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0. Introduction

In [5], Chase, Harrison and Rosenberg proved the Fundamental Theorem

of Galois Theory for commutative ring extensions 5 => R under two hypotheses:

(i) 5 (and hence R) has no idempotents except 0 and l ; and (ii) 5 is Galois

over R with respect to a finite group G—which in the presence of (i) is equivalent

to (ii') : S is separable as an i?-algebra, finitely generated and projective as

an ϋ?-module, and the fixed ring under the group of all i?-algebra automorphisms

of 5 is exactly R. We shall refer to the Fundamental Theorem under these

hypotheses as "CHR Galois Theory.'' This terminology is not quite just to

Chase, Harrison and Rosenberg, since even if S has idempotents, they have a

Fundamental Theorem, but hypothesis (ii) now requires that a finite group G

be given (definitely not the group of all automorphisms of S) having R as

fixed ring, and satisfying the Galois hypothesis of [2, p. 396]. Furthermore,

this Fundamental Theorem gives a one-to-one correspondence between subgroups

of this given group and some separable subalgebras of S.

In this note, we propose an alternative approach when R (or, rather, the

image of R in S) has finitely many idempotents, and when 5 and R satisfy

hypothesis (iiO. These are hypotheses only on S1 and R and not on a prescribed

group of automorphisms (It is true that in this case S is Galois over R with

respect to a finite group, in fact, with respect to several different finite groups.

It is partly this multiplicity of groups that prompted our investigation). Our

conclusions give a one-to-one correspondence between all projective, separable

subalgebras of 5 and some subgroups (called "fat" subgroups) of the full auto-

morphism group of 5 over R. The fat subgroups are easily describable in
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terms of the decomposition of 5 as direct sum (necessarily finite by Proposition

1.3) of i?-algebras. Our approach actually interposes between a subgroup and

its associated fixed ring a certain groupoid composed of all the isomorphisms

between components of 5 that can be induced by automorphisms in the subgroup.

The standard group-to-algebra correspondence is split into the composite of a

many-to-one correspondence from groups of automorphisms to groupoids of

isomorphisms, followed by a one-to-one correspondence from groupoids to

algebras. The correspondence group -* groupoid is one-to-one exactly on the

fat subgroups of the automorphism group.

1. Preliminaries and notations

We are concerned with a homomorphism R -» 5 of commutative rings with

unit and denote by G the group of all ivNalgebra automorphisms of 5. Through-

out, 5 will be finitely generated and projective as an R-module and separable as

an R-algebra. Separability means that the multiplication map2j μ * S®S-*St

defined by μ(x®y) = xy9 has a one-sided inverse v 5-»505 which is an (S®S)-

homomorphism (hence also, in the present commutative case, an ϋNalgebra

homomorphism) and satisfies μv = identity. A necessary and sufficient condition

for this separability is the existence of an idempotent e ( = z>(l)) in 5 0 5 with

μ(e) = 1 and (#01 - 10#)£ = O for all x in 5. Such an e is unique.

We remark parenthetically that the hypothesis that 5 is finitely generated

is implied by the projectivity and separability, generalizing [7, Theorem 1]:

PROPOSITION 1. L Let S be a separable R-algebra {for this proposition only, 5

need not be commutative) which is projective as an R-module. Then 5 is 'finitely

generated as an R-module.

Proof. As in [4, Ch. VII, Prop. 3.1], let {pi}aS and {α, }cHom f i(S, R)

be a projective coordinate system for 5 over R', i.e., *Σai(x)pi = x for every

x in 5, oci(x) being zero for almost all i. Then {p%®l} and {α:ί®l} form a

projective coordinate system for the right 5-module 5 0 5 ; i.e., 0 = Σ(/>ί®l)

(cu®l)(v) for all v in 5 0 5. Applying the multiplication map μ, we get μ(v)

- ΣPi(<xi® l)(#). Take υ - {x® l)e with x in 5 and e as above, so that μ(υ)

= xμ(e) - x. The sum ΣA(α:»0l) L(x®l)el can be taken over a fixed finite

2> All tensor products are taken over R.
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set of indices i, independent of x> because {i\ (cu® l ) L(x® l)e] ^0} -

{i\{ai®l)l{l®x)el*O} = {i\l(ai®l){e)lx*O}c:{i\(ai®l)(e)*O}. If we now

write e~*ΣiCLj®bj with aj and bj in 5, we have x=^piai{xaj)bj9 and the

finite set {pibj} generates S as an ivNmodule.

To return to our general notations, we are concerned with the case where

the image of the map i?->5 has finitely many idempotents. These induce a

corresponding decomposition of S, of G, of all subalgebras of 5, and all relevant

(especially fat) subgroups of G, thus reducing all our problems to the case

where R has no idempotents except 0 and 1 and R-*S is a monomorphism.

Henceforth, unless otherwise specified, we shall assume R has this property.

PROPOSITION 1.2. If a finitely generated projectiυe R-module is a direct sum

of R-rnodules, then the number of summands is not greater than the number of

generators.

[This Proposition also holds if R has idempotents, even infinitely many,

if we assume that the summands of the projective module are faithful ivNmodules,

as they must be when R-+S is restricted as above.]

Proof by localization: First assume R is a (not necessarily Noetherian) local

ring. The projective module (call it M) is then free, and any decomposition

of M will express M as a direct sum of free modules. But the rank of a free

module is an invariant, so the number of summands < rank of M<the cardinal

of any generating set. Next, for general R, if M =^ ΘMα, then each MΛ is

finitely generated and projective. If Λf«#0, then every localization of MΛ is

nonzero, because the set of prime ideals P of R at which Ma ® Rp — 0 is an

open and closed subset of the connected space Spec R [3, p. 141]. It cannot

be all of Spec Ry else M* = 0, so it is empty, as desired. We may then use

any local ring RP to conclude that the number of nonzero Ma = number of

nonzero MΛ ® Rp<number of generators of M*® RP< number of generators of

Ma [If R has idempotents, the proof needs minor modification to prove that

MΛ faithful implies Ma®RP*0 for all P.].

PROPOSITION 1.3. S is a finite direct sum of R-algebras, each of which satisfies

the conditions imposed above on 5. In addition, each summand has no idempotents

except 0 and its identity element. If the fixed ring under G is R, then all these

summands are isomorphic R-algebras to which CHR Galois theory applies. G is
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finite, in fact G is a semidirect product of the symmetric group on the summands

of S and the product of the automorphism groups of the summands.

Proof. Proposition 1.2 implies that S is a finite direct sum of indecomposable

i?-algebras : S = Θ iez Si and this decomposition is unique. Indecomposability

means that each Si has no idempotents except 0 and its identity element. Each

St is automatically finitely generated, projective and separable.

Every automorphism in G must permute the S, . We assert that if the

fixed ring is R, then G is transitive on the Si, for the sum of the identity

elements of all the Si in one transitivity set (one orbit) is a nonzero idempotent

in S which is fixed under the action of G hence it lies in i?, and so must be

1, the sum of the identity elements of all the Si. Thus the transitivity set is

the set of all Si, so that each two Si's are isomorphic. It is now clear how

the group G operates on S= ΘS, . If Go is the normal subgroup leaving every

Si setwise invariant (equivalently, leaving every idempotent of S fixed) then

Go is the product of the automorphism groups of the S, , and G/Go is isomorphic

to the group of all permutations of the set {Si}. Since this permutation group

is easily realized as a subgroup of G, we have G expressed as a semidirect

product. The condition "the fixed ring under G is R" now translates into the

condition "the fixed subring of each Si under its automorphism group is R."

Thus CHR Galois theory applies to each S/ the automorphism group of each

Si over R is finite, and so is G.

The correspondences subgroup -» subalgebra and subalgebra -> subgroup which

we shall use are the usual ones, but we now factor them through groupoids.

We continue to use the notation S = θ , e/ Si for the decomposition of S into

indecomposables, and use βi for the identity element of S, .

2. Groups->groupoids-*fat groups

A groupoid is a category all of whose morphisms are isomorphisms. This

concept coincides with older definitions as a set3) with a composition that is

sometimes defined and which satisfies the associative law and the condition

that every element has a left and a right identity and inverse [6, p. 132]. To

make this connection, of course, the elements of the set are to be the morphisms

suffice.

3) We ignore all the complications of set theory; for our purposes, finite groupoids
Ice.
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or maps in the category. Our notation will be as follows. If h is the groupoid,

Ob h denotes the set of objects of h (the set of units in the older version),

which for all our groupoids will be the set {Si\i^I} of all the indecomposable

summands of S as in the preceding section. If L and M are in Ob h, the

morphisms from L to M (the groupoid elements with L as left unit and M as

right unit) will be denoted by hiL, M). In this paper, they will always be

ivNalgebra isomorphisms. In particular, the groupoid of all isomorphisms of all

the Si ivill be denoted by g, and the only subgroupoids we shall be concerned

with are those whose objects are the same, namely {SVU'e/}. Specifically,

we make the following association of groups to groupoids and the reverse'

DEFINITION 2.1. If H is a group of automorphisms of S1 (notation as in § 1),

denote by W the following groupoid:

Ob H'={Si\ieiI}

H'iSi, Sj) = {a - Si-*Sj\a is the restriction to Si of some element of H).

If h is a groupoid of isomorphisms of {Si)—always with Ob h = {S/U'e/}—

define a subgroup hf of G as follows:

h' - {a e G\ for all i, the restriction of a to Si is in h—i.e., is an element of

h(Si, σ(Si))}.

Thus g=.& and G = g'.

DEFINITION 2.2. A subgroup of G is fat if it is of the form hf for some

groupoid h. Equivalently, the subgroup H is fat if it contains an automorphism

a whenever the restriction of a to every 5/ coincides with the restriction of an

element of H.

PROPOSITION 2.3. h" —h for every subgroupoid h of g with Ob h = Ob g.

Proof. Clearly h"ah. For the reverse inclusion we need only show that

every isomorphism a in h(Sι, Sj) is the restriction of some automorphism a in

h'. Such a a can be defined to be the identity map Sk-*Sk for all k*i, j ; if

i±?j, let a be a'1 on Sjl and, of course, a = a on Si.

Thus we have a one-to-one correspondence between all subgroupoids of g

(always with the same objects as g) and all fat subgroups of G. It is also

possible to think of the many-to-one correspondence H ^ H' from all subgroups

of G to all subgroupoids of g, which establishes an equivalence relation among
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the subgroups of G : Hi - H2 if H[ = H[. Each equivalence class will contain a

unique largest subgroup which will be fat and will equal H" for every H in the

equivalence class.

For our purposes, we need a few trivialities on groupoids.

DEFINITION 2.4. A component of a groupoid h is a subset C of Ob h which

is maximal with respect to the condition h(L, M) *? 0 for every L, M in C.

In other words, C is an equivalence class of elements of Ob h, the equivalence

relation being k(L, M ) # 0 .

Ob h is then the disjoint union of the components of h.

PROPOSITION 2.5. ML, L) is a group.

Proof. The category axioms supply the associative law and the identity

element, and "all morphisms are isomorphisms" supplies the inverse.

PROPOSITION 2.6. If L, M and N are in the same component of h and α e

h(L, M), then h(N, M) = ah(N, L) and h(L, N) - k(M, N)cc.

PROPOSITION 2.7. Given two groupoids hi and hz with ΛiC/z2, they are equal

if {[) they have the same components, and (ii) for each object L, hiiL, L) =

h%(L, L) {actually it suffices to demand (ii) for one L in each component).

Proof (i) asserts that hΛL, M) is empty if and only if h2(M, N) is. If

they are not empty, pick a&hAL, M)ah2iL, M). By Proposition 2.6 and (ii),

hi(L, M) = αAi(L, L) - α*2(L, L) = h2(L, M).

In category language, we have essentially reduced the structure of every

groupoid to that of a set of groups: the groupoid is the disjoint union (copro-

duct) of the full subcategories determined by the components and each of

these subcategories is the product of a group h(Lt L) and a "zero groupoid"

whose objects are the objects in the component and which has exactly one

morphism between each two objects (every object is initial and final).

3. Groupoids ^Algebras

DEFINITION 3.1. If T is an i?-subalgebra of 5, the groupoid Γ* corresponding

to T is defined thus:

Ob Γ*= {S, I t e / } , as always

7*(S, , Sj) = {cc : S/-*S/| for all t in T, if f = Σfc, fceS, , then a(ti) =tj}.
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If h is a subgroupoid of g with Ob h = {Si\ /e /}, the algebra corresponding

to /z is

fe* = {*eSU = Σ t , , fceS/, αU,) =/y for all ae=h(Sit S,)}.

We begin by establishing the fact that the usual group -» ring correspondence

is the composite H-+H'-»H'*.

PROPOSITION 3.2. If H is a subgroup of G and H1 is the corresponding

groupoid, then Hf* is the set of elements in S fixed under H.

If T is an R-subalgebra of S, then T*' is the subgroup of G consisting of all

automorphisms which are the identity on T.

Proof. Write an arbitrary t in 5 as Σfr with freS,. Since every auto-

morphism <s of 5 permutes the Si, σ(t) = 'Σσ(ti) is also the standard decomposi-

tion of a(t), except that σ(ti) is the j t n component (for some j) rather than

the ith. Thus / is fixed under a if and only if σ(ti) = tj for every / and cor-

responding j . Therefore, t is fixed under H if and only if t&h* where h is

the groupoid consisting of all restrictions of such σs to Si's—i.e., h = H'.

The other half of the proposition is similarly direct from the definitions.

We now prove, in several steps, that the correspondences h-*h* and Γ-»

T* establish a one-to-one correspondence.

1. // {SfU'e/} is a component of h and if a is the identity element of Si,

then 'Σiejei is a minimal idempotent in h*. All the minimal idempotents of h*

are found this way. Thus the components of h are determined by h*.

Proof. Si and Sj are in the same component if and only if Λ(S/, Sj)^0f

which is the same as the existence of an element of h sending e% to βj. Thus

Σ ;*=./£/ is in h* and no shorter sum will be in h*. Since the α are the only

minimal idempotents in S, this shows that Σ & tf; is a minimal idempotent in

h*. Since the union of all the components is the set of all Si, the sum of

these minimal idempotents is 1, proving that we have found them all.

2. h(Si, Si) is the group of all R-algebra automorphisms of Si which are the

identity on the subring ah*. Thus h(Si, Si) is determined by h*.

Proof, hi Si, Si) is contained in the group of all automorphisms of Si over

βih* by the definition of h*. The reverse inclusion follows from CHR Galois
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theory applied to the ring S, , which has no idempotents except 0 and its

identity element, a.

3. A = A**

Proof. As in the classical case, h c A** and h* = /**** so that h and /***

are groupoids with the same associated ring A*. Thus 1., 2., and Proposition

2.7 imply 3.

4. Λ* zs finitely generated, projective and separable^ over R.

Proof. We have already shown in 1. that if £j = Σίe=j0z is the minimal

idempotent of h* corresponding to the component {SίU'e/} of h, then /** =

Φjβjh* (because Σ J £ / = 1). SO it suffices to show that βjh* is finitely

generated, projective and separable over R.

Fix one So in the component {S, | ι ' e/} and one isomorphism <*,• ' S-+Si in

MSo, S, ) for each / in /. Since the images of the α, are orthogonal to each

other, β = Σ « ί is an algebra isomorphism of SO to a subalgebra Tof S, except

that (9 maps the identity element of So to eJy which is the identity element of

T but not of S. We can locate βjh* as a subalgebra of T thus: t<^ejh* if and

only if ί = Σ/e./^ with ί, e S/ and β(ί,*) = tj for all /9 in h(Si, Sj). In particular,

if β = ajaTι

y we have a^itj) =aTι{ti) for all z and j in / ; if /0 denotes this

element of So, we have t = Θ(U) so that βjh^cz T. Similarly, we translate the

whole defining property of ejh* above to a condition on the subalgebra Θ~1(eJh^)

of So by using Proposition 2.6 to get A(S, , Sj) = ajh(S0, S0)aΓ\ Then teβjh*

if and only if αr/MSo, SΌ)α:fιUι) = tj, i.e., Λ(S0, So)(ίo) = t0. This means that

Θ'Hejh*) is the fixed subring of So under the group A (So, So). By CHR Galois

theory applied to So and R with group g(So, So), the fixed ring under a subgroup

MSo, So) is finitely generated, projective and separable. Hence £//z* = 6Kfixed

ring) has the same properties.

For the other end of the one-to-one correspondence we start with a subal-

gebra T of S which is finitely generated and projective as an i?-module and

separable as an i?-algebra—as we must, by 4. Here, however, it suffices to

assume T is separable over R. This will imply that T is a direct summand

in S By [4, Ch. IX, Prop. 2.2] there is a natural equivalence of functors

HomΓ<g>r(T, Honii^S, . ))-*Homτ(S, .) so that if T is (Γ® T)-projective

4) As in Proposition 1,1, "separable and projective" implies "finitely generated,"
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and S is R-projective, HomΓ(S, .) is exact and so 5 is T-projective the localiza-

tion argument in [1, Lemma 4.7] then shows S/T is flat and finitely presented

as a T-module, hence projective. Thus S = TΘ U as T-module. Then T is

finitely generated and projective over R because S is.

The argument at the beginning of section 1 gives us an idempotent in

T®RT, which we then map to an idempotent, eTy in S®RS by the inclusion

T®BT-*S®SS.

5. T= {χ(Ξ S\(x® l-l®x)eτ = 0}, so that T is determined by eτ.

Proof. Each element of t satisfies the given equation, by definition of the

idempotent eτ. For the inverse inclusion, write 5 = TΘ U as above. Then

S®S is the direct sum of four (T® T)-modules, T®T, T®U, U®T, and

U®U. Since eΊ e T®T, an element of S®S is annihilated by eτ only if each

of its four components is annihilated by eτ. Write any x in S1 as t+u with

/ ε T , UG U. Then x® 1 - 1 ®x decomposes as the sum of t®l-\®t which

is in T® T, and of u®\ in U® Tand - l®u in T® U. If (x® 1 - l®x)eτ = Q

then ej(u®l) = 0. Apply the multiplication map μ : S®S-+S and recall that

μ(eτ) = 1 by the definition of eτ. This gives μ(u®l) = u =. 0, so that ΛΓG Γ.

We now locate all the idempotents of S®S. They are all uniquely sums

of minimal idempotents. Since S®S is the direct sum of the rings, St®Sj,

it suffices to find the minimal idempotents of each Si®Sj.

6. The minimal idempotents in S®S are in one-to-one correspondence with

the elements of g. The minimal idempotents in Si®Sj are in one-to-one cor-

respondence with the isomorphisms a : Si-*Sj9 i.e., with the elements of g(Siy Sj).

The idempotent eΛ corresponding to a has the property

ea{x®l) =e*(l®cc(x)) for all Λ?GS, .

Moreover, the mapping x->ea(x®l) is an isomorphism of Si to ea{Si®Sj) and

y-+ea(l®y) is an isomorphism of Sj to ea{Si®Sj).

Proof These e* are constructed much as Chase, Harrison and Rosenberg

did. First, take the unique idempotent e\ in Si ® Si, as at the beginning of section

1, having the properties μ{e[) =the identity element eι of Si and

e'iix® 1 - 1 ® x) = 0 for all x in Si.

Since S, has no idempotents and μ sends e'i(Si®Si) isomorphically to Si, it fol-
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lows that e'i is a minimal idempotent in Si®Si. Then for any isomorphism

a : Si-*Sj, define

This will be a minimal idempotent in Si®Sjy having the property

ea(x®l -l®a(x)) = (l®a)lei(x®l-l®x)l = 0

for all x in Si. Since x-+e\(x®l) is an isomorphism (inverse of μ) of Si to

e'i(Si®Si), apply 1 ® a to get an isomorphism x-+ea(x®l) from S/ to ea(Si®Sj).

Write j> = a{x) and get an isomorphism y-*x-*e*(x®l) =ea(l®y) from Sy to

These e* are distinct minimal idempotents and hence orthogonal. Hence to

show that the eay a^g(Si, Sy), are all the minimal idempotents of Si®Sj, it

suffices to show that Σ*£<* is the identity element of Si®Sj. When i = j , Σ » ^

is an element of Si®Sj fixed under all 1 ® a, a ranging over the i?-automorphisms

of Si. But the fixed subring of Si®Si under these l®a is just Si®R (this

is clear if S, is free over R, and is then true in general by a localization

argument). Since S, ® i? = Sf , it has no idempotents, and so Σα£<* is the identity

element, eι®ei of Si®Si. When i*j> take one, fixed isomorphism a S, -»Sy.

We just proved that, as /9 ranges over g*(S/, &)> Σ . ^ ? = ^ 8 ^ Since (l®a)e?

= £αβ and (l®α)(^/®^ ) = ei®βjf we have Σ ? ^ = ( l ® α ) Σ ? ^ = βi®ej, which

is the identity element of Si®Sj. But {αβlβeg iS/, S/)} =^(S, , Sy) by Pro-

position 2.6.

7. The idempotent er in 5. is exactly Σ«*er*^α. 7%«5 ̂  , #«</ ^^^c^ 71,

determined by T*.

ŷ is expressible as a sum of minimal idempotents eΛ. We must

show that ea occurs in this sum (write ea<eτ) if and only if a e T*. Suppose

e*<er, a<=g{S, y Sj) and # = Σ *ϊe T with x, ̂ Si. Since the ̂ d's give a direct

sum decomposition the condition (x® 1 — 1 ® x)e2• = 0 in 5. implies (#® 1 - 1 <g> #)eβ

= 0. Now, 0α G S/ ® S; and so is unchanged by multiplication by e% ® ej. Then

from the remark above and from 6.,

0=

= (xi®l ~ l®xj)ea =

Using the last isomorphism y-+eΛ(l®y) in 6., we get a{xi) = xj9 This forces
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ore T*.

For the converse, we claim first that for each /there is some J9G T*(Sf , 5/)

with e?<eτ. Otherwise ei®eι annihilates every eΛ<eτ and so {ei®eder = 0.

Applying the multiplication map μ : S<g>S-*S,we get 0 = e)μ(eτ) = £/, a contra-

diction.

Now every α e T*(5, , S/) can be extended to an automorphism a of 5 as

in the proof of 2.3. If # = Σ # i is the decomposition of an element of T with

Xj^Si, this special </ merely interchanges Xi and #/, leaving the other terms

alone. Thus a is the identity on T, and, since eτ^ T<g>T, (10σ)eτ = eτ. This

means that l®σ permutes the minimal idempotents in eτ. But it carries e$ to

eαp, and, since e?<eτ, we have eΛ? <eτ for every a e T*{Si, Sj). By Proposition

2.6, the set of all such α£ is exactly T*(Si, Sj). This completes the proof of

7. and hence of the following theorem.

THEOREM. The correspondences h-*h* and T-»T* establish a one-to-one cor-

respondence between all separable R-subalgebras T of S and all groupoids h of

isomorphisms of the indecomposable summands Si of S (as always, we assume

Obh is the set of all Si). The composite correspondence H-+H'*, T->T*f is the

usual correspondence between groups and fixed rings, and gives a one-to-one cor-

respondence between all separable R-subalgebras T of S and all fat groups H of

automorphisms of S over R.
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