows from Theorem 1.3.10.

Let G ¼ f1g so that: R ¼ triv is the trivial one-dimensional class, and ZðCGÞ ¼ C.

The parameter t 2 C is generic in the above sense if and only if t 6¼ 0. The algebra Bt

becomes, for t 6¼ 0, the first Weyl algebra with two generators, x; y, subject to the
relation: ½ y; x� ¼ t 	 1. Further, the variety Mt

G
ðCG�k; trivÞ becomes in this case the

Calogero-Moser variety,Mt
ðC
k
Þ ¼Mt

G¼f1g
ðC
�k;CÞ, introduced in [KKS] and studied

further in [W]. Explicitly, we have

Mt
ðC
k
Þ ¼ fðB1;B2Þ 2 glnðCÞ#glnðCÞj½B1;B2�� t 	 Id

Cn
¼ rank 1matrixg=AdGLn:

Since any rank 1 projective module over the Weyl algebra Bt is isomorphic to a

right ideal in Bt, Theorem 1.3.12 reduces, in the special case of the trivial group

G, to the following result proved recently by Berest and Wilson [BW].

COROLLARY 1.3.13. The set of isomorphism classes of right ideals ðviewed as Bt-

modulesÞ in the Weyl algebra Bt is in a natural bijection with the set
F1
k¼0 Mt

ðC
k
Þ.

The proof of this result given in [BW] is totally different from ours, and relies

heavily on the earlier results of [W] and [CaH].

2. Sheaves on a Noncommutative Proj-Scheme

In this section we fix a strongly regular graded C-algebra A ¼ �k5 0Ak, set

X ¼ ProjA, and write cohðXÞ ¼ qgrðAÞ. Recall that the quotient category qgrðAÞ is

defined as follows. The objects of qgrðAÞ are the same as those of grðAÞ, while

HomqgrðAÞðM;NÞ ¼ lim
�!

HomgrðAÞðM
0;NÞ;

where the limit is taken over all submodules M0 �M, with M=M0 2 torðAÞ.

Recall the integer d entering Definition 1.1.1 of a strongly regular algebra and the

Serre duality property (1.1.2.).
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PROPOSITION 2.0.1. For any coherent sheaves E and F on X we have

Ext>dðE;F Þ ¼ 0; Ext>dðE;OÞ ¼ 0:

Proof. The first part follows from Serre duality and the second follows from the

first and from (1.1.3). &

PROPOSITION 2.0.2. Any coherent sheaf E on X admits a resolution of the form

	 	 	 ! Oð�nkÞ�mk �!
fk
	 	 	 �!

f1 Oð�n0Þ�m0 ! E! 0: ð2:0:3Þ

Proof. Follows immidiately from the ampleness property. &

Recall the notions of locally free and torsion free sheaves on X, see

Definition 1.1.4. We write E � instead of HomðE;OÞ, for brevity.

PROPOSITION 2.0.4. Let E, E1; . . . ; Ed be locally free sheaves on X.

ð1Þ For any complex: E1�!
f1
	 	 	 �!

fd�1 Ed; which is exact at the terms: E2, . . . , Ed�1; the
sheaf Kerf1 is locally free.

ð2Þ The sheaf E � is locally free.
ð3Þ The canonical morphism E! E�� is an isomorphism.
ð4Þ For any k, the sheaf E has a resolution of the form

0! E! Oðn0Þ�m0 ! 	 	 	 ! OðnkÞ�mk ! 	 	 	 ð2:0:5Þ

ð5Þ If d4 2, then for any sheaf E, the sheaf E � is locally free.?

Proof. (1) Let K ¼ Kerf1 and C ¼ Cokerfd�1. Applying the functor Homð�;OÞ
to the sequence 0! K! E1! 	 	 	 ! Ed! C! 0 we get a spectral sequence

converging to zero. The first term of the sequence looks as

Hence Ext>0ðK;OÞ ¼ 0.
(2) Choose a resolution (2.0.3) for E with k ¼ d and let F ¼ Kerfd. Then by (1)

the sheaf F is locally free. Applying the functor Homð�;OÞ to this resolution we
get a resolution

0! E� ! Oðn0Þ�m0 ! 	 	 	 ! OðndÞ�md ! F � ! 0

Hence E� is locally free by (1).
?We will usually denote arbitrary sheaves by roman letters, and locally free sheaves by script letters.
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(3) For E, choose a resolution of type (2.0.3) with k ¼ d, and apply to it the functor
HomðHomð�;OÞ;OÞ. Since the canonical morphism: OðnÞ ! OðnÞ�� is an isomorph-
ism it follows that E �! E�� is also an isomorphism.
(4) For E�, choose a resolution of type (2.0.3), and apply Homð�;OÞ.
(5) For E, choose a resolution of type (2.0.3) with k ¼ 1. Apply to it the functor

Homð�;OÞ, and use (1). &

PROPOSITION 2.0.6. If E is a torsion free sheaf then ExtdðE;OÞ ¼ 0.
Proof. Given E, choose an embedding E ,! E into a locally free sheaf. Applying

the functor Homð�;OÞ to the exact sequence 0! E! E! E=E! 0 we get an

epimorphism ExtdðE;OÞ !! ExtdðE;OÞ ! 0. &

LEMMA 2.0.7. For n� 0, there is a canonical isomorphism

H 0ðX; ðExtkðE;OÞÞðn� l ÞÞ ffi Hd�kðX;Eð�nÞÞ_; 8k5 0:

Proof. It is clear that

HpðX; ðExtkðE;OÞÞðn� lÞÞ ¼ HpðX; ExtqðEð�nÞ ; Oð�lÞÞÞ:

Further, there is a standard spectral sequence for the derived functor of composition

E
p;q
2 ¼ H

pðX; ExtqðEð�nÞ;Oð�lÞÞÞ ¼)Ext pþqðEð�nÞ;Oð�lÞÞ:

On the other hand, for n� 0 we have

H>0ðX; ðExtkðE;OÞÞðn� l ÞÞ ¼ 0;
hence the spectral sequence degenerates and

H 0ðX; ðExtkðE;OÞÞðn� l ÞÞ ¼ ExtkðEð�nÞ;Oð�lÞÞ:

Finally, Serre duality gives

ExtkðEð�nÞ;Oð�l ÞÞ ffiHd�kðX;Eð�nÞÞ_: &

DEFINITION 2.0.8. A sheaf F on X is called an Artin sheaf if H>0ðX;FðkÞÞ ¼ 0,

8k 2 Z.

Remark. In the situations studied in this paper, any Artin sheaf has finite length.

We don’t know if this is true in general, as well as whether a subsheaf of an Artin

sheaf is Artin.

PROPOSITION 2.0.9. Assume that d ¼ dimX4 2.

ð1Þ If F is an Artin sheaf and E is locally free then Ext>0ðE;F Þ ¼ 0.
ð2Þ For any sheaf E the sheaf ExtdðE;OÞ is Artin.
ð3Þ F is an Artin sheaf if and only if Ext<dðF;OÞ ¼ 0.
ð4Þ If F is an Artin sheaf then ExtdðF;OÞ ¼ 0 implies F ¼ 0.
ð5Þ Any extension of Artin sheaves is Artin.
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Proof. (1) First note that ExtpðOðkÞ;F Þ ¼ HpðX;Fð�kÞÞ ¼ 0, for p > 0. Now,

assume E is locally free and take a resolution of E of type (2.0.5) with k ¼ d.

Applying the functor Homð�;F Þ to this resolution we deduce that Ext>0ðE;F Þ ¼ 0.
(2) We have a spectral sequence

E
p;q
2 ¼ H

pðX; ExtqðE;OðkÞÞÞ ¼) Ext pþqðE;OðkÞÞ:

It is easy to see that any nonzero element in HpððX ; ExtdðE;OðkÞÞÞ with p > 0 gives a

nonzero contribution in ExtdþpðE;OðkÞÞ. But the latter space is zero for p > 0. Hence

HpððX; ExtdðE;OðkÞÞÞ ¼ HpððX; ExtdðE;OÞðkÞÞ ¼ 0, that is ExtdðE;OÞ is an Artin

sheaf.

(3) If F is an Artin sheaf then it follows from Lemma 2.0.7. and ampleness that

Ext<dðF;OÞ ¼ 0. Conversely, assume that Ext<dðF;OÞ ¼ 0. We have a spectral

sequence

E
p;q
2 ¼ ExtpðExt�qðF;OÞ;OÞ ¼)Ei1 ¼

F; if i ¼ 0;

0; otherwise:

(
Since Ext<dðF;OÞ ¼ 0; the spectral sequence degenerates at the second term and

yields an isomorphism: F ffi ExtdðExtdðF;OÞ;OÞ. Hence, F is an Artin sheaf by (2).
(4) It follows from the proof of (3) that for any Artin sheaf F we have a canonical

isomorphism:

F ffi ExtdðExtdðF;OÞ;OÞ:

Hence, ExtdðF;OÞ ¼ 0 implies F ¼ 0. (5) is clear. &

3. Torsion-Free Sheaves on P
2
G

In this section we set

At ¼ ðChx; y; zi#GÞ=hh½x; z� ¼ ½y; z� ¼ 0; ½ y; x� ¼ tz2ii;

see Definition 1.2.5. We write At ¼ �i5 0 Ai; and put P
2
G
¼ Proj ðAtÞ.

3.1. BEILINSON SPECTRAL SEQUENCE

The noncommutative projective plane P
2
G
shares a lot of properties with the commu-

tative projective plane. In particular, we have, see Appendix B for the definition of
�Aj:

HpðP2
G
;OðiÞÞ ¼

Ai; if p ¼ 0 and i5 0;
�A�i�3; if p ¼ 2 and i4 � 3;
0; otherwise:

(
ð3:1:1Þ

Our approach to the classification of torsion free sheaves on P
2
G
mimics the stan-

dard approach, see [OSS], [KKO], to the study of coherent sheaves on P
2 by means

of Beilinson’s spectral sequence, see Appendix B. The latter allows one to describe

coherent sheaves in terms of linear algebra data, sometimes called the ‘ADHM-

equations’.
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Beilinson’s spectral sequence for a general Koszul algebra, given in Appendix B,

simplifies considerably in the ‘two-dimensional’ case of P
2
G
. Specifically, let T denote

the coherent sheaf on P
2
G
defined by either of the following two exact sequences:

!A0 �CG O ,! !A1 �CG Oð1Þ !! T; T ,! !A2 �CG Oð2Þ !! !A3 �CG Oð3Þ;
ð3:1:2Þ

where !Ak stand for the graded components of the Koszul dual algebra, see Appendix

B. Then, for any sheaf E, there is a spectral sequence with the E
p;q
1 -term looking like

a 3-term complex:

E
p;q
1 ¼ ExtqðOð1Þ;EÞ�

CGOð�2Þ!ExtqðTð�1Þ;EÞ�
CGOð�1Þ!ExtqðO;EÞ�

CGO
� 

The above complex corresponds to the groups E
p;q
1 with p ¼ �2;�1; 0, all other

groups being zero. This spectral sequence converges to (see, e.g., [OSS] for details

in the commutative case):

E
p;q
1 ¼)E

pþq
1 ¼

E; for p+q=0,
0; otherwise.

n
Recall that Kð�Þ stands for the Grothendieck group of an Abelian category.

COROLLARY 3.1.3. We have KðcohðP2
G
ÞÞ ffi KðGÞ�3. In particular, KðcohðP2

G
ÞÞ is a

free Z-module with a basis given by classes of sheaves R�
CG OðkÞ, where R runs

through the set of isomorphism classes of irreducible G-modules and k 2 f�2;�1; 0g.

For any E 2 cohðP2
G
Þ we define the Hilbert function of E as

hEðtÞ ¼
X2
p¼0

ð�1Þp dimCH
pðP

2
G
;EðtÞÞ:

LEMMA 3.1.4. For any E 2 cohðP2
G
Þ, the function hEðtÞ is a polynomial in t ðof degree

4 2Þ of the form

hEðtÞ ¼ r
t2

2
þ 	 	 	 ; r ¼ 0; 1; 2; . . . :

Proof. It is clear that hEðtÞ depends only on the class of E in KðcohðP
2
G
ÞÞ. Hence,

by Corollary 3.1.3 it suffices to compute the Hilbert function only for the sheaves of

the form R�
CG OðpÞ ; p 2 Z, where R is a G-module. Further, from (3.1.1) one

deduces that for tþ k5 0 we have: H>0ðP
2
G
;R�

CG Oðtþ kÞÞ ¼ 0. Therefore, we find

hR�
CGOðkÞðtÞ ¼ dimC

H 0ðP
2
G
; R�

CG Oðtþ kÞÞ

¼ dim
C
ðR�

CG A
t
tþkÞ ¼ dimC

ðR�
CG ðCG�

C
Symtþkhx; y; ziÞÞ

¼ dim
C
ðR�

C
Symtþkhx; y; ziÞ ¼

ðtþ kþ 1Þðtþ kþ 2Þ

2
	 dim

C
R

A similar computation shows that this formula also holds for tþ k < 0.
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Thus we see that, for any E, the Hilbert function hEðtÞ is a quadratic polynomial of

the form hEðtÞ ¼ rðt
2=2Þ þ 	 	 	 ; with some r 2 Z. Now if r were negative then hEðtÞ

would have been negative for t� 0 which is nonsense, because by the ampleness

we have hEðtÞ ¼ dimC
H 0ðP

2
G
;EðtÞÞ5 0; for t� 0. Thus r is nonnegative and we

are done. &

DEFINITION 3.1.5. Define the rank rðEÞ of E 2 cohðP2
G
Þ to be the leading coeffi-

cient r of the Hilbert polinomial hEðtÞ, see Lemma 3.1.4.

COROLLARY 3.1.6. The rank, rð�Þ, is a well-defined linear function on KðcohðP2
G
ÞÞ.

Moreover, rðR�
CG OðiÞÞ ¼ dimC

R, for any G-module R and any i 2 Z.

3.2. SHEAVES ON P
1
G

Recall that in Section 1.2 we have defined the noncommutative projective line

as the Proj-scheme corresponding to the algebra C½x; y�#G. The following result is
clear:

PROPOSITION 3.2.7. The embedding of graded algebras C½x; y� � C½x; y�#G
induces an equivalence of categories cohðP1

G
Þ ! cohGðP

1
Þ, where cohGðP

1
Þ is the

category of G-equivariant coherent sheaves on the commutative P
1.

Note that the equivalence of Proposition 3.2.7 commutes with the functors Extp,

Extp; and Hp. It follows that a sheaf E on P
1
G
is locally free (resp. Artin) if and only

if it is locally free (resp. Artin) as a G-equivariant sheaf on P
1. For any sheaf

E 2 cohðP1
G
Þ; we denote by hEðtÞ, resp. rðEÞ, the Hilbert polynomial, resp. the rank,

of E, considered as a G-equivariant sheaf on P
1.

COROLLARY 3.2.8. ð1Þ For any coherent sheaf E on P
1
G
we have E ffi F� E, where F

is an Artin sheaf and E is a locally free sheaf.
ð2Þ Any locally free sheaf on P

1
G
has the form E ¼ �k ðRk �CG OðkÞÞ, for certain G-

modules Rk.

ð3Þ If E is a locally free sheaf on P
1
G
and rðEÞ ¼ 1, then E ffi R�

CG OðkÞ, where R is a
one-dimensional G-module.

3.3. THE FUNCTORS i� AND i�

Recall that in Section 1.2 we have defined the functors

i�: cohðP1
G
Þ ! cohðP2

G
Þ and i�: cohðP2

G
Þ ! cohðP1

G
Þ:

It is clear that i� is the right adjoint of the functor i
�. It follows from the definition

that i� is right exact. We denote by Lpi� the left derived functor.
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PROPOSITION 3.3.9.

ð1Þ The functor i� is exact and faithful.

ð2Þ For any coherent sheaf E on P
2
G there is a canonical exact sequence:

0 �! i�L
1i�E �! Eð�1Þ z	 �! E �! i�L

0i�E �! 0

ð3Þ For any E we have L>1i�E ¼ 0 and the functor L1i� is left exact.

ð4Þ If E is locally free, then L>0i�E ¼ 0.
ð5Þ If E is torsion free, then L>0i�E ¼ 0.

ð6Þ If E is a locally free sheaf on P
2
G, then i

�E is locally free.
ð7Þ If E is torsion free, then rði�EÞ ¼ rðEÞ.

ð8Þ For any sheaf E on P
2
G, the adjunction morphism E! i�i

�E is an epimorphism.

ð9Þ We have i�i�E ¼ E, L
1i�i�E ¼ Eð�1Þ; for any sheaf E on P

1
G.

ð10Þ If i�E ¼ 0, then E ffi Eð1Þ and E is an Artin sheaf.

Proof. (1) This claim becomes clear when translated into the module language.

(2) Since i� is exact it suffices to check that i�i
�E ffi E� i�OP

1
G
(which is clear from

the point of view of modules), and to apply the resolution

0! Oð�1Þ �!z O! i�OP
1

G
! 0:

(3) Follows from (2) and (1).

(4) It is clear that L>0i�OðnÞ ¼ 0. Choosing an embedding E ! OðnÞ�m like in

(2.0.5) and applying (3) we obtain the claim.

(5) Given a torsion free sheaf E, choose an embedding E ,! E; into a locally free
sheaf. Now, apply (3) and (4).

(6) Note that derived functor L	i� commutes with the derived functor Ext	ð�;OÞ.
Applying (4) to the locally free sheaf E we conclude that Ext>0ði�E;O

P
1
G
Þ ¼ 0. Hence

i�E is locally free.
(7) Since L>0i�E ¼ 0 by (5) it follows that hi�EðtÞ ¼ hEðtÞ � hEðt� 1Þ ¼ rðEÞtþ 	 	 	.

The claim follows.

(8) Follows from (2).

(9) Note that by (2) we have

i�i
�i�E ¼ Cokerði�Eð�1Þ !

z
i�EÞ and i�L

1i�i�E ¼ Kerði�Eð�1Þ !
z
i�EÞ:

On the other hand, z vanishes on P
1
G, hence the morphism i�Eð�1Þ !

z
i�E vanishes.

Thus i�i
�i�E ¼ i�E and i�L

1i�i�E ¼ i�Eð�1Þ. Hence, by (1) we have i�i�E ¼ E,

L1i�i�E ¼ Eð�1Þ.

(10) The equation i�E ¼ 0 implies by (2) that the multiplication by z homomorph-

ism: E �!
z	
Eð1Þ is surjective. LetM be the graded A-module corresponding to E. It

follows that, for k� 0, the z-multiplication Mk �!
z	
Mkþ1 is a surjection, by the

ampleness. SinceM is finitely generated it follows thatMk ffiMkþ1 for k� 0. Hence

E ffi Eð1Þ. But this implies that for any k we have H>0ðP
2
G
;EðkÞÞ ¼ 0. Thus, E is an

Artin sheaf. &
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DEFINITION 3.3.10. A sheaf E on P
2
G is said to be supported on P

1
G if it admits an

increasing finite filtration: 0 ¼ E0 � E1 � 	 	 	 � En ¼ E ; Ei 2 cohðP2
GÞ; such that

Ek=Ek�1 ¼ i�Fk, for some Fk 2 cohðP1
GÞ.

PROPOSITION 3.3.11. ð1Þ If E is supported on P
1
G, then rðEÞ ¼ 0.

ð2Þ Assume that E is supported on P
1
G. Let E

0 ¼ E and, for k > 0, define Ek induc-

tively by Ekþ1 :¼ KerðEk ! i�i
�EkÞ, then En ¼ 0, for n� 0.

ð3Þ If E is supported on P
1
G and i

�E is Artin, then E is Artin.

Proof. (1) It is clear that rðEÞ ¼
P
rðEk=Ek�1Þ ¼

P
rði�FkÞ. On the other hand, we

have

hi�FðtÞ ¼ hFðtÞ ¼ rðF Þ=tþ const;

for any sheaf F on P
1
G. Hence rði�F Þ ¼ 0.

(2) It suffices to prove the following claim: Assume that we have an exact sequence

0! E 0 ! E! i�F! 0:

Then KerðE! i�i
�EÞ is a subsheaf in E0. Indeed, if the claim is true then it is easy to

prove by induction that Ek � En�k, where E� is a filtration from the definition of a

sheaf supported on P
1
G. Hence En � E0 ¼ 0, and (2) follows.

We now prove the claim. Since the canonical map: i�F! i�i
�i�F is an isomorph-

ism by 3.3.9 (9) it follows that the projection E !! i�F factors through the morphism

E! i�i
�E. Thus, the claim follows from the inclusion:

KerðE! i�i
�EÞ � KerðE! i�F Þ ¼ E

0:

(3) Assume that E is supported on P
1
G and that i

�E is an Artin sheaf. We define

inductively the sequence of sheaves E 0 ¼ E, Ekþ1 ¼ KerðEk ! i�i
�EkÞ;

k ¼ 0; 1; 2; . . . ; as in (2). According to part (2), there exists n > 0 such that

En ¼ 0. We prove by descending induction on k, starting at k ¼ n, that Ek is an Artin

sheaf. Applying the functor i� to the exact sequence

0 �! Ekþ1 �! Ek �! i�i
�Ek �! 0

we get an exact sequence:

L1i�i�i
�Ek �! i�Ekþ1 �! i�Ek �! i�i�i

�Ek �! 0:

Here, the morphism i�Ek ! i�i�i
�Ek is an isomorphism by 3.3.9 (9). It follows that

i�Ekþ1 is a quotient of the Artin sheaf L1i�i�i
�Ek ’ Ekð�1Þ; see 3.3.9 (10). Since a

quotient of an Artin sheaf on the commutative P
1 is obviously Artin again, it follows

that i�Ekþ1 is an Artin sheaf. The induction hypothesis implies that Ekþ1 is an Artin

sheaf. Hence E, being an extension of Artin sheaves, is also Artin by 2.0.9 (5). &

DEFINITION 3.3.12. A sheaf E on P
2
G is called z-torsion free if either of the fol-

lowing equivalent conditions hold (equivalence is proved in 3:3:9ð2Þ)

(1) the map z : E! Eð1Þ is a monomorphism;

(2) L1i�E ¼ 0.
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LEMMA 3.3.13.

ð1Þ If E is torsion free then E is z-torsion free.

ð2Þ For any coherent sheaf E on P
2
G there exists a unique subsheaf F � E supported on

P
1
G such that E=F is z-torsion free.

Proof. (1) Follows from 3.3.9 (5).

(2) First we will check the existence. Consider the sequence Fk ¼ KerðE!
zk

EðkÞÞ;

k ¼ 0; 1; 2; . . . ; of subseaves in E. Since the algebra At is noetherian the sequence Fk
stabilizes. Thus we have Fnþk ¼ Fn for some n and for all k5 0. The sheaf F ¼ Fn is

clearly supported on P
1
G. We claim that E=F is z-torsion free. To see this, note that

the equality: Fn ¼ Fnþ1 means that the composition of the embedding E=F ,!EðnÞ

with the morphism: EðnÞ �!
z�
Eðnþ 1Þ is an embedding. But this composition can

be factored through the morphism: E=F �!
z�
ðE=F Þð1Þ. Thus, E=F is z-torsion free.

It remains to prove the uniqueness. Assume that F 0 is a subsheaf of E supported

on P
1
G and such that E=F

0 is z-torsion free. Then for any k 2 Z we have an exact

sequence

KerðF 0 �!
znþk

F 0ðnþ kÞÞ ,! KerðE �!
znþk

Eðnþ kÞÞ ! KerðE=F 0 �!
znþk

ðE=F 0Þðnþ kÞÞ

It is clear that for k� 0 the first term in the above sequence coincides with F 0,

thesecond term coincides with Fnþk ¼ F and the third term vanishes. Thus

F 0 ¼ F. &

3.4. PROPERTIES OF cohðP2
G
Þ FOR GENERIC t

The definition of ‘generic’ parameters t, due to [CBH], has been sketched in the
Introduction. The only property that will be used below is that, for generic t, the
algebra Bt has no nontrivial finite-dimensional modules. In the context of deformed

preprojective algebras, an equivalent propery has been proved in [CBH, §7].

PROPOSITION 3.4.14. Suppose that t is generic. Then,

ð1Þ if i�E ¼ 0, then E ¼ 0.

ð2Þ If f 2 HomðE;F Þ and i�f is an epimorphism, then f is an epimorphism.
ð3Þ If f 2 HomðE;F Þ and both i�f and L1i�f are isomorphisms then so is f.
ð4Þ Iff 2 HomðE;F Þ, i�f is amonomorphismandL1i�F ¼ 0 thenf is amonomorphism.
ð5Þ A sheaf E is locally free if and only if L>0i�E ¼ 0 and i�E is locally free.

ð6Þ If E 2 cohðP2
G
Þ is torsion free, and the sheaf i�E is locally free, then E is locally free.

Proof. (1) The statement translated into the language of At-modules reads: If M

is a finitely generated graded At-module such that dim
C
ðM=zMÞ <1, then

dim
C
ðMÞ <1. To prove this, note first that, for any i5 0, the space Mi is finite-

dimensional, sinceM is finitely generated. Now, assumeM=zM is finite-dimensional.
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Hence, the multiplication map z :Mi !Miþ1 is surjective, for i� 0. It follows that,

for i� 0, the sequence: dimMi5 dimMiþ15 	 	 	 ; stabilizes, hence the map

z: Mi !Miþ1 is an isomorphism. But for such an i, the endomorphisms

z�1x; z�1y: Mi !Mi provide Mi with the structure of a finite-dimensional Bt-

module. For generic t, the algebra Bt has no finite-dimensional representations

(because it is Morita equivalent to the deformed preprojective algebra, and the latter

has no finite-dimensional representations by Theorem 7.7 of [CBH]). Therefore

Mi ¼ 0 for i� 0, hence M is finite dimensional.

(2) Assume that f 2 HomðE;F Þ is such that i�f is an epimorphism. Since i� is

right exact it follows that i� Cokerf ¼ 0, hence Cokerf ¼ 0 by ð1Þ.
(3) It follows from ð2Þ that f is an epimorphism. Hence, we have an exact sequence

L1i�E !
L1i�f

L1i�F�! i�
�
Kerf

�
�! i�E �!

i�f
i�F�! 0:

It follows that i� Kerf ¼ 0, hence Kerf ¼ 0 by (1), that is f is a monomorphism.

Thus f is an isomorphism.

(4) If L1i�F ¼ 0 then i� Kerf ¼ Ker i�f ¼ 0, hence Kerf ¼ 0 by ð1Þ.
(5) If E is locally free then by 3.3.9(4) and 3.3.9(6) we have L>0i�E ¼ 0 and i�E is

locally free. Conversely, assume that L>0i�E ¼ 0. Then we have a spectral sequence

E
p;q
2 ¼ L

�qi�ExtpðE;OÞ ¼) Extkði�E;O
P
1
G
Þ:

It follows from 3.3.9(3) that the spectral sequence degenerates in the second term.

Hence, if i�E is locally free, we get

E1;02 ¼ i
�Ext1ðE;OÞ ¼ 0 and E2;02 ¼ i

�Ext2ðE;OÞ ¼ 0

Thus, E is locally free by (1).

(6) Follows from (5) and 3.3.9(5) &

4. Interpretation of Quiver Varieties

4.1. FROM QUIVER DATA TO A SHEAF

Let L� be the dual of the tautological two-dimensional G-module. We fix V and W,
finite dimensional G-modules, and a triple

ðB; I; J Þ 2 HomGðV;VC
� L�Þ�HomGðW;V Þ �HomGðV;W Þ:

Let fex; eyg be the basis of L
� dual to the basis fx; yg of L. Then we can consider

exxþ eyy 2 L
� �

CG L as an element of

L� �
CG ðL� trivÞ ¼ L� �

CG A1 ¼ H
0ðP

2
G
;L� �

CG Oð1ÞÞ ¼ HomðOð�1Þ ; L� �CG OÞ;
where triv stands for the trivial one-dimensional G-module. Dually, viewing
exxþ eyy as an element of L�CG L

�, we get a natural element in

ðL� trivÞ �
CG L

� ¼ A1 �CG L
� ¼ HomðL�

CG O;Oð1ÞÞ:
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Thus, we can define canonical sheaf morphisms a ¼ a
B;I;J

and b ¼ b
B;I;J
, by:

a ¼
B 	 z� IdV � ðex 	 xþ ey 	 yÞ

J 	 z

� �
: V�

CG Oð�1Þ �! ððV�C
LÞ �W Þ �

CG O

ð4:1:1Þ

b ¼ ðB 	 z� IdV � ðex 	 xþ ey 	 yÞ; I 	 zÞ: ððV�C
LÞ �W Þ �

CG O �! V�CG Oð1Þ:

From now on we use the canonical G-module isomorphism L� ’ L, to identify L�

withL. Thus, themaps (4.1.1) give the followingmorphisms of coherent sheaves onP
2
G
:

V�
CG Oð�1Þ !

a
B;I;J ððV�

C
LÞ �W Þ �

CG O !
b
B;I;J V�

CG Oð1Þ: ð4:1:2Þ

DEFINITION 4.1.3. A monad is a three-term complex, C, concentrated in degrees
�1; 0; 1; with the single nonzero cohomology group, H 0ðCÞ, referred to as the

cohomology of the monad.

PROPOSITION 4.1.4. If a
B;I;J and bB;I;J are given by ð4:1:1:Þ with ðB; I; J Þ 2

Mt
G
ðV;W Þ; cf. ð1:3:8:Þ, then ð4:1:2Þ is a monad and its middle cohomology sheaf E

admits a canonical framing i�E ffiW�
CG O and, moreover, H1ðP2

G
;Eð�1ÞÞ ffi V.

The proof will take the rest of this subsection. It will be divided into a sequence of

lemmas. We begin with an obvious

LEMMA 4.1.5. The restriction of ð4:1:2Þ to P
1
G
is a complex which is canonically

quasi-isomorphic to W�
CG O.

LEMMA 4.1.6. The triple ðB; I; J Þ satisfies the moment map equation if and only if

b
B;I;J

$a
B;I;J
¼ 0:

Proof. Straightforward computation shows that b
B;I;J

$a
B;I;J
¼ ð½B;B�þ

IJ� tÞ 	 z2. &

From now on assume that ðB; I; J Þ satisfies the moment map equation. Then

(4.1.2) is a complex by Lemma 4.1.6. We choose the cohomological grading of this

complex so that its middle term has degree zero. Let Hp, p ¼ �1; 0; 1; denote the
cohomology sheaves of this complex.

LEMMA 4.1.7. We have i�H�1 ¼ i�H1 ¼ 0 and i�H0 is a subsheaf in W�
CG O. In

particular, H�1 and H1 are Artin sheaves. If W ¼ 0 then H0 is Artin as well.

Proof. It follows from Lemma 4.1.5 that we have a spectral sequence with the

second term

E2p;q ¼ L
�qi�Hp¼)E1i ¼

W
N

CG
O; if i=0,

0; otherwise.

n
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On the other hand, 3.3.9 (3) implies that E2p;q ¼ 0, for q 6¼ 0; 1, hence this spectral

sequence degenerates at the second term. Hence i�H�1 ¼ i�H1 ¼ 0 and i�H0 is a sub-

sheaf inW�
CG O. But then 3.3.9 (10) implies thatH�1 andH1 are Artin sheaves, and

H0 is also Artin whenever W ¼ 0. &

LEMMA 4.1.8. The map a
B;I;J is injective.

Proof. We note that the sheaf H�1 ¼ Ker a is simultaneously an Artin sheaf by

4.1.7 and locally free by 2.0.4 (1). Hence it vanishes by 2.0.9 (4). &

LEMMA 4.1.9. If ðB; I; J Þ is stable then b
B;I;J
is surjective.

Proof. The sheaf H1 ¼ Coker b is Artin by 4.1.7. Let f : V�
CG Oð1Þ !! H1 be the

canonical projection and let

V 0 ¼ Ker½fð�1Þ : H 0ðP
2
G
; V�

CG OÞ ! H 0ðP
2
G
;H1ð�1ÞÞ�:

Note that z-multiplication gives an isomorphism H1ð�1Þ �!
 H1 (see 4.1.7 and

3.3.9 (10)). Hence the condition f 	 b ¼ 0 implies: IðW Þ � V 0 and BðV 0Þ � V 0 � L.
Stability of ðB; I; J Þ then yields: V 0 ¼ V. Since f is surjective and H1 is Artin it fol-

lows that H1 ¼ 0, that is, b is surjective. &

LEMMA 4.1.10. The sheaf H0 is torsion free.

Proof. Let C denote the complex (4.1.2) and let C� denote the dual complex (in the
category qgr

left
ðAtÞ of sheaves of left modules). We have a spectral sequence:

E2p;q ¼ Extq
�
H�pðCÞ ; O

�
¼)E1i ¼ HiðC�Þ:

Since H�1 ¼ 0 by 4.1.8, it follows that the spectral sequence degenerates at the third
term. Moreover, Ext2ðH0ðCÞ;OÞ ¼ 0; and Ext1ðH0ðCÞ;OÞ is a quotient of the sheaf
H1ðC�Þ. On the other hand, the complex C� is the complex, corresponding to the dual
quiver data ðB�; J�; I�Þ (in the category of sheaves of left modules), hence by 4.1.7 we

have: i�H1ðC�Þ ¼ 0. Since i� is right exact it follows that i�Ext1ðH0ðCÞ;OÞ ¼ 0. There-
fore, Ext1ðH0ðCÞ;OÞ is Artin by 3.3.9 (10).
Now consider the spectral sequence

E2p;q ¼ ExtqðExt�pðH0ðCÞ;OÞ;OÞ ¼)E1i ¼ H0ðCÞ; if i=0,
0; otherwise.

�
We have already proved that Ext2ðH0ðCÞ;OÞ ¼ 0; and that Ext1ðH0ðCÞ;OÞ is Artin.
It follows that the spectral sequence degenerates at the third term giving rise to a

short exact sequence (see 2.0.9 (3)):

0! H0ðCÞ ! ðH0ðCÞÞ�� ! Ext2ðExt1ðH0ðCÞ;OÞ;OÞ ! 0:

The middle sheaf here is locally free by 2.0.4 (5), hence H0ðCÞ is torsion free by defi-
nition. &

Proof of Proposition 4:1:4. If ðB; I; J Þ 2Mt
G
ðV;W Þ then (4.1.2) is a complex by

4.1.6, which is left exact by 4.1.8 and right exact by 4.1.9. Hence, it is a monad.
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Moreover, its middle cohomology sheaf E is torsion free by 4.1.10 and admits a

canonical framing by 4.1.5. Finally, it is easy to see that H1ðP2
G
;Eð�1ÞÞ ffi V. &

Associating to any quiver data ðB; I; J Þ 2Mt
G
ðV;W Þ, the middle cohomology

sheaf of the corresponding monad (4.1.2) we obtain a map Mt
G
ðV;W Þ !

Mt
G
ðV;W Þ. It is clear that this map is GGðV Þ-equivariant. Indeed, any element

g 2 GGðV Þ gives an isomorphism between the complex corresponding to a quiver

data ðB; I; J Þ and the complex corresponding to the quiver data ðgBg�1; gI; Jg�1Þ.

It follows that the corresponding middle cohomology sheaves are isomorphic. Thus

we obtain a well-defined map:

Mt
G
ðV;W Þ �!Mt

G
ðV;W Þ; ð4:1:11Þ

We will show that this map provides the bijection claimed in Theorem 1.3.10.

4.2. FROM A FRAMED SHEAF TO QUIVER DATA

We are going to study framed torsion free sheaves on P
2
G
using the Beilinson spectral

sequence. We will need the following lemma, cf. [KKO].

LEMMA 4.2.12. Let E be a framed torsion free sheaf on P
2
G
. We have

ð1Þ H 0ðP
2
G
; Eð�1ÞÞ ¼ H 0ðP

2
G
;Eð�2ÞÞ ¼ 0;

ð2Þ H2ðP2
G
; Eð�1ÞÞ ¼ H2ðP2

G
; Eð�2ÞÞ ¼ 0;

ð3Þ HomðTð�1Þ ; Eð�1ÞÞ ¼ Ext2ðTð�1Þ ; Eð�1ÞÞ ¼ 0;

ð4Þ H1ðP2
G
; Eð�1ÞÞ ’ H1ðP2

G
; Eð�2ÞÞ.

Proof. (1) We have L0i�E ¼W�
CG O, and L1i�E ¼ 0, by Proposition 3.3.9(5).

Thus, the exact sequence of Proposition 3.3.9(2) reads

0 �! Eðk� 1Þ �! EðkÞ �! i�L
0i�EðkÞ ¼ i�ðW�CG OðkÞÞ �! 0: ð4:2:13Þ

Since H 0ðP
2
G
; i�ðW�CG OðkÞÞÞ ¼ H 0ðP

1
G
;W�

CG OðkÞÞ ¼ 0; for all k < 0, we get

H 0ðP
2
G
;Eð�1ÞÞ ¼ H 0ðP

2
G
;Eð�2ÞÞ ¼ 	 	 	 ¼ H 0ðP

2
G
;Eð�kÞÞ; 8k > 0 :

Since E is torsion free it can be embedded into a sheaf OðnÞ�m, by 2.0.4 (4)). Hence

H 0ðP
2
G
;Eð�kÞÞ � H 0ðP

2
G
;Oðn� kÞ�mÞ ¼ 0; 8k > n :

It follows that H 0ðP
2
G
; Eð�1ÞÞ ¼ H 0ðP

2
G
; Eð�2ÞÞ ¼ 0.

(2) Similarly, since

H1ðP2
G
; i�ðW�CG OðkÞÞÞ ¼ H1ðP1

G
; W�

CG OðkÞÞ ¼ 0; for all k5 � 1;

we get

H2ðP2
G
;Eð�2ÞÞ ¼ H2ðP2

G
; Eð�1ÞÞ ¼ 	 	 	 ¼ H2ðP2

G
;EðkÞÞ; k > 0:

But the ampleness implies that, for k sufficiently large, one has H2ðP2
G
;EðkÞÞ ¼ 0.

Thus, H2ðP2
G
;Eð�2ÞÞ ¼ H2ðP2

G
;Eð�1ÞÞ ¼ 0.
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(3) The first of the sequences (3.1.2) and part (1) imply HomðTð�1Þ;Eð�1ÞÞ ¼ 0.

Similarly, the second of the sequences (3.1.2) and part (2) imply Ext2ðTð�1Þ;

Eð�1ÞÞ ¼ 0.

(4) Follows from (4.2.13) for k ¼ �1. &

COROLLARY 4.2.14. Any framed torsion free sheaf E can be represented as the

middle cohomology sheaf of a monad of the form

0! ~V�
CG Oð�1Þ ! ~V0 �

CG O! ~V�
CG Oð�1Þ ! 0;

where ~V ¼ H1ðP2
G
; Eð�1ÞÞ and ~V0 ¼ Ext1ðT;EÞ.

Proof. Follows from Beilinson’s spectral sequence, see Section 3.1, applied to

Eð�1Þ, and the vanishing results of Lemma 4.2.12. &

Now, fix E 2Mt
G
ðV;W Þ; and put ~V ¼ H1ðP2

G
;Eð�1ÞÞ and ~V0 ¼ Ext1ðT;EÞ, and fix

a monad as in Lemma 4.2.14. Choose a triple ðB; I; J Þ 2Mt
G
ðV;W Þ, and consider the

corresponding monad (4.1.2)

LEMMA 4.2.15. Any vector space isomorphism j : ~V �!
 
V can be uniquely

extended to an isomorphism of monads:

monad 4:2:14 : ~V�
CG Oð�1Þ ,! ~V0 �

CG O !! ~V�
CG Oð�1Þ

#j # #

monad 4:1:2 : V�
CG Oð�1Þ ,!

a
B;I;J �

ðV�
C
LÞ�W

�
�

CG O !!
b
B;I;J

V�
CG Oð1Þ ;

which is compatible with framings.

Proof. A repetition of the proof in [KKO], Theorem 6.7. &

LEMMA 4.2.16. If the monad in Corollary 4:2:14 is isomorphic to a complex ð4:1:2Þ

for some ðB; I; J Þ, then the data ðB; I; J Þ satisfy both the Moment Map Equation and

the Stability Condition.

Proof. The first part follows immediately from 4.1.6. Thus we have to check the

stability. Assume that the triple ðB; I; J Þ is not stable and let V 0 � V be a G-
submodule such that V 0 6¼ V, IðW Þ � V 0, and BðV 0Þ � V 0 � L. Let V 00 ¼ V=V 0 and

let CðV;W Þ, CðV 0;W Þ and CðV 00; 0Þ be the complexes of the form (4.1.2) given by the

triples, induced by ðB; I; J Þ. Then we have an exact sequence of complexes

0! CðV 0;W Þ ! CðV;W Þ ! CðV 00; 0Þ ! 0;

which gives rise to a long exact sequence of cohomology sheaves

	 	 	!H0CðV 00;0Þ!H1CðV 0;WÞ!H1CðV;WÞ!H1CðV 00;0Þ! 0 : ð4:2:17Þ

Note that H�1CðV 00; 0Þ ¼ 0 by 4.1.8. The cohomology H0CðV 00; 0Þ is both an Artin
sheaf by 4.1.7, and a torsion free sheaf, by 4.1.10. It follows that H0CðV 00; 0Þ ¼ 0,
by 2.0.6 and 2.0.9(4). Assume H1CðV 00; 0Þ ¼ 0. Then the complex CðV 00; 0Þð�1Þ is
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quasi-isomorphic to zero, hence the hypercohomology spectral sequence with E
p;q
2 -

term: E
p;q
2 ¼ H

pðP
2
G
; HqCðV 00; 0Þð�1ÞÞ would converge to zero. This sequence, how-

ever, clearly converges to the vector space V 00. Therefore, H1CðV 00; 0Þ 6¼ 0. But then
the long exact sequence (4.2.17) would force: H1CðV;W Þ 6¼ 0; which is a contradic-
tion, because CðV;W Þ is a monad. The contradiction implies that V 00 ¼ 0. &

PROPOSITION 4.2.18. The map: Mt
G
ðV;W Þ !Mt

G
ðV;W Þ defined in ð4:1:11:Þ is a

bijection.

Proof. Surjectivity of the map follows from 4.2.14, 4.2.15 and 4.2.16. To check

injectivity, note that it follows from 4.2.15 that the quiver data ðB; I; J Þ are uniquely

determined by a torsion free framed sheaf E up to isomorphism H1ðP2
G
;Eð�1ÞÞ ffi V,

that is up to the action of the group GGðV Þ. &

Proposition 4.2.18 completes the proof of Theorem 1.3.10.

We finish this section with a few remarks.

DEFINITION 4.2.19. A triple ðB; I; J Þ is costable if for any G-submodule V 0 � V
such that JðV 0Þ ¼ 0 and BðV 0Þ � V 0 � L we have V 0 ¼ 0.

Note that a triple ðB; I; J Þ is costable if and only if the dual triple ðB�; J�; I�Þ is stable.

PROPOSITION 4.2.20 ([VV]). The framed sheaf corresponding to a ðstableÞ quiver

data ðB; I; J Þ 2Mt
G
ðV;W Þ is locally free if and only if the triple ðB; I; J Þ is costable.

Proof. Repeating the arguments in the proof of 4.1.10 we see that for the middle

cohomology sheaf H0 of the complex (4.1.2) we have Ext2ðH0;OÞ ¼ 0, while
Ext1ðH0;OÞ ¼ 0 if and only if the complex corresponding to the dual triple is exact at
the right term. But 4.1.9 and 4.2.16 imply that this holds if and only if the dual triple

is stable. &

Remark. In general, locally-free framed sheaves form an open dense subset in

Mt
G
ðV;W Þ since the costability condition is open. However, for a generic value of

the parameter t every stable quiver data is automatically costable, i.e. all torsion free
framed sheaves are automatically locally free, cf. 3.4.14(6).

5. Proof of the Crawley-Boevey and Holland Conjecture

Throughout this section we assume t to be generic, though some results remain true
for an arbitrary t.
Recall that we have defined in the Introduction the algebra Bt

¼ At=ðz� 1Þ 	 At;

where z is the degree one central variable in the algebra At. Explicitly, we have

Bt
¼ Chx; yi#G=hh½y; x� � tii: The standard grading on the algebra At induces a

canonical increasing filtration: CG ¼ Bt
0 � Bt

1 � Bt
2 � 	 	 	 ; on Bt such that grðBt

Þ,

the associated graded algebra, has finite homological dimension. Thus, it follows
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from a general result due to Quillen [Q], that the assignment R 7!R�
CG Bt induces

an isomorphism: KðGÞ �!
 
KðBt
Þ of the corresponding Grothendieck groups of pro-

jective modules. Let ½N� denote the class of a Bt-module N in KðBt
Þ ffi KðGÞ.

Recall that by Proposition 1.3.11, to any one-dimensional class R 2 KðGÞ, one can
canonically attach (isomorphism classes of) G-modules W and V, such that in KðGÞ
we have: R ¼ ½W� þ ½V � 	 ð½L� � 2½triv�Þ and, moreover, dimW ¼ 1 and V does not

contain the regular representation as a submodule. The goal of this section is to

prove the following

THEOREM 5.0.1. Given a class R 2 KðGÞ such that dimR ¼ 1, let V;W be G-
modules attached to R in Proposition 1:3:11. Then, there exists a natural bijection:

Isomorphism classes of finitely generated projective

Bt-modules N such that ½N� ¼ R in KðBt
Þ ¼ KðGÞ

� 	
’
G1
k¼0

Mt
G
ðV�CG�k;W Þ:

This theorem together with Theorem 1.3.10 yields Theorem 1.3.12.

5.1. FROM SHEAVES ON P
2
G
TO PROJECTIVE Bt-MODULES

Let modðBt
Þ denote the category of finitely generated (right) Bt-modules. There is a

natural ‘open restriction’ functor j �: grðAtÞ ! modðBt
Þ;M 7!M=ðz� 1Þ 	M:

It will be convenient to use an equivalent definition of the algebra Bt that will

make the open restriction functor j � manifestly exact. Namely, let At½z�1� denote

the localization of the algebra At ¼ �k A
t
k with respect to z, and A

t½z�1�0; the degree

zero component of the localized algebra. We have:

Bt
’ At½z�1�0 ¼ lim

�!
At
k ;

where the direct limit is taken with respect to the embeddings At
k �!

z�
At
kþ1; induced

by multiplication by z. Using this formula one can rewrite the functor j � in the form:

j �: M ¼ �k Mk 7! j
�M ¼ lim

�!
Mk;

where the limit is taken with respect to the embeddings Mk �!
z�
Mkþ1; induced by

the z-action.

LEMMA 5.1.2.

ð1Þ The functor j � factors through the category qgrðAtÞ ¼ cohðP2
GÞ.

ð2Þ The functor j � is exact.

ð3Þ The functor j �: cohðP2
GÞ ! modðBt

Þ commutes with the dualization, i.e. for any

coherent sheaf E on P
2
G we have j

�ðE�Þ ¼ HommodðBtÞð j
�E;Bt

Þ.

ð4Þ For any G-module R we have: j �ðR�
CG OðkÞÞ ¼ R�CG Bt. In particular, we have

½ j �ðR�
CG OðkÞÞ� ¼ ½R� 2 KðGÞ.

ð5Þ If j �E ¼ 0 then the sheaf E is supported on P
1
G
. In particular, rðEÞ ¼ 0.
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Proof. (1) It suffices to check that, for any finite-dimensional graded At-module

M, we have: j �M ¼ 0. But this is clear, because in this case, for k� 0, one has

Mk ¼ 0, hence lim
�!
Mk ¼ 0.

(2) It follows from the exactness of the direct limit.

(3) Let M be the graded At-module corresponding to a sheaf E. Then we have

HommodðBtÞðj
�E ; Bt

Þ ¼ HommodðBtÞ lim
�!

k

Mk ; Bt

0@ 1A:
The dual sheaf E� corresponds to the At-module �kHomcohðP2

GÞ
ðE;OðkÞÞ, by defini-

tion. Hence, we obtain

j �ðE�Þ ¼ lim
�!

k

HomcohðP2
GÞ
ðE;OðkÞÞ

¼ lim
�!

k

HomqgrðAtÞ �
1

n¼0
Mn ; A

tðkÞ

� �
¼ lim
�!

m;k

HomgrðAtÞ �
1

n¼m
Mn ; A

tðkÞ

� �
¼ lim
�!
m

HomgrðAtÞ

�
�
1

n¼m
Mn ; lim

�!

k

AtðkÞ

�
¼ HommodðBtÞðlim

�!
n

Mn ; Bt
Þ:

This is precisely what we need.

(4) We have

j �ðM�
CG OðkÞÞ ¼ lim

�!

l

ðM�
CG A

t
kþlÞ ¼M�CG

�
lim
�!

l

At
kþl

�
¼M�

CG Bt:

(5) Let M be the graded At-module corresponding to a sheaf E. Then j �E ¼ 0

implies that for any m 2M, there exists n� 0 such that mzn ¼ 0. SinceM is finitely

generated we conclude thatMzn ¼ 0 for some n� 0. LetMk ¼ Ker zk �M and put

Ek ¼ pðMkÞ. This gives a filtration on E. Finally, for each k 2 Z, the element z anni-

hilates the quotient Mk=Mk�1, hence Ek=Ek�1 ¼ i�Fk for some coherent sheaves Fk
on P

1
G. &

PROPOSITION 5.1.3. If E 2Mt
G
ðV;W Þ is a framed torsion free sheaf then N :¼ j �E

is a projective Bt-module with

½N� ¼ ½W� þ ½V� L� � 2½V � 2 KðBt
Þ ¼ KðGÞ: ð5:1:4Þ

Proof. If E is a torsion free sheaf, one can find an embedding E ,!OðnÞ�m, for
some n and m. Applying j � we obtain an embedding N ,!ðBt

Þ
�m. On the other hand,

by [CBH] Theorem 0.4, for generic t, the global homological dimension of the

algebra Bt equals 1. It follows that any submodule of a free Bt-module is projective.

Thus N is projective.
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It remains to compute the class of N in KðBt
Þ. To this end we use the monadic

description of torsion free sheaves provided by Corollary 4.2.14 and Lemma

4.2.15. Writing E as the cohomology of the monad corresponding to a triple

ðB; I; J Þ 2Mt
G
ðV;W Þ and using 5.1.2 (1), (4), we find,

½N� ¼ ½ j �E� ¼ ½ j �ððV� L�W Þ �
CG OÞ��

� ½ j �ðV�
CG Oð�1ÞÞ� � ½ j �ðV�CG Oð1ÞÞ� ¼ ½W� þ ½V� L� � 2½V �: &

Note, that if R ¼ CG�k is a multiple of the regular representation of G then we

have an isomorphism of G-modules R� L ffi R� R, hence, ½R� L� � 2½R� ¼ 0.
Therefore, given a one-dimensional G-module W and a G-module V that does not

contain the regular representation as a submodule, we see from Proposition 5.1.3. that

the assignment: E 7! j �E gives a map

G1
k¼0

Mt
G
ðV�CG�k;W Þ �!

j � projective Bt-modules N such that

½N� ¼ ½W� þ ½V � 	 ð½L� � 2½triv�Þ

( )
: ð5:1:5Þ

(here ½N� 2 KðBt
Þ is treated as a class in KðGÞ via the isomorphism KðBt

Þ ’ KðGÞ, as
above). We will prove below that (5.1.5) is a bijection. This will imply Theorem 5.0.1.

5.2. EXTENDING Bt-MODULES TO SHEAVES ON P
2
G

In this subsection we show that, given a projective Bt-module N, there exists an

essentially unique (up to isomorphism) way to extend N to a framed torsion free

sheaf E on P
2
G
such that j �E ffi N.

Recall first that the standard grading on the algebra At induces a canonical

increasing filtration: CG ¼ Bt
0 � Bt

1 � Bt
2 � 	 	 	 ; on the algebra Bt

¼ At=ðz� 1ÞAt.

Given a Bt-module N, we say that an increasing filtration fNkg on N is compatible

with the canonical filtration on Bt if, for all k, l; we have Nk 	 Bt
l � Nkþl. The filtra-

tion fNkg is said to be finitely generated if dimNk <1 ; 8i; and there exists k such

that Nk 	 Bt
l ¼ Nkþl for all l5 0. The filtration is called exhausting if N ¼

S
k Nk.

Finally, two filtrations fNkg and fN
0
kg on N are called equivalent, for all k� 0,

we have Nk ¼ N
0
k.

PROPOSITION 5.2.6. The set of z-torsion free coherent sheaves E on P
2
G such that

j �E ffi N is in bijection with the set of equivalence classes of finitely generated

increasing exhausting filtrations fNkg on N; compatible with the canonical filtration of

the algebra Bt.

Proof. (1) IfM ¼ �Mk is the graded A
t-module corresponding to a z-torsion free

sheafE then, for k� 0, the z-multiplicationmapMk �!
z�
Mkþ1 is injective.Hence, the

images of fMkgk5 0 form an increasing filtration on lim
�!
Mk ¼ j

�E: This filtration is

clearly finitely generated, exhausting and compatiblewith the canonical filtration ofBt.
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Conversely, assume that N is a Bt-module with a finitely generated increasing

exhausting filtration fNkg compatible with the canonical filtration of Bt. Then the

graded vector space �k Nk admits the structure of a graded A
t-module by means

of the standard Rees construction. Specifically, we let x; y 2 At act on N ¼ �k Nk
via the maps x; y : Nk ! Nkþ1 induced by the same named elements of Bt, and

we let z act as the tautological embedding: Nk ,!Nkþ1. It is clear that the graded

At-module thus defined is finitely generated and the corresponding coherent sheaf

E on P
2
G
is z-torsion free. Moreover, it is easy to show that equivalent filtrations give

rise to isomorphic coherent sheaves. Finally, it is clear that the construction of this

paragraph is inverse to that of the preceding one. &

PROPOSITION 5.2.7. If E and E0 are z-torsion free sheaves on P
2
G; and

f : j �E! j �E0 is a morphism of Bt-modules then there exists n5 0 and a morphism
~f : E! E0ðnÞ; such that j � ~f ¼ f.
Proof. Let N ¼ j �E, N0 ¼ j �E0 and let fNkg, fN

0
kg be the corresponding finitely

generated filtrations on N and N0. Since the filtration fNkg is finitely generated it

follows that there exists n5 0 such that fðNkÞ � N0kþn; for all k� 0. Hence f gives a
morphism of graded At-modules �k Nk !�k N

0
kþn or, equivalently, a morphism of

coherent sheaves ~f : E! E0ðnÞ. It is clear that j � ~f ¼ f. &

LEMMA 5.2.8. For any coherent sheaf E on P
2
G
we have rðEÞ ¼ dim

C
½ j �E�, where

dim
C
: KðGÞ ! Z is the linear function given by dim

C
ð½R�Þ ¼ dim

C
R.

Proof. Note that both right-hand side and left-hand side are linear functions on

KðcohðP2
G
ÞÞ, see 3.1.6 and 5.1.2(2). Thus it suffices to verify the equality only for

E ¼ R�
CG OðiÞ, see 3.1.3. This has been done in 3.1.6 and 5.1.2(4). &

5.3. PROOF OF BIJECTIVITY

From now untill the end of this section we fix a class R 2 KðGÞ such that dimR ¼ 1.
By Proposition 1.3.11, in KðGÞ we can write: R ¼ ½W� þ ½V � 	 ð½L� � 2½triv�Þ, for cer-
tain uniquely determined (isomorphism classes of) G-modules W and V, such that

dimW ¼ 1 and such that V does not contain the regular representation as a sub-

module. With W and V as above, we have

PROPOSITION 5.3.9. If N is a projective finitely generated Bt-module such that

½N� ¼ R, then there exists a framed locally free sheaf E 2Mt
G
ðV�CG�k ; W Þ such

that j �E ffi N.
Proof. Choose an arbitrary finitely generated increasing exhausting filtration on N

compatible with canonical filtration of Bt and let E be the corresponding z-torsion

free sheaf on P
2
G
such that j �E ffi N (see 5.2.6). Now, for the sheaf E��, by 5.1.2 (3),

we have

j �ðE��Þ ¼ HomBt ð j �ðE�Þ;Bt
Þ ¼ HomBt ðHomBt ðN;Bt

Þ ; Bt
Þ ¼ N;
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since N is projective. On the other hand, E�� is a locally free sheaf by 2.0.4 (5).

Hence, i�E�� is locally free by 3.3.9 (6). Moreover, by 3.3.9 (7) and 5.2.8, we get

rði�E��Þ ¼ rðE��Þ ¼ dim
C
½j �E��� ¼ dim

C
½N� ¼ dim

C
½R� ¼ 1

Hence by 3.2.8(3) we have: i�E�� ffiW�
CG OðnÞ; for a one-dimensional G-moduleW

and some n 2 Z.

Let E ¼ E��ð�nÞ. Then E is a locally free framed sheaf on P
2
G
, hence

E 2MGðV
0;W Þt, for a certain G-module V 0. On the other hand, it is clear that

j �E ¼ j �ðE��ð�nÞÞ ffi j �E�� ffi N:

Hence by 5.1.3 we have ½R� ¼ ½W� þ ½V� L� � 2½V �; hence, Lemma 1.3.11 yields:

V 0 ffi V�CG�k, moreover, V and W are G-modules corresponding to the class ½R�
in the sense of Lemma 1.3.11. &

PROPOSITION 5.3.10. Let E 2Mt
G
ðV�CG�k;W Þ and E 0 2Mt

G
ðV�CG�k

0

;W Þ

be locally free sheaves such that j �E ffi j �E 0. Then, k ¼ k0, and E ffi E0.
Proof. An isomorphism j �E ffi j �E 0 gives by 5.2.7 a morphism f: E ! E0ðnÞ such

that j �f is an isomorphism. Let K ¼ Kerf, C ¼ Cokerf. Then by 5.1.2(2) we have
j �K ¼ j �C ¼ 0, hence by 5.1.2(5) both K and C are supported on P

1
G. On the other

hand, a locally free sheaf contains no sheaves supported on P
1
G, by 3.3.13(2) and (1).

It follows that K ¼ 0. Thus we have a short exact sequence:

0 �! E �!
f

E0ðnÞ �! C �! 0: ð5:3:11Þ

Applying the functor i� we get a short exact sequence:

0 �! L1i�C �! W �
CG O �!

i�f
W �

CG OðnÞ �! i�C �! 0:

Since dim
C
W ¼ 1 it follows that either i�f ¼ 0 or i�C is an Artin sheaf.

If i�C is Artin then by 3.3.11(3) the sheaf C is Artin as well. On the other hand,

applying Homð�;OÞ to (5.3.11) we get an exact sequence

Ext1ðE;OÞ �! Ext2ðC;OÞ �! Ext2ðE 0ðnÞ;OÞ;

but E and E 0 are locally free, hence Ext2ðC;OÞ ¼ 0, hence C ¼ 0 by 2.0.9 (4). Thus f is
an isomorphism. It follows that i�f is an isomorphism, hence W�

CG O ffi
W�

CG OðnÞ, hence n ¼ 0 and E ffi E 0.
If i�f ¼ 0 it follows that f factors through the embedding E 0ðn� 1Þ,!z	 E0ðnÞ.

Repeating this argument for n being replaced by n� 1; n� 2; . . . ; we obtain that

either E ffi E 0 or there exists an embedding: E ,! E 0ðnÞ, for arbitrarily small n 2 Z.

The latter is impossible by 2.0.2 and 2.0.4 (4). &

Now, Proposition 5.3.9 gives surjectivity of the map (5.1.5), and Proposition 5.3.10

gives injectivity of (5.1.5). Hence, this map is bijective, and Theorem 5.0.1 follows.
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6. Appendix A: Graded Preprojective Algebra

In this section we define a graded version P of the deformed preprojective algebra

introduced in [CBH]. Let Q be a quiver, i.e. an oriented graph with vertex set V. For
any (oriented) edge a 2 Q, we write inðaÞ ¼ j, outðaÞ ¼ i; if a : i! j. Let �Q be the dou-

ble of Q, obtained by adding a reverse edge a� : j! i for every edge a : i! j in Q.

Let P0 ¼ �v2V C be the direct sum of jVj copies of the field C, a commutative

semisimple C-algebra. For v 2 V, we write ev 2 P0 for the projector on the v-th copy

(an idempotent). We define a P0-bimodule P1 by the formula

P1 ¼

 
�
a2 �Q

C 	 a

!
� P0:

Here, in the first summand, for a 2 �Q, with inðaÞ ¼ j, outðaÞ ¼ i; we put eia ¼

aej ¼ a, and all other products: eka, aes are set equal to zero. Let f denote the cano-

nical generator of the second summand in P1 corresponding to the element 1 2 P0.

We put fi ¼ ei 	 f ¼ f 	 ei; so that f ¼
P
fi.

TheP0-bimoduleP1 gives rise to the tensor algebraT
�
P0
ðP1Þ ¼ �n50 T

n
P0
P1, whereT

n
P0

P1 ¼ P1 �P0
	 	 	 �

P0
P1 is the n-fold tensor product. Note that, since the product is taken

over P0, for any two arrows a; a0 2 �Q, in T �P0 ðP1Þ we have: a 	 a0 ¼ 0 unless

inða0Þ ¼ outðaÞ.

DEFINITION. 1 Choose an element t 2 P0, t ¼
Pn
i¼0 tiei. The graded deformed

preprojective algebra, Pt ¼ PtðQÞ, is defined as Pt ¼ T �P0ðP1Þ=hhRii; a quotient of the

tensor algebra T �P0ðP1Þ by the two-sided ideal generated by the P0-bimodule

R � P1 �P0 P1 formed by the following quadratic relations:

(a) fi 	 a ¼ a 	 fj ; if a : i! j is an arrow in �Q

(b)
P
fa2QjoutðaÞ¼ig a 	 a

� �
P
fa2QjinðaÞ¼ig a

� 	 a ¼ ti 	 f 2i ; 8i 2 V.

Koszul complex. By the definition the algebra Pt is quadratic (see Appendix B).

Therefore one can write its right Koszul complex K�Pt (see Appendix B for the defi-

nition, and also [BGS]). In our particular case it boils down to

0! K3
�P0 P

tð�3Þ ! K2
�P0 P

tð�2Þ ! K1
�P0 P

tð�1Þ ! Pt ! P0 ! 0

where Ki ¼ KiPt are P0-bimodules given by

(a) K1Pt ¼ P1;

(b) K2Pt ¼ R � P1 �P0 P1, is the submodule of generating relations;

(c) K3Pt ¼ ðK2
�P0 P1Þ \ ðP1 �P0 K2

Þ � T3P0P1 is a P0-bimodule that can be

shown to have a single generator:

t 	f� f� fþ
X
a2Q

a� f�a�� f�a�a��a�� f�aþ

þ f�a��a�a�a�� fþa��a� f

The differentials of the Koszul complex are given by restricting the map:

TnP0P1�P0 P
tð�1Þ!Tn�1P0

P1�P0 P
t; ðv1�			�vnÞ�x 7!ðv1�			�vn�1Þ�vnx:
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The algebra !Pt, see Appendix B for the general definition of the dual quadratic

algebra, is generated by the P0-bimodule
!P1 which is spanned over C by two collec-

tions of elements: fbgb2Q, and frigi2V; subject to the following relations

(a) b 	 ri þ rj 	 b ¼ 0; if b : i! j is an arrow in �Q;
(b) b1 	 b2 ¼ 0; unless b1 2 Q & b2 ¼ b

�
1; or b2 2 Q & b1 ¼ b

�
2;

(c) ti 	 b 	 b� ¼ r2i ; if b 2 Q and inðbÞ ¼ i
(d) ti 	 b� 	 b ¼ r2i ; if b 2 Q and outðbÞ ¼ i
(e) b�1 	 b1 ¼ b2 	 b

�
2; if b1; b2 2 Q and inðb2Þ ¼ i ¼ outðb1Þ:

(relation (e) does not follow from (c) and (d) if and only if ti ¼ 0). One can check
that the relations above imply !Pt

i ¼ 0, for all i5 4.

It is known, see [GMT], that, for any quiver Q, the corresponding algebra

Pt ¼ PtðQÞ is Koszul. However, Pt is Noetherian and has polynomial growth if

and only if the underlying graph Q is either of affine or of finite Dynkin ADE-

type.

We assume that Q is an affine Dynkin graph, hence it is associated, by means of

McKay correspondence, to a finite subgroup G � SL2ðCÞ. We write Q ¼ QðGÞ, and
let Ri be the simple G-module corresponding to a vertex i 2 V. Given t 2 ZðCGÞ, let
ti 2 C be the complex number such that t acts in Ri as the scalar operator: ti 	 IdRi .
This way we identify t with the element

P
i ti 	 ei 2 P0, still to be denoted by t. With

this understood, one proves as in [CBH]:

PROPOSITION 6.0.1. Let QðGÞ be the graph of affine ADE-type arising from a finite
group G � SL2ðCÞ via the MacKay correspondence. Then

ðiÞ The algebras At and Pt ¼ PtðQÞ are Morita equivalent. In particular,

ðiiÞ The category grðAtÞ is equivalent to the category grðPtÞ, resp. category qgrðAtÞ,

is equivalent to qgrðPtÞ.

DEFINITION 6.0.2. The deformed preprojective algebra of the quiver Q is defined

as the quotient algebra

Pt :¼ PtðQÞ=hhf� tii ¼ PtðQÞ=hhfi � tiiii2V :

A vertex v 2 V of the graph Q ¼ QðGÞ is said to be an extended vertex if the G-mod-
ule corresponding to ‘v’ is one-dimensional. In such a case, removing ‘v’ from the

graph Q one obtains a Dynkin graph Qfin of finite type, moreover, the graph Q is

the extended affine graph for Qfin. From Theorem 1.3.12 we deduce the following

generalization of theCrawley-Boevey andHolland conjecture, (cf. [BLB, Example 5.7]).

COROLLARY 6.0.3. Let QðGÞ be the McKay graph of G, and v 2 V an extended
vertex of QðGÞ. Let t be generic, and R be the one-dimensional (simple) representation
of G corresponding to the vertex v. Then, there exists a natural bijection
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Isomorphism classes of finitely generated projective

Pt-modules N such that ½N� ¼ ½R� in KðPtÞ ¼ KðGÞ

� 	
’
G1
k¼0

Mt
G
ðV�CG�k;W Þ: &

Here we have used the natural isomorphism KðPtÞ ’ KðGÞ, see [Q].

7. Appendix B: Algebraic Generalities

7.1. LINEAR ALGEBRA OVER A SEMISIMPLE ALGEBRA [BGS, §2.7]

Let A0 be a finite-dimensional semisimple C-algebra.

Recall that for any left A0-module V the space V� ¼ HomA0-modðV;A0Þ can be

given the structure of a right A0-module via the assignment ð faÞðvÞ ¼ ð f ðvÞÞa. Simi-

larly, for any right A0-module W the space �W ¼ Hom-modA0ðW;A0Þ can be given

the structure of a left A0-module via the assignment ðagÞðwÞ ¼ aðgðwÞÞ. For finitely

generated left A0-modules V;W; the canonical evaluation maps: V! �ðV�Þ and

W! ð�W Þ� are isomorphisms.

For an A0-bimodule V, both V
� and �V are bimodules defined as follows:

ðaf ÞðvÞ ¼ f ðvaÞ and ðgaÞðvÞ ¼ gðavÞ; 8g 2 �V; f 2 V�; v 2 V; a 2 A0:

All standard results of linear algebra over a field can be generalized in an appro-

priate way to A0-modules (e.g. W
� � V� ’ ðV�W Þ�) if we take all tensor products

over A0. We will use these generalizations freely, referring the interested reader to

[BGS, §2.7].

Fix an algebra A ¼ �n50An, and put X ¼ ProjA.

PROPOSITION 7.1.1. If A is strongly regular of dimension d, then one has:

HpðX;OðiÞÞ ¼
Ai; if p ¼ 0 and i5 0;
�A�i�d�1; if p ¼ d and i4 � d� 1;
0; otherwise;

(
where �A�i�d�1 is the dual of the A0-bimodule A�i�d�1 in the sense explained above.

This result has been proved in [AZ, Theorem 8.1(3)] in the special case A0 ¼ C.

The proof sketched below shows that the Proposition remains valid in the general

case of an arbitrary semisimple finite-dimensional algebra A0.

Sketch of Proof. Let M be a graded module and F the corresponding sheaf. For

any fixed i5 0, consider the right A-module �1n¼�1 H
iðFðnÞÞ. It was shown in

[AZ, Proposition 7.2(2)] that, for i5 1, one has

�
1

n¼�1
HiðFðnÞÞ ’ lim

m!1

�
�
1

n¼�1
ExtiðA=A5m;MðnÞÞ

�
; A5m ¼ �k5mAk:

Now take M ¼ A and apply the above formula. Since A=A5m is finite dimensional,

the Gorenstein condition implies that the LHS above vanishes for i ¼ 1; . . . ; d� 1.
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This yields the cohomology vanishing part of the formula of the Proposition. Other

claims follow easily using Serre duality. &

7.2. KOSZUL AND CO-KOSZUL ALGEBRAS

From now on we assume that A ¼ �n50An is a positively graded C-algebra such that

all graded components An are finite-dimensional over C.

DEFINITION. An algebra A ¼ �n50An is called quadratic if

� A0 is a finite-dimensional semisimple C-algebra;

� the A0-bimodule A1 generates A over A0;

� the relations ideal is generated by the subspace of quadratic relations

R � A1 �A0 A1.

Given a quadratic algebra A ¼ �n50An, we can represent A as TA0A1=hhRii, the

quotient of the tensor algebra by the ideal hhRii generated by the space of quadratic

relations R � A1 �A0 A1.

Define A!, the left dual of A, to be the quadratic algebra: TA0ðA
�
1Þ=hhR

?ii; with

R? � A�1 �A0 A
�
1 ¼ ðA1 �A0 A1Þ

� being the annihilator of R. Analogously, the right

dual !A is defined as the algebra: TA0 ð
�A1Þ=hh

?Rii; with ?R � �A1 �A0
�A1 ¼

�ðA1 �A0 A1Þ.

The right Koszul complex K�A is a complex of the form, see, e.g., [BGS], [Ma]:

			 �!
d
ð!A3Þ

�
�A0Að�3Þ�!

d
ð!A2Þ

�
�A0Að�2Þ�!

d
ð!A1Þ

�
�A0Að�1Þ!A!A0!0

where the differential ‘d’ is defined as follows. Observe that: ð!AiÞ
�
�A0 A ¼

HomA0-modð
!Ai;AÞ. Under the canonical isomorphism Hommod-A0ðA1;A1Þ ¼

A1 �A0
�A1, let IdA1 ¼

P
va � 
va. Then for f 2 HomA0�modð

!Aiþ1;AÞ and a 2
!Ai we

set dfðaÞ ¼
P

va 	 fð
va 	 aÞ. One can check that this formula indeed defines a complex.

One can also define a left Koszul complex. It is known, cf. for example [BGS], that

the exactness of the right Koszul complex is equivalent to the exactness of the left

Koszul complex.

Similarly, there is a natural differential on the space K�A ¼ !A�A0 A; see [Ma],

making it into a complex, called the (right) co-Koszul complex of A.

DEFINITION 7.2.2. (i) A quadratic ring A is called Koszul if its (right) Koszul

complex, K�A has the only nontrivial cohomology in degree zero.
(ii) A quadratic ring A is called co-Koszul of degree d, if its (right) co-Koszul

complex, K�A has the only nontrivial cohomology in degree d and, moreover,

HdðK�AÞ ’ A0ðdÞ.

The conditions in the Proposition below are the basic conditions that allow us to

start out with the noncommutative geometry as discussed in Section 2.
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PROPOSITION 7.2.3. Let A ¼ �n50An be a quadratic algebra with
!A ¼ �k

!Ak.

Assume that:

� !A has no nonzero graded components in degrees k > d, and !Ad ’ A0;

� The algebra A is Noetherian, and has polynomial growth;

� The algebra A is both Koszul and co-Koszul (of degree d).

Then A is strongly regular of dimension d in the sense of Definition 1:1:1.

Proof. To prove that the global dimension, gl.dimðAÞ, is finite we apply [Hu] and

conclude that gl.dim ðAÞ equals the minimal length of projective resolution forA0. The

Koszul complex, if exact, provides such a minimal resolution. Thus, for a Koszul

algebra A, the global dimension equals the number of nonzero graded components of

the algebra !A. Since dim
C
ð!AÞ is finite, we conclude that gl.dimðAÞ <1.

Notice next that an obvious canonical isomorphism !A�A0 A ’ HomAðð
!AÞ�

�A0A;AÞ, gives an isomorphism of complexes: K�A ’ HomAðK�A;AÞ. It follows
that, for a Koszul algebra A, the complex K�A computes the Ext-groups:

Ext�AðA0;AÞ. Thus, A is co-Koszul of degree d if and only if it is Gorenstein with

parameters ðd; dÞ. &

Remark. One shows similarly that if A is Koszul of global dimension d and

Gorenstein, then it is Gorenstein with parameters ðd; dÞ, co-Koszul of degree d and,

moreover, the dual algebra !A is Frobenius of index d.

Fix A ¼ �n50An, an algebra satisfying the conditions of Proposition 7.2.3, and

put X ¼ Proj A. A key role in our study of sheaves on X is played by

Beilinson spectral sequence ð½KKO�Þ: For any sheaf E on X there is a spectral

sequence with the first term

E
p;q
1 ¼ Ext

qðQ�pðpÞ;EÞ �A0 Oð�pÞ ¼) Ei1 ¼
E; for i ¼ 0;

0; otherwise;

(
where p ¼ �d; . . . ; 0, and Q�p is the sheaf on X corresponding to the cohomologyeQ�p of the truncated Koszul complex:

0! A! A!
1 �A0 Að1Þ ! 	 	 	 ! A

!
�p �A0 Að�pÞ !

~Q�p ! 0

(here AðnÞ stands for the algebra A with the grading being shifted by n). Equivalently,eQ�p can be described as follows
0! eQ�p! A!

1�p �A0 Að1� pÞ ! 	 	 	 ! A
!
dþ1 �A0 Aðdþ 1Þ ! A0ðdþ 1Þ ! 0:

Note that all the sheaves Qp are naturally A0-bimodules, hence the tensor product in

the E1-term makes sense.
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7.3. SPECIAL CASE A ¼ At

Recall that: At ¼ ððTL½z�Þ#GÞ=hhu	v� v	u� oðu; vÞ 	 tz2iiu;v2L, see Definition 1.2.5.

Write LL� for the exterior algebra of the two-dimensional vector space L�, and let
LL� _�C½x� be the super-tensor product of LL� with the polynomial algebra in an
odd variable x of degree 1. Thus, by definition, for any v 2 L� � LL�, in LL� _�C½x�
we have: v 	 x ¼ �x 	 v. We will view LL� as a subalgebra in LL� _�C½x�. Further,
let o 2 L2L� be the element corresponding to the symplectic form on L.

PROPOSITION 7.3.4. The algebra At is a Noetherian algebra of polynomial growth.

Moreover, At is both Koszul and co-Koszul ðof degree 3Þ, and we have

!At ¼ ððLL� _�C½x�Þ#GÞ=hho� x2 	 tii:

Proof. For t ¼ 0 we have: At ¼ C½x; y; z�#G. In this case all the claims are easy
and follow e.g., from [GMT]. Next, one checks that the relations defining At are

3-self-concordant in the sense of [Dr]. Hence the graded components of At are

isomorphic to those of A0 as vector spaces (cf. [Dr]). This implies that At has

polynomial growth, for any t. Furthermore, it follows from the Drinfeld’s result that

we may view the family of Koszul complexes K�At, resp. K�At, as a family of

varying (with t) differentials on the Koszul complex for A0. Since the differential for
t ¼ 0 has a single non-trivial cohomology, the same is true for all values of t close
enough to zero. However, the algebras At and Aa	t are isomorphic for any a 2 C

�.

Thus, At is both Koszul and co-Koszul (of degree 3), for any t.
The expression for !At is obtainedbyadirect calculation. It shows, inparticular, that the

algebra !At has nonvanishing graded components in degrees i ¼ 0; 1; 2; 3 only. Thus,

d=gl.dimðAtÞ ¼ 3. In particular, formula (3.1.1) follows from Proposition 7.1.1. &

Let Ri, i 2 V; be a complete collection of the isomorphism classes of simple mod-

ules over A0 ¼ CG, and Ri ¼ pðRi �CG A
tÞ the coherent sheaf corresponding to the

graded right At-module Ri �CG A
t. Since Ri is a direct summand in A0, the sheaf

Ri is a direct summand of O. In particular, for any i 2 V, the sheaf Ri is locally free
in the sense of Definition 1.1.4.

Remark. Consider collection fR0; . . . ;Rn; . . . ;R0ðd� 1Þ; . . . ;Rnðd� 1Þg of

sheaves on P
2
G ¼ Proj At. It follows from the explicit form of the cohomology of the

sheaves OðnÞ that the above collection is a strong exceptional collection, see [Ru]. The
Beilinson spectral sequence of a sheaf E can be considered as a decomposition of E

with respect to the above exceptional collection.

PROPOSITION 7.3.5. Any coherent sheaf E on P
2
G admits a resolution of the form

0 �! �
i2V
Vdi �C Riðk� dÞ �! 	 	 	 �! �

i2V
V0i �C RiðkÞ �! E �! 0

where Vdi ; . . . ;V
0
i are certain complex vector spaces.
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Proof. Consider the Beilinson spectral sequence of the sheaf EðnÞ. By ampleness,

for n� 0 all higher Ext-groups in the spectral sequence vanish and only the q ¼ 0

row of it will be non-trivial. This gives a resolution of type (2.0.3) for the sheaf EðnÞ.

Now tensor it with Oð�nÞ. &

8. Appendix C: Minuscule Classes

The goal of this section is to prove Proposition 1.3.11. Thus, we fix G, a finite sub-
group in SL2 and let QðGÞ denote the corresponding affine Dynkin graph. We iden-
tify the set I of vertices of QðGÞ with simple roots of the affine root system associated

to QðGÞ, and write oi, resp. Ri, for the fundamental weight, resp. irreducible G-mod-
ule, corresponding to the vertex i 2 I. Thus, the oi’s form a basis of the weight lattice

P̂ (of the affine root system), and the Ri’s form a basis of KðGÞ. The correspondence
oi !Ri yields an isomorphism of lattices P̂ ffi KðGÞ.
Let L denote the tautological two dimensional representation of G and let triv be

the trivial (one-dimensional) representation of G. The map KðGÞ ! KðGÞ; ½V � 7!
½V � � ð½L� � 2½triv�Þ gets identified under the isomorphism P̂ ffi KðGÞ with the Cartan
operator Ĉ: P̂! P̂, i.e., the linear map given (in the basis foig) by the Cartan
matrix.

Let P̂� ¼ HomðP̂;ZÞ be the coroot lattice, and Ĉ�: P̂� ! P̂� the dual Cartan

operator. Note that dimKer Ĉ ¼ 1 and dimKer Ĉ� ¼ 1, since our root system is of

affine type. Let ŷ 2 P̂ and ŷ
_
2 P̂� denote the minimal positive elements in Ker Ĉ

and in Ker Ĉ�, respectively. In the other words, ŷ and ŷ_ are the minimal positive
imaginary root and coroot, respectively. The class in KðGÞ of the regular representa-
tion of G gets identified with ŷ 2 P̂, while the dimension function dim:KðGÞ ! Z

gets identified with the element ŷ
_
2 P̂� considered as a function P̂! Z.

We see that the isomorphism classes of one-dimensional G-modules are in bijec-
tion with extended vertices of QðGÞ, i.e., the vertices i 2 I such that dim½Ri� ¼ 1, or
equivalently ŷ

_
ðoiÞ ¼ 1. A vertex i 2 I is known to be extended if and only if the

graph QðGÞ is obtained from a finite Dynkin graph Qfin with vertex set I n fig by add-

ing the vertex i.

Now Proposition 1.3.11 can be reformulated as follows.

LEMMA 8.0.1. For any o 2 P̂ such that ŷ_ðoÞ ¼ 1 there exists a uniquely determined
pair ði;o0Þ, where i 2 I is an extended vertex and o0 2 P̂ is a dominant weight, such

that the weight o0 � y is not dominant and o ¼ oi þ Ĉðo0Þ.

Since Ker Ĉ ¼ Zŷ it follows that for any o 2 ImĈ there exists a unique o0 2 P̂

such that o0 is dominant, o0 � y is not dominant and o ¼ Ĉðo0Þ. Hence, Lemma

8.0.1 is equivalent to

LEMMA 8.0.2. For any o 2 P̂ such that ŷ
_
ðoÞ ¼ 1 there exists a uniquely determined

extended vertex i such that o� oi 2 ImĈ.
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From now on we fix some extended vertex v 2 I and let I fin ¼ Infvg be the vetex set

of the corresponding Dynkin graph Qfin of finite type. Let P be the weight lattice of

Qfin, let C: P! P be its Cartan operator, and let y 2 P and y_ 2 P� denote the max-

imal root and coroot in the root and coroot system of Qfin respectively.

The decomposition I ¼ Ifin t fvg gives rise to the direct sum decompositions

P̂ ¼ P�Z 	 ov and P̂� ¼ P� �Z 	 a_v , where a
_
v is the simple coroot of QðGÞ corre-

sponding to the vertex v. It is well known that we have

ŷ
_
¼ ðy_; a_v Þ; ŷ ¼ ðy;ovÞ; and Ĉ ¼

C ; �
� ; �

� �
:

It follows that the projection pr : P̂ ¼ P�Z 	 ov ! P gives rise to the following iso-

morphisms

fo 2 P̂jŷ_ðoÞ ¼ 1g ffi P;

fi 2 Ijŷ_ðoiÞ ¼ 1g ffi fvg t fi 2 I finjy
_
ðoiÞ ¼ 1g:

ð8:0:3Þ

It follows from (8.0.3) that if ŷ_ðoÞ ¼ 1, then the condition

o ¼ oi þ Ĉðo0Þ; where i is an extended vertex in I ð8:0:4Þ

is equivalent to the condition prðoÞ ¼ prðoiÞ þ prðĈðo0ÞÞ. On the other hand, it

is clear that o0 ¼ o00 þ a_v ðovÞ 	 ov, for some o00 2 P. Hence prðĈðo0ÞÞ ¼
prðĈðo00ÞÞ ¼ Cðo00Þ. Thus condition (8.0.4) is equivalent to

prðoÞ ¼ prðoiÞ þ Cðo00Þ; where i is an extended vertex in I fin; or oi ¼ 0:

Thus we obtain the following reformulation of Lemma 8.0.2.

LEMMA 8.0.5. For any o 2 P there exists a uniquely determined pair ði;o00Þ, where i
is either v or an extended vertex of I fin and o00 2 P is a weight, such that

o ¼ oi þ Cðo00Þ.
Proof of Lemma 8.0.5. The image of the Cartan operator C is the root sublattice

Q � P. On the other hand, it is well known (see [Bou], x2, Ex. 5) that each coset in

P=Q contains a unique minuscule weight or zero. Finally, according to [Bou], x1,

Ex. 24 the set of minuscule weights coincides with the set of fundamental weights of

extended vertices of I fin. &
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