GALOIS THEORY FOR RINGS WITH FINITELY MANY IDEMPOTENTS

O. E. VILLAMAYOR and D. ZELINSKY¹⁾

To the respected memory of TADASHI NAKAYAMA

0. Introduction

In [5], Chase, Harrison and Rosenberg proved the Fundamental Theorem of Galois Theory for commutative ring extensions $S \supseteq R$ under two hypotheses : (i) S (and hence R) has no idempotents except 0 and 1; and (ii) S is Galois over R with respect to a finite group G—which in the presence of (i) is equivalent to (ii'): S is separable as an R-algebra, finitely generated and projective as an *R*-module, and the fixed ring under the group of all *R*-algebra automorphisms of S is exactly R. We shall refer to the Fundamental Theorem under these hypotheses as "CHR Galois Theory." This terminology is not quite just to Chase, Harrison and Rosenberg, since even if S has idempotents, they have a Fundamental Theorem, but hypothesis (ii) now requires that a finite group Gbe given (definitely not the group of all automorphisms of S) having R as fixed ring, and satisfying the Galois hypothesis of [2, p. 396]. Furthermore, this Fundamental Theorem gives a one-to-one correspondence between subgroups of this given group and some separable subalgebras of S.

In this note, we propose an alternative approach when R (or, rather, the image of R in S) has finitely many idempotents, and when S and R satisfy hypothesis (ii'). These are hypotheses only on S and R and not on a prescribed group of automorphisms (It is true that in this case S is Galois over R with respect to a finite group, in fact, with respect to several different finite groups. It is partly this multiplicity of groups that prompted our investigation). Our conclusions give a one-to-one correspondence between all projective, separable subalgebras of S and some subgroups (called "fat" subgroups) of the full automorphism group of S over R. The fat subgroups are easily describable in

Received August 26, 1965.

¹⁾ This work was supported by NSF grants GP 1649 and GP 3895.

terms of the decomposition of S as direct sum (necessarily finite by Proposition 1.3) of R-algebras. Our approach actually interposes between a subgroup and its associated fixed ring a certain groupoid composed of all the isomorphisms between components of S that can be induced by automorphisms in the subgroup. The standard group-to-algebra correspondence is split into the composite of a many-to-one correspondence from groups of automorphisms to groupoids of isomorphisms, followed by a one-to-one correspondence from groupoid is one-to-one exactly on the fat subgroups of the automorphism group.

1. Preliminaries and notations

We are concerned with a homomorphism $R \to S$ of commutative rings with unit and denote by G the group of all R-algebra automorphisms of S. Throughout, S will be *finitely generated and projective as an* R-module and separable as an R-algebra. Separability means that the multiplication map², $\mu : S \otimes S \to S$, defined by $\mu(x \otimes y) = xy$, has a one-sided inverse $\nu : S \to S \otimes S$ which is an $(S \otimes S)$ homomorphism (hence also, in the present commutative case, an R-algebra homomorphism) and satisfies $\mu \nu =$ identity. A necessary and sufficient condition for this separability is the existence of an idempotent $e(=\nu(1))$ in $S \otimes S$ with $\mu(e) = 1$ and $(x \otimes 1 - 1 \otimes x)e = 0$ for all x in S. Such an e is unique.

We remark parenthetically that the hypothesis that S is finitely generated is implied by the projectivity and separability, generalizing [7, Theorem 1]:

PROPOSITION 1.1. Let S be a separable R-algebra (for this proposition only, S need not be commutative) which is projective as an R-module. Then S is finitely generated as an R-module.

Proof. As in [4, Ch. VII, Prop. 3.1], let $\{p_i\} \subset S$ and $\{\alpha_i\} \subset \operatorname{Hom}_R(S, R)$ be a projective coordinate system for S over R; i.e., $\sum \alpha_i(x)p_i = x$ for every x in S, $\alpha_i(x)$ being zero for almost all i. Then $\{p_i \otimes 1\}$ and $\{\alpha_i \otimes 1\}$ form a projective coordinate system for the right S-module $S \otimes S$; i.e., $v = \sum (p_i \otimes 1)$ $(\alpha_i \otimes 1)(v)$ for all v in $S \otimes S$. Applying the multiplication map μ , we get $\mu(v) = \sum p_i(\alpha_i \otimes 1)(v)$. Take $v = (x \otimes 1)e$ with x in S and e as above, so that $\mu(v) = x\mu(e) = x$. The sum $\sum p_i(\alpha_i \otimes 1)[(x \otimes 1)e]$ can be taken over a fixed finite

²⁾ All tensor products are taken over R.

set of indices *i*, independent of *x*, because $\{i \mid (\alpha_i \otimes 1) \lfloor (x \otimes 1)e \rfloor \neq 0\} = \{i \mid (\alpha_i \otimes 1) \lfloor (1 \otimes x)e \rfloor \neq 0\} = \{i \mid \lfloor (\alpha_i \otimes 1)(e) \rfloor x \neq 0\} \subset \{i \mid (\alpha_i \otimes 1)(e) \neq 0\}$. If we now write $e = \sum a_j \otimes b_j$ with a_j and b_j in *S*, we have $x = \sum p_i \alpha_i(xa_j) b_j$, and the finite set $\{p_i b_j\}$ generates *S* as an *R*-module.

To return to our general notations, we are concerned with the case where the image of the map $R \rightarrow S$ has finitely many idempotents. These induce a corresponding decomposition of *S*, of *G*, of all subalgebras of *S*, and all relevant (especially fat) subgroups of *G*, thus reducing all our problems to the case where *R* has no idempotents except 0 and 1 and $R \rightarrow S$ is a monomorphism. Henceforth, unless otherwise specified, we shall assume *R* has this property.

PROPOSITION 1.2. If a finitely generated projective R-module is a direct sum of R-modules, then the number of summands is not greater than the number of generators.

[This Proposition also holds if R has idempotents, even infinitely many, if we assume that the summands of the projective module are faithful R-modules, as they must be when $R \rightarrow S$ is restricted as above.]

Proof by localization: First assume R is a (not necessarily Noetherian) local ring. The projective module (call it M) is then free, and any decomposition of M will express M as a direct sum of free modules. But the rank of a free module is an invariant, so the number of summands \leq rank of $M \leq$ the cardinal of any generating set. Next, for general R, if $M = \bigoplus M_{\alpha}$, then each M_{α} is finitely generated and projective. If $M_{\alpha} \neq 0$, then every localization of M_{α} is nonzero, because the set of prime ideals P of R at which $M_{\alpha} \otimes R_{P} = 0$ is an open and closed subset of the connected space Spec R [3, p. 141]. It cannot be all of Spec R, else $M_{\alpha} = 0$, so it is empty, as desired. We may then use any local ring R_{P} to conclude that the number of nonzero $M_{\alpha} =$ number of nonzero $M_{\alpha} \otimes R_{P} \leq$ number of generators of $M_{\alpha} \otimes R_{P} \leq$ number of generators of M_{α} [If R has idempotents, the proof needs minor modification to prove that M_{α} faithful implies $M_{\alpha} \otimes R_{P} \neq 0$ for all P.].

PROPOSITION 1.3. S is a finite direct sum of R-algebras, each of which satisfies the conditions imposed above on S. In addition, each summand has no idempotents except 0 and its identity element. If the fixed ring under G is R, then all these summands are isomorphic R-algebras to which CHR Galois theory applies. G is

finite, in fact G is a semidirect product of the symmetric group on the summands of S and the product of the automorphism groups of the summands.

Proof. Proposition 1.2 implies that S is a finite direct sum of indecomposable R-algebras: $S = \bigoplus_{i \in I} S_i$ and this decomposition is unique. Indecomposability means that each S_i has no idempotents except 0 and its identity element. Each S_i is automatically finitely generated, projective and separable.

Every automorphism in G must permute the S_i . We assert that if the fixed ring is R, then G is transitive on the S_i , for the sum of the identity elements of all the S_i in one transitivity set (one orbit) is a nonzero idempotent in S which is fixed under the action of G; hence it lies in R, and so must be 1, the sum of the identity elements of all the S_i . Thus the transitivity set is the set of all S_i , so that each two S_i 's are isomorphic. It is now clear how the group G operates on $S = \bigoplus S_i$. If G_0 is the normal subgroup leaving every S_i setwise invariant (equivalently, leaving every idempotent of S fixed) then G_0 is the product of the automorphism groups of the S_i , and G/G_0 is isomorphic to the group of all permutations of the set $\{S_i\}$. Since this permutation group is easily realized as a subgroup of G, we have G expressed as a semidirect product. The condition "the fixed ring under G is R" now translates into the condition "the fixed subring of each S_i under its automorphism group is R." Thus CHR Galois theory applies to each S_i ; the automorphism group of each S_i over R is finite, and so is G.

The correspondences subgroup \rightarrow subalgebra and subalgebra \rightarrow subgroup which we shall use are the usual ones, but we now factor them through groupoids. We continue to use the notation $S = \bigoplus_{i \in I} S_i$ for the decomposition of S into indecomposables, and use e_i for the identity element of S_i .

2. Groups→groupoids→fat groups

A groupoid is a category all of whose morphisms are isomorphisms. This concept coincides with older definitions as a set³) with a composition that is sometimes defined and which satisfies the associative law and the condition that every element has a left and a right identity and inverse [6, p. 132]. To make this connection, of course, the elements of the set are to be the morphisms

³) We ignore all the complications of set theory; for our purposes, finite groupoids suffice.

or maps in the category. Our notation will be as follows. If h is the groupoid, Ob h denotes the set of objects of h (the set of units in the older version), which for all our groupoids will be the set $\{S_i | i \in I\}$ of all the indecomposable summands of S as in the preceding section. If L and M are in Ob h, the morphisms from L to M (the groupoid elements with L as left unit and M as right unit) will be denoted by h(L, M). In this paper, they will always be R-algebra isomorphisms. In particular, the groupoid of all isomorphisms of all the S_i will be denoted by g, and the only subgroupoids we shall be concerned with are those whose objects are the same, namely $\{S_i | i \in I\}$. Specifically, we make the following association of groups to groupoids and the reverse:

DEFINITION 2.1. If H is a group of automorphisms of S (notation as in $\S1$), denote by H' the following groupoid:

Ob $H' = \{S_i \mid i \in I\}$

 $H'(S_i, S_j) = \{ \alpha : S_i \rightarrow S_j \mid \alpha \text{ is the restriction to } S_i \text{ of some element of } H \}.$

If h is a groupoid of isomorphisms of $\{S_i\}$ —always with Ob $h = \{S_i | i \in I\}$ —define a subgroup h' of G as follows:

 $h' = \{\sigma \in G \mid \text{ for all } i, \text{ the restriction of } \sigma \text{ to } S_i \text{ is in } h\text{--i.e., is an element of } h(S_i, \sigma(S_i))\}.$

Thus g = G' and G = g'.

DEFINITION 2.2. A subgroup of G is *fat* if it is of the form h' for some groupoid h. Equivalently, the subgroup H is fat if it contains an automorphism σ whenever the restriction of σ to every S_i coincides with the restriction of an element of H.

PROPOSITION 2.3. h'' = h for every subgroupoid h of g with Ob h = Ob g.

Proof. Clearly $h'' \subset h$. For the reverse inclusion we need only show that every isomorphism α in $h(S_i, S_j)$ is the restriction of some automorphism σ in h'. Such a σ can be defined to be the identity map $S_k \to S_k$ for all $k \neq i, j$; if $i \neq j$, let σ be α^{-1} on S_j ; and, of course, $\sigma = \alpha$ on S_i .

Thus we have a one-to-one correspondence between all subgroupoids of g (always with the same objects as g) and all fat subgroups of G. It is also possible to think of the many-to-one correspondence $H \rightarrow H'$ from all subgroups of G to all subgroupoids of g, which establishes an equivalence relation among

the subgroups of $G : H_1 \sim H_2$ if $H'_1 = H'_2$. Each equivalence class will contain a unique largest subgroup which will be fat and will equal H'' for every H in the equivalence class.

For our purposes, we need a few trivialities on groupoids.

DEFINITION 2.4. A component of a groupoid h is a subset C of Ob h which is maximal with respect to the condition $h(L, M) \neq \emptyset$ for every L, M in C. In other words, C is an equivalence class of elements of Ob h, the equivalence relation being $h(L, M) \neq \emptyset$.

Ob h is then the disjoint union of the components of h.

PROPOSITION 2.5. h(L, L) is a group.

Proof. The category axioms supply the associative law and the identity element, and "all morphisms are isomorphisms" supplies the inverse.

PROPOSITION 2.6. If L, M and N are in the same component of h and $\alpha \in h(L, M)$, then $h(N, M) = \alpha h(N, L)$ and $h(L, N) = h(M, N)\alpha$.

PROPOSITION 2.7. Given two groupoids h_1 and h_2 with $h_1 \subset h_2$, they are equal if (i) they have the same components, and (ii) for each object L, $h_1(L, L) = h_2(L, L)$ (actually it suffices to demand (ii) for one L in each component).

Proof. (i) asserts that $h_1(L, M)$ is empty if and only if $h_2(M, N)$ is. If they are not empty, pick $\alpha \in h_1(L, M) \subset h_2(L, M)$. By Proposition 2.6 and (ii), $h_1(L, M) = \alpha h_1(L, L) = \alpha h_2(L, L) = h_2(L, M)$.

In category language, we have essentially reduced the structure of every groupoid to that of a set of groups: the groupoid is the disjoint union (coproduct) of the full subcategories determined by the components; and each of these subcategories is the product of a group h(L, L) and a "zero groupoid" whose objects are the objects in the component and which has exactly one morphism between each two objects (every object is initial and final).

3. Groupoids \leftrightarrow Algebras

DEFINITION 3.1. If T is an R-subalgebra of S, the groupoid T^* corresponding to T is defined thus:

Ob $T^* = \{S_i | i \in I\}$, as always $T^*(S_i, S_j) = \{\alpha : S_i \to S_j | \text{ for all } t \text{ in } T, \text{ if } t = \sum t_i, t_i \in S_i, \text{ then } \alpha(t_i) = t_j\}.$

If h is a subgroupoid of g with Ob $h = \{S_i | i \in I\}$, the algebra corresponding to h is

$$h^* = \{t \in S \mid t = \sum t_i, t_i \in S_i, \alpha(t_i) = t_j \text{ for all } \alpha \in h(S_i, S_j)\}.$$

We begin by establishing the fact that the usual group \rightarrow ring correspondence is the composite $H \rightarrow H' \rightarrow H'^*$.

PROPOSITION 3.2. If H is a subgroup of G and H' is the corresponding groupoid, then H'^* is the set of elements in S fixed under H.

If T is an R-subalgebra of S, then T^{*} is the subgroup of G consisting of all automorphisms which are the identity on T.

Proof. Write an arbitrary t in S as $\sum t_i$ with $t_i \in S_i$. Since every automorphism σ of S permutes the S_i , $\sigma(t) = \sum \sigma(t_i)$ is also the standard decomposition of $\sigma(t)$, except that $\sigma(t_i)$ is the j^{th} component (for some j) rather than the i^{th} . Thus t is fixed under σ if and only if $\sigma(t_i) = t_j$ for every i and corresponding j. Therefore, t is fixed under H if and only if $t \in h^*$ where h is the groupoid consisting of all restrictions of such σ 's to S_i 's—i.e., h = H'.

The other half of the proposition is similarly direct from the definitions. We now prove, in several steps, that the correspondences $h \rightarrow h^*$ and $T \rightarrow T^*$ establish a one-to-one correspondence.

1. If $\{S_i | i \in J\}$ is a component of h and if e_i is the identity element of S_i , then $\sum_{i\in J} e_i$ is a minimal idempotent in h^* . All the minimal idempotents of h^* are found this way. Thus the components of h are determined by h^* .

Proof. S_i and S_j are in the same component if and only if $h(S_i, S_j) \neq \emptyset$, which is the same as the existence of an element of h sending e_i to e_j . Thus $\sum_{i \in J} e_i$ is in h^* and no shorter sum will be in h^* . Since the e_i are the only minimal idempotents in S, this shows that $\sum_{i \in J} e_i$ is a minimal idempotent in h^* . Since the union of all the components is the set of all S_i , the sum of these minimal idempotents is 1, proving that we have found them all.

2. $h(S_i, S_i)$ is the group of all R-algebra automorphisms of S_i which are the identity on the subring e_ih^* . Thus $h(S_i, S_i)$ is determined by h^* .

Proof. $h(S_i, S_i)$ is contained in the group of all automorphisms of S_i over e_ih^* by the definition of h^* . The reverse inclusion follows from CHR Galois

theory applied to the ring S_i , which has no idempotents except 0 and its identity element, e_i .

3. $h = h^{**}$.

Proof. As in the classical case, $h \subset h^{**}$ and $h^* = h^{***}$ so that h and h^{**} are groupoids with the same associated ring h^* . Thus 1., 2., and Proposition 2.7 imply 3.

4. h^* is finitely generated, projective and separable⁴⁾ over R.

Proof. We have already shown in 1. that if $e_J = \sum_{i \in J} e_i$ is the minimal idempotent of h^* corresponding to the component $\{S_i | i \in J\}$ of h, then $h^* = \bigoplus_J e_J h^*$ (because $\sum_J e_J = 1$). So it suffices to show that $e_J h^*$ is finitely generated, projective and separable over R.

Fix one S_0 in the component $\{S_i | i \in J\}$ and one isomorphism $\alpha_i : S \to S_i$ in $h(S_0, S_i)$ for each *i* in *J*. Since the images of the α_i are orthogonal to each other, $\theta = \sum \alpha_i$ is an algebra isomorphism of S_0 to a subalgebra T of S, except that Θ maps the identity element of S_0 to e_J , which is the identity element of T but not of S. We can locate $e_{J}h^{*}$ as a subalgebra of T thus: $t \in e_{J}h^{*}$ if and only if $t = \sum_{i \in J} t_i$ with $t_i \in S_i$ and $\beta(t_i) = t_j$ for all β in $h(S_i, S_j)$. In particular, if $\beta = \alpha_j \alpha_i^{-1}$, we have $\alpha_j^{-1}(t_j) = \alpha_i^{-1}(t_i)$ for all *i* and *j* in *J*; if t_0 denotes this element of S_0 , we have $t = \Theta(t_0)$ so that $e_J h^* \subset T$. Similarly, we translate the whole defining property of $e_{J}h^{*}$ above to a condition on the subalgebra $\Theta^{-1}(e_{J}h^{*})$ of S_0 by using Proposition 2.6 to get $h(S_i, S_j) = \alpha_j h(S_0, S_0) \alpha_i^{-1}$. Then $t \in e_j h^*$ if and only if $\alpha_j h(S_0, S_0) \alpha_i^{-1}(t_i) = t_j$, i.e., $h(S_0, S_0)(t_0) = t_0$. This means that $\Theta^{-1}(e_{J}h^{*})$ is the fixed subring of S_{0} under the group $h(S_{0}, S_{0})$. By CHR Galois theory applied to S_0 and R with group $g(S_0, S_0)$, the fixed ring under a subgroup $h(S_0, S_0)$ is finitely generated, projective and separable. Hence $e_{l}h^{*} = \Theta(\text{fixed})$ ring) has the same properties.

For the other end of the one-to-one correspondence we start with a subalgebra T of S which is finitely generated and projective as an R-module and separable as an R-algebra—as we must, by 4. Here, however, it suffices to assume T is separable over R. This will imply that T is a direct summand in S: By [4, Ch. IX, Prop. 2.2] there is a natural equivalence of functors $\operatorname{Hom}_{T\otimes T}(T, \operatorname{Hom}_{R}(S, .)) \to \operatorname{Hom}_{T}(S, .)$ so that if T is $(T\otimes T)$ -projective

⁴⁾ As in Proposition 1.1, "separable and projective" implies "finitely generated,"

and S is R-projective, $\operatorname{Hom}_T(S, .)$ is exact and so S is T-projective; the localization argument in [1, Lemma 4.7] then shows S/T is flat and finitely presented as a T-module, hence projective. Thus $S = T \oplus U$ as T-module. Then T is finitely generated and projective over R because S is.

The argument at the beginning of section 1 gives us an idempotent in $T \otimes_R T$, which we then map to an idempotent, e_T , in $S \otimes_R S$ by the inclusion $T \otimes_R T \rightarrow S \otimes_R S$.

5. $T = \{x \in S \mid (x \otimes 1 - 1 \otimes x) e_T = 0\}$, so that T is determined by e_T .

Proof. Each element of t satisfies the given equation, by definition of the idempotent e_T . For the inverse inclusion, write $S = T \oplus U$ as above. Then $S \otimes S$ is the direct sum of four $(T \otimes T)$ -modules, $T \otimes T$, $T \otimes U$, $U \otimes T$, and $U \otimes U$. Since $e_T \in T \otimes T$, an element of $S \otimes S$ is annihilated by e_T only if each of its four components is annihilated by e_T . Write any x in S as t + u with $t \in T$, $u \in U$. Then $x \otimes 1 - 1 \otimes x$ decomposes as the sum of $t \otimes 1 - 1 \otimes t$ which is in $T \otimes T$, and of $u \otimes 1$ in $U \otimes T$ and $-1 \otimes u$ in $T \otimes U$. If $(x \otimes 1 - 1 \otimes x)e_T = 0$ then $e_i(u \otimes 1) = 0$. Apply the multiplication map $\mu : S \otimes S \to S$ and recall that $\mu(e_T) = 1$ by the definition of e_T . This gives $\mu(u \otimes 1) = u = 0$, so that $x \in T$.

We now locate all the idempotents of $S \otimes S$. They are all uniquely sums of minimal idempotents. Since $S \otimes S$ is the direct sum of the rings, $S_i \otimes S_j$, it suffices to find the minimal idempotents of each $S_i \otimes S_j$.

6. The minimal idempotents in $S \otimes S$ are in one-to-one correspondence with the elements of g. The minimal idempotents in $S_i \otimes S_j$ are in one-to-one correspondence with the isomorphisms $\alpha : S_i \rightarrow S_j$, i.e., with the elements of $g(S_i, S_j)$. The idempotent e_{α} corresponding to α has the property

$$e_{\alpha}(x \otimes 1) = e_{\alpha}(1 \otimes \alpha(x))$$
 for all $x \in S_i$.

Moreover, the mapping $x \to e_{\alpha}(x \otimes 1)$ is an isomorphism of S_i to $e_{\alpha}(S_i \otimes S_j)$ and $y \to e_{\alpha}(1 \otimes y)$ is an isomorphism of S_j to $e_{\alpha}(S_i \otimes S_j)$.

Proof. These e_{α} are constructed much as Chase, Harrison and Rosenberg did. First, take the unique idempotent e'_i in $S_i \otimes S_i$, as at the beginning of section 1, having the properties $\mu(e'_i) =$ the identity element e_i of S_i and

$$e'_i(x \otimes 1 - 1 \otimes x) = 0$$
 for all x in S_i .

Since S_i has no idempotents and μ sends $e'_i(S_i \otimes S_i)$ isomorphically to S_i , it fol-

lows that e'_i is a minimal idempotent in $S_i \otimes S_i$. Then for any isomorphism $\alpha : S_i \rightarrow S_j$, define

$$e_{\alpha} = (1 \otimes \alpha)(e'_i).$$

This will be a minimal idempotent in $S_i \otimes S_j$, having the property

$$e_{\alpha}(x \otimes 1 - 1 \otimes \alpha(x)) = (1 \otimes \alpha) [e'_{i}(x \otimes 1 - 1 \otimes x)] = 0$$

for all x in S_i. Since $x \to e'_i(x \otimes 1)$ is an isomorphism (inverse of μ) of S_i to $e'_i(S_i \otimes S_i)$, apply $1 \otimes \alpha$ to get an isomorphism $x \to e_\alpha(x \otimes 1)$ from S_i to $e_\alpha(S_i \otimes S_j)$. Write $y = \alpha(x)$ and get an isomorphism $y \to x \to e_\alpha(x \otimes 1) = e_\alpha(1 \otimes y)$ from S_j to $e_\alpha(S_i \otimes S_j)$.

These e_{α} are distinct minimal idempotents and hence orthogonal. Hence to show that the e_{α} , $\alpha \in g(S_i, S_j)$, are all the minimal idempotents of $S_i \otimes S_j$, it suffices to show that $\sum_{\alpha} e_{\alpha}$ is the identity element of $S_i \otimes S_j$. When i = j, $\sum_{\alpha} e_{\alpha}$ is an element of $S_i \otimes S_i$ fixed under all $1 \otimes \alpha$, α ranging over the *R*-automorphisms of S_i . But the fixed subring of $S_i \otimes S_i$ under these $1 \otimes \alpha$ is just $S_i \otimes R$ (this is clear if S_i is free over *R*, and is then true in general by a localization argument). Since $S_i \otimes R \cong S_i$, it has no idempotents, and so $\sum_{\alpha} e_{\alpha}$ is the identity element, $e_i \otimes e_i$ of $S_i \otimes S_i$. When $i \neq j$, take one, fixed isomorphism $\alpha : S_i \rightarrow S_j$. We just proved that, as β ranges over $g(S_i, S_i)$, $\sum_{\beta} e_{\beta} = e_i \otimes e_i$. Since $(1 \otimes \alpha) e_{\beta}$ $= e_{\alpha\beta}$ and $(1 \otimes \alpha)(e_i \otimes e_i) = e_i \otimes e_j$, we have $\sum_{\beta} e_{\alpha\beta} = (1 \otimes \alpha) \sum_{\beta} e_{\beta} = e_i \otimes e_j$, which is the identity element of $S_i \otimes S_j$. But $\{\alpha\beta \mid \beta \in g^{\dagger} S_i, S_i\} = g(S_i, S_j)$ by Proposition 2.6.

7. The idempotent e_r in 5. is exactly $\sum_{\alpha \in T^*} e_{\alpha}$. Thus e_T , and hence T, are determined by T^* .

Proof. e_{τ} is expressible as a sum of minimal idempotents e_{α} . We must show that e_{α} occurs in this sum (write $e_{\alpha} < e_{\tau}$) if and only if $\alpha \in T^*$. Suppose $e_{\alpha} < e_{\tau}$, $\alpha \in g(S_i, S_j)$ and $x = \sum x_i \in T$ with $x_i \in S_i$. Since the e_{α} 's give a direct sum decomposition the condition $(x \otimes 1 - 1 \otimes x)e_{\tau} = 0$ in 5. implies $(x \otimes 1 - 1 \otimes x)e_{\alpha}$ = 0. Now, $e_{\alpha} \in S_i \otimes S_j$ and so is unchanged by multiplication by $e_i \otimes e_j$. Then from the remark above and from 6.,

$$0 = (x \otimes 1 - 1 \otimes x) e_{\alpha} = (x \otimes 1 - 1 \otimes x) (e_i \otimes e_j) e_{\alpha}$$
$$= (x_i \otimes 1 - 1 \otimes x_i) e_{\alpha} = (1 \otimes \alpha(x_i) - 1 \otimes x_i) e_{\alpha}.$$

Using the last isomorphism $y \to e_{\alpha}(1 \otimes y)$ in 6., we get $\alpha(x_i) = x_j$. This forces

 $\alpha \in T^*.$

For the converse, we claim first that for each *i* there is some $\beta \in T^*(S_i, S_i)$ with $e_3 < e_T$. Otherwise $e_i \otimes e_i$ annihilates every $e_\alpha < e_T$ and so $(e_i \otimes e_i)e_T = 0$. Applying the multiplication map $\mu : S \otimes S \to S$, we get $0 = e_i^2 \mu(e_T) = e_i$, a contradiction.

Now every $\alpha \in T^*(S_i, S_j)$ can be extended to an automorphism σ of S as in the proof of 2.3. If $x = \sum x_i$ is the decomposition of an element of T with $x_i \in S_i$, this special σ merely interchanges x_i and x_j , leaving the other terms alone. Thus σ is the identity on T, and, since $e_T \in T \otimes T$, $(1 \otimes \sigma)e_T = e_T$. This means that $1 \otimes \sigma$ permutes the minimal idempotents in e_T . But it carries e_β to $e_{\alpha\beta}$, and, since $e_\beta < e_T$, we have $e_{\alpha\beta} < e_T$ for every $\alpha \in T^*(S_i, S_j)$. By Proposition 2.6, the set of all such $\alpha\beta$ is exactly $T^*(S_i, S_j)$. This completes the proof of 7. and hence of the following theorem.

THEOREM. The correspondences $h \rightarrow h^*$ and $T \rightarrow T^*$ establish a one-to-one correspondence between all separable R-subalgebras T of S and all groupoids h of isomorphisms of the indecomposable summands S_i of S (as always, we assume Ob h is the set of all S_i). The composite correspondence $H \rightarrow H'^*$, $T \rightarrow T^{*'}$ is the usual correspondence between groups and fixed rings, and gives a one-to-one correspondence between all separable R-subalgebras T of S and all fat groups H of automorphisms of S over R.

REFERENCES

- M. Auslander and D. Buchsbaum, Ramification theory in Noetherian rings, Am. J. Math., 81 (1959), 749-765.
- [2] M. Auslander and O. Goldman, The Brauer group of a commutative ring, Trans. Amer. Math. Soc., 97 (1960), 367-409.
- [3] N. Bourbaki, Algèbre Commutative Ch. 1 and 2, Actualité, Sci. et Ind., no. 1290, Hermann, Paris 1961.
- [4] H. Cartan and S. Eilenberg, *Homological Algebra*, Princeton University Press, Princeton, N. J., 1956.
- [5] S. U. Chase, D. K. Harrison and A. Rosenberg, Galois theory and Galois cohomology of commutative rings, Memoirs of the American Mathematical Society, no. 52, 1965.
- [6] N. Jacobson, Theory of Rings, Mathematical Surveys, no. 2, Amer. Math. Soc. Publ., New York.
- [7] A. Rosenberg and D. Zelinsky, Cohomology of infinite algebras, Trans. Amer. Math. Soc., 82 (1956), 85-98.

Universidad de Buenos Aires Northwestern University