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Abstract

Surveillance of SARS-CoV-2 through reported positive RT-PCR tests is biased due to non-
random testing. Prevalence estimation in population-based samples corrects for this bias.
Within this context, the pooled testing design offers many advantages, but several challenges
remain with regards to the analysis of such data. We developed a Bayesian model aimed at
estimating the prevalence of infection from repeated pooled testing data while (i) correcting for
test sensitivity; (ii) propagating the uncertainty in test sensitivity; and (iii) including correlation
over time and space. We validated the model in simulated scenarios, showing that the model is
reliable when the sample size is at least 500, the pool size below 20, and the true prevalence below
5%. We applied the model to 1.49 million pooled tests collected in Switzerland in 2021–2022 in
schools, care centres, and workplaces. We identified similar dynamics in all three settings, with
prevalence peaking at 4–5% during winter 2022. We also identified differences across regions.
Prevalence estimates in schools were correlated with reported cases, hospitalizations, and deaths
(coefficient 0.84 to 0.90).We conclude that inmany practical situations, the pooled test design is
a reliable and affordable alternative for the surveillance of SARS-CoV-2 and other viruses.

Introduction

Surveillance of SARS-CoV-2 infections typically relies on event-based surveillance, with positive
reverse transcription PCR (RT-PCR) test results being notified to health authorities. These data
have proven useful in estimating trends in transmission dynamics over short periods of time.
However, they do not reflect the true incidence of SARS-CoV-2 infection in the population for a
variety of reasons, including the motivation of individuals to get tested, targeted testing or
required testing from particular groups, accessibility of test centres, out-of-pocket expense, and
the increasing use of at-home testing. Younger people with COVID-19, those with mild or no
symptoms or with more limited access to healthcare may all be underrepresented [1, 2].

An alternative approach to monitoring is the estimation of the population prevalence of
SARS-CoV-2 infection using population-based RT-PCR testing of randomly selected samples.
Because of the huge financial and logistical costs involved with individually testing the large
number of participants required to reach acceptable precision (especially when the true preva-
lence is low), the pooled testing design has gained popularity. This approach, proposed by Robert
Dorfman in 1943 ‘to weed out all syphilitic men called up for induction’ in the United States
military [3], pools samples from randomly selected individuals in groups. One test is performed
per pool to save resources. If the test result is negative, the entire pool is considered free of
infection. If positive, the samples from the pool can be retested individually to identify cases. This
approach is commonly used in blood banks [4], for disease screening [5], and other applications.
It has also been used during the COVID-19 pandemic as part of the health protection response, to
identify and isolate infectious cases [6–11]. In addition to these objectives, it is also possible to use
these data to estimate the prevalence of infection in the population from the number of positive
pools, even without retesting individuals [12].

Despite the long history of pooled testing, several challenges remain. These relate to the level
of prevalence to which the method can sensibly be applied, the optimal pool size, the independ-
ence of infection risk within a pool, and the influence of the accuracy of the test used. For
prevalence values below 38%, an optimal pool size can be calculated that minimizes the total
number of tests [9]. Above this level, the optimal pool size is 1 and the method, therefore, is
irrelevant [13]. The assumption that the individuals in pools are independent regarding their risk
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of infection is often violated as pools typically group people that are
linked (e.g. family members, classmates, or work colleagues).
Counter-intuitively, the clustering of cases may improve the effi-
ciency of pooled testing by increasing the separation between
infected and non-infected pools [10]. Finally, several approaches
have been developed to deal with test accuracy, and particularly
imperfect sensitivity [11, 14]. Daon et al. proposed a method
accounting for imperfect sensitivity that takes the number of posi-
tive tests within a pool into account [15]. Sensitivity might also
differ between nasopharyngeal swabs – the reference standard –

and saliva samples, which are preferred for children. The uncer-
tainty in these estimates of sensitivity should also be reflected in the
results [16]. A final challenge is dealing with the correlation of test
results when pooled testing is repeated over time in the same
population.

We developed a Bayesian hierarchical model to estimate the
prevalence of infection from pooled test data; (1) correcting for
imperfect test sensitivity; (2) propagating the uncertainty in test
sensitivity into the results; and (3) including correlation over time
and space using Gaussian processes (GPs) and a hierarchical struc-
ture. We examined the performance of this framework in a simu-
lation study and applied it to real-world data from Switzerland.

Methods

Modelling pooled testing

We aimed to estimate the population prevalence over time, repre-
sented by the latent variable π tð Þ, from pooled testing data con-
cerning Nt individuals divided into Pt pools of size Mt , of which
Kt have a positive test. From the prevalence π tð Þ, we computed the
probability θ tð Þ that a single pooled test returns positive. In case of
perfect specificity and sensitivity of RT-PCR tests, the probability
θ tð Þ is

θ tð Þ= 1� 1�π tð Þð ÞMt :

We then accounted for the imperfect sensitivity ðSeÞand speci-
ficity ðSp) of RT-PCR tests.We followed the approach of Daon et al.
who observed that test sensitivity increases with pool size and
assumed that imperfect specificity was caused by sample contam-
ination and thus does not depend on pool size [15]. The probability
θ tð Þ that a single pooled test returns positive becomes:

θ tð Þ= 1�Sp 1�Se �π tð Þð ÞMt :

See Supplementary Material S1, Section 1.1 for more details.

Inference

The sensitivity and the specificity were treated differently. We
assumed a fixed specificity of 100% (this assumption was relaxed
in a sensitivity analysis, Supplementary Material S1, Section 2.3).
On the other hand, due to varying estimates reported for the
sensitivity, we treated it as a free parameter, propagating the
uncertainty about Se into the population prevalence estimate.
The sensitivity Se was jointly estimated alongside the prevalence
using the number of positive RT-PCR tests Lamong M individuals
with confirmed SARS-CoV-2 infection:

Pr k= Lð Þ=Binomial M,Seð Þ:
For this, we used data from 20 studies, with a total sample size of

8,026 [17], resulting in a mean Se value of 84.6%. Last, we linked

this probability to the pooled test results using a binomial
likelihood:

Pr k=Ktð Þ=Binomial Pt ,θ tð Þð Þ:
Information about prior distributions and parameter choice can

be found in Supplementary Material S1, Section 1.2.

Spatio-temporal structure

We used inverse-logit transformed GPs to express the temporal
correlation of prevalence π tð Þ [18]:

π tð Þ� logit�1 GP μ,Σð Þð Þ
where the GP is defined by a mean μ and a kernel Σ . Σ is
characterized by an exponentiated quadratic kernel, where the
covariance between prevalence at two time points decreases
exponentially with the interval between these points. The two
parameters of the exponentiated quadratic kernel, that is, the
length scale and the variance parameters, were estimated during
the fitting procedure. We used a hierarchical structure with two
levels expressing the spatial correlation of prevalence. To provide
an aggregated prevalence estimated for each higher-level area
while allowing for some variation between the subareas belonging
to the same higher-level area, we used a beta-binomial distribu-
tion [19]:

Pr k=Ki,j,t
� �

=Beta‐binomial Pi,j,t ,κθj tð Þ,κ 1�θj tð Þ
� �� �

,

where i refers to the subarea, j refers to the higher-level area, and
κ is a dispersion parameter. This approach can be adapted to any
two nested geographical areas to estimate the prevalence at the
highest level. For Switzerland, the subareas correspond to the
cantons (NUTS-3 in the Eurostat nomenclature of territorial
units), which are nested within regions (NUTS-2) or the entire
country [20].

Simulation study

We performed a simulation study to validate the ability of the
model including a spatiotemporal structure (thereafter named GP
model ) to estimate population prevalence. We simulated four
scenarios mimicking different dynamics of SARS-CoV-2 preva-
lence in five hypothetical subareas over 30 weeks, using a deter-
ministic susceptible-exposed-infected-recovered (SEIR) model
(Supplementary Material S1, Section 1.3). In scenario 1, the preva-
lence was kept relatively stable at around 2.5%, while it increased
from 0% to 5% in scenario 2, increased up to 7.5% in one wave in
scenario 3, and increased up to 10% in two successive waves in
scenario 4 (Figure 1a). We introduced heterogeneity in prevalence
across subareas with a beta distribution. For each scenario and
region, we simulated pooled test data for each week of different
pool sizes (5, 10, or 20) and total sample sizes (100, 500, 1,000, or
5,000, equally spread over the five subareas). We then applied the
GP model to the simulated data to estimate the weekly overall
prevalence and compared estimates to the true values used in the
simulation. For comparison, we also assessed the performance of a
naive model that ignored the temporal correlation and estimated
the prevalence for each week independently. We repeated the
procedure 100 times for each scenario and combination of pool
size and total sample size, and calculated two metrics: (1) the root
mean squared error (RMSE) of the point estimate of prevalence,
measuring accuracy, and (2) the half-width of the 95% credible
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interval (95%CrI) around the prevalence estimate, measuring
sharpness [21].

Analysis of Swiss data

We applied the model to the Swiss weekly pooled test data from
19 April 2021 to 29 August 2022. During this period, repeated
pooled testing was conducted as part of the wider health protection
response, with the primary objective of identifying and isolating
infectious cases of SARS-CoV-2 infection. It was not designed to
produce prevalence estimates, so the data collection was secondary
to the immediate use of information by local health authorities. The
program was implemented in each canton independently but

followed similar modalities. The implementation was supported
by the federal government with seed financing of the software and
logistical infrastructure, and cost coverage of each test. All sam-
ples were tested using RT-PCR, and most cantons used the same
infrastructures and laboratories. All laboratories were accredited.
The data were collected by the 26 Swiss cantons and it was legally
required to be sent to the Federal Office of Public Health (FOPH)
weekly. Each canton had to report the weekly numbers of total
pools, positive pools and number of participants. We summarized
the data by the seven Swiss NUTS-2 regions (Central, Eastern,
Lake Geneva, Middle (‘Mittelland’), Northwest, Ticino, and Zur-
ich [20]) to estimate weekly regional prevalence estimates from
multiple observations at the cantonal level (except for canton

Figure 1. Simulation study (a) Three scenarios of prevalence over time were used to simulate pooled test data. The dashed line shows the overall prevalence, and the circles show
the prevalence values across five subareas. (b) Example of model fit to scenario 3 for the naive model and the Gaussian process (GP) model. (c) Root mean squared error (RMSE)
measuring the accuracy of prevalence estimates obtained from the naivemodel or the GPmodel (lower values are better), for each combination of pool size P (5, 10, or 20) and total
sample size N(100, 500, 1,000, or 5,000). (d) Half-width of the 95% credible interval measuring the sharpness of prevalence estimates obtained from the naivemodel or the GPmodel
(lower values are better). (e) RMSE of prevalence estimates obtained from the naive model or the GP model according to the population prevalence (<2%, 2–5%, and 5–10%).
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Ticino which is also a NUTS-2 region by itself). We also sum-
marized cantonal-level observations to obtain country-level
estimations of prevalence for each week with the same approach.
We used multiple imputation to impute missing pool sizes (0.7%
of cases, Supplementary Material S1, Section 1.4) [22].

Pooled tests with a pool size of 4 or larger were financed by the
state and performed in a selection of (1) schools, (2) care centres,
and (3) workplaces in order to reduce the need for global control
measures indiscriminate to local conditions. Samples from schools
included children and their teachers. The care setting included
long-term care facilities, elderly people homes and hospitals and
comprised both staff and patients or residents. Workplaces included
several companies and public administrations. In most cases, saliva
samples were pooled on-site, before being transported to the labora-
tory, but the pooling could also be done at the laboratory. There were
standardized recommendations for all processes including sample
collection and pooling, transportation, waste management, and
molecular analysis (Supplementary Material S2). In all settings,
individuals could contribute repeatedly over successive weeks.

We considered the three settings separately and obtained preva-
lence estimates over time for each setting and NUTS-2 region, and
at the national level. We used Spearman’s rank correlation coeffi-
cient on posterior samples to compare the prevalence estimates
across areas and settings and with other data on the SARS-CoV-2
epidemic in Switzerland (counts of reported cases of SARS-CoV-2
infection, COVID-19 hospitalizations and COVID-19 deaths). We
performed all the analyses in R version 4.2.1 [23] and Stan ver-
sion 2.29.1 [24]. The code is available from https://github.com/
erikstuder/poolprevBAG. We also developed the R package pool-
prev that can be used to apply these methods in other settings
(https://github.com/anthonyhauser/poolprev).

Results

Simulation study

The simulation study demonstrated the ability of the GP model to
accurately estimate prevalence from pooled test data (Figure 1a).

Figure 1b illustrates the superior model fit of the GP model com-
pared to the naïve model for scenario 3. The RMSE from the GP
model was consistently below or equal to 1.5 percentage points
across combinations of pool size (5, 10, and 20) and total sample
size (100, 500, 1,000, and 5,000) (Figure 1c). Both the accuracy
(measured by the RMSE) and the sharpness (measured by the half-
width of the 95%CrI) of the prevalence estimates increased with
larger sample sizes and, to a small extent, with smaller pool sizes
(Figure 1c,d). The quality of the estimates droppedwhen the sample
size was small (N = 100) and the pool size was large (N = 20). This
deterioration of quality was, however, observed only for higher
prevalence values (Figure 1e), suggesting that sample sizes of
500 or above with pool sizes between 5 and 10 are sufficient to
produce reliable estimate for prevalence values below 5%. Com-
pared to the naive model ignoring the temporal correlation, the GP
model had better accuracy and sharpness in all situations.

Application to Swiss data

A total of 1,439,984 pooled tests were done in Switzerland over the
study period (Table 1). Of these, 837,278 (58%) were from samples
collected in schools, 169,634 (12%) in care settings, and 433,072
(30%) in workplaces (Figure 2a). The number of pooled tests varied
over time (for example, in schools depending on holidays). Data
collection stopped in schools in April 2022 and continued at lower
levels in the other settings until August 2022. The distribution of
pooled tests across the seven Swiss regions was unequal, with few
data for the canton Ticino, which was excluded from region-level
analyses. The average number of individuals per pool ranged
between 4 and 48, with a median of 6 (interquartile range 5–8)
(Table 1 and Figure 2b). The proportion of positive pools varied
over time, with the average proportion of positive pools at the
country level following similar patterns in the three settings
(Figure 2c).

Based on these data, we estimated SARS-CoV-2 prevalence in
the three settings over time at the national level (Figure 3). In
schools, there were three waves of increasing magnitude: a first
small wave that peaked in September 2021 at an estimated

Table 1. Pooled test data collected for monitoring SARS-CoV-2 in Switzerland between 19 April 2021 and 29 August 2022

Setting Total number of pools Number of positive pools Median pool size

Overall 1,439,984 73,525 (5%) 6 (5–8)

By setting – – –

Schools 837,278 (58%) 42,471 (5%) 7 (6–10)

Care centres 169,634 (12%) 12,624 (7%) 6 (5–7)

Selected workplaces 433,072 (30%) 18,430 (4%) 6 (5–7)

By setting – – –

Central 203,013 (14%) 11,365 (6%) 6 (5–7)

Eastern 306,709 (21%) 15,849 (5%) 7 (5–9)

Lake Geneva 37,208 (3%) 2,464 (7%) 6 (5–7)

Mittelland 247,117 (17%) 10,877 (4%) 6 (5–7)

Northwest 185,955 (13%) 9,515 (5%) 8 (5–11)

Ticino 453 (0%) 53 (12%) 5 (5–9)

Zurich 459,529 (32%) 23,402 (5%) 6 (6–7)

Note: In the column ‘Total number of pools’, the percentages in bracket indicates the distributions of the pools over the three settings and the seven regions. In the column ‘Number of positive
pools’, the percentages in bracket are the pool positivities. In the column “Median pool size”, the numbers in bracket indicate the interquartile ranges.
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prevalence of 0.7%, a second short wave peaking in early December
2021 at about 1.4%, immediately followed by a third, larger wave
from January to March 2022 that peaked at 4.6% prevalence. The
prevalence trajectory was similar in care centres and selected work-
places, with a large wave from December 2021 to the end of March
2022 peaking at 4.8% and 3.6%, respectively. While pooled testing
in schools was discontinued at this time, it continued in the care
centres and workplaces, with another wave in the summer of 2022
peaking at around 2%.

Prevalence in schools was generally slightly higher than in the
other two settings (Figure 4a). This was especially apparent during
the early phase of the largest wave, around February 2022, suggest-
ing an earlier peak in schools. The dynamics of SARS-CoV-2
prevalence across regions of Switzerland were generally synchron-
ous, with important differences in magnitude (Figure 4b,c). The
largest wave of December 2021 to March 2022 started slightly
earlier in the Lake Geneva region in all three settings, but reached
higher values in the Central region, especially in schools. We also

Figure 2.Pooled test data collected formonitoring SARS-CoV-2 in Switzerland between 19 April 2021 and 29 August 2022 in three types of setting (schools, care centres, and selected
workplaces): (a) the total number of pools per week (truncated at 20); (b) distribution of the pool size (cut at 30); and (c) proportion of positive pools over time (the line corresponds
to weekly average).

Figure 3. SARS-CoV-2 prevalence estimated from pooled test data in Switzerland between 19 April 2021 and 29 August 2022 in three settings: schools (panel a), care centres (panel
b), and selected workplaces (panel c). The lines represent the posterior means, and the coloured areas the 95% credible intervals. The white bars show the weekly number of
reported cases of SARS-CoV-2 infections in corresponding age groups scaled by population (0–20 for schools, above 60 for care centres, and 21–60 for selected workplaces).
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found very high estimates in theNorthwest region during this period
but concentrated in care centres and workplaces. The steep rise in
prevalence estimates observed only in June 2022 in the selected
workplaces of region Mittelland appears to be an artefact based
on few data points, with very large uncertainty intervals
(Supplementary Material S1, Section 2.1, Supplementary Figure S1).

Prevalence estimates from pooled testing were highly correlated
across the three settings, with Spearman’s correlation coefficient
ranging from 0.91 to 0.95 (Table 2). Correlations of prevalence
estimates across areas and settings were also generally high, with
some exceptions (Supplementary Material S1, Section 2.2,
Supplementary Figure S2). The correlation of prevalence estimates
from pooled test data with event-based surveillance data varied
(Table 2). The estimated prevalence in schools was highly correl-
ated with the weekly counts of reported cases, hospitalizations and
deaths (Spearman’s correlation coefficients 0.84 to 0.90). For care
centres and workplaces, the correlation with event-based surveil-
lance data was weaker (range of coefficients 0.21–0.84). The cor-
relation coefficients for reported cases across the three age groups
were consistently high for the estimates from schools (range 0.89–
0.93) but lower for the estimates from care centres and workplaces
(range 0.38–0.93). The exception was the age group 60 years and
above for which the correlationwas high for estimates from all three
settings (Table 2). Across regions, correlations between reported

cases and prevalence were lower overall but highest for the preva-
lence estimates from the school setting (Supplementary Material S1,
Section 2.1, Supplementary Figure S1).

Discussion

In this study, we demonstrated that the pooled test design can be
useful to monitor the prevalence of SARS-CoV-2 infections when
analyzed with the appropriate tools. We developed a reliable
approach to analyze pooled test data while accounting for the
spatial and temporal structure of the data and imperfect test per-
formance. This approach was thoroughly validated in a simulation
study and applied to real data from Switzerland. We estimated
prevalence levels up to 4–5% during the omicron wave of winter
2021–2022 in three different settings: schools, care centres, and
workplaces. Despite the apparent noisiness of the pooled test data,
the estimated trajectories of prevalence were consistent across
settings at the national level, showing high correlation across
settings. These trajectories were also aligned with external data
about the dynamics of reported cases of SARS-CoV-2 infection.

Reported incidence has been largely used to track SARS-CoV-2
transmission. Estimates of SARS-CoV-2 prevalence were rarely
accessible due to the large sample size required to measure low
prevalence levels. The Office of National Statistics (ONS)

Figure 4. (a) Absolute difference (with 95% credible interval) in SARS-CoV-2 prevalence estimated from pooled test data at the national level across settings (selected workplaces
are taken as the reference). (b) SARS-CoV-2 prevalence estimated from pooled test data in six regions of Switzerland between 19 April 2021 and 29 August 2022 in three settings
(vertical dotted lines indicate the period used in panel C). (c) Mean prevalence estimated frompooled test data in schools at the regional level between 1 January and 31March 2022
(Ticino is excluded).
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coronavirus infection survey in the United Kingdom and the
REACT-1 study in England collected samples from hundreds of
thousands of individuals to estimate prevalence over time. Here, we
took advantage of pooled test data collected locally with limited
oversight to reconstruct the dynamics of SARS-CoV-2 transmis-
sion in Switzerland [25, 26]. Prevalence estimates provide add-
itional insights about the trends based on reported incidence,
mainly from newly symptomatic people, which can lead to mis-
leading interpretations due to variations in testing levels. For
example, the reported incidence in 0–19 year olds dropped in
March 2022, while the estimated prevalence in schools remained
high. As this period coincides with a sharp decrease in testing in the
0–19 age group [27], this suggests that the observed decreasing
trend is likely wrong, and that reported incidence failed to capture
the transmission dynamics.

Our estimates of SARS-CoV-2 prevalence in Switzerland pro-
vided other important insights. We found high prevalence in the
three settings, reaching 4–5% at the national level during the
omicron wave of winter 2021–2022. Such high prevalence levels
have been observed in other European countries around the same
time, for example, in England where the REACT-1 study estimated
a peak prevalence of 6.4% in March 2022 [26]. The comparison of
prevalence estimates in the three settings shows a temporal lag
between schools and working places or care centres. This suggests
that the omicron wave in Switzerland occurred earlier in schools,
supporting the literature about the role of schools in enhancing of
spread of respiratory infections [28]. The lower immunity levels in
children, whose access to vaccination was limited, could also

explain this discrepancy, which was also observed in the REACT-1
study [26].

While the dynamics of prevalence were likely reliably captured,
the prevalence estimated from these Swiss pooled testing data could
be biased downwards. Pooled tests conducted in schools or work-
places are likely to at least partially exclude infected students,
teachers, and workers showing symptoms, as these people would
be encouraged to stay at home, and only asymptomatic or mild
cases would remain in the pool. This likely creates a selection bias,
leading to the underestimation of the community prevalence
(although still representing the prevalence in the settings them-
selves). This bias is expected to be smaller in care centres, as patients
and residents should remain even if symptomatic, although they
could be discouraged from participating. Care settings are also
more likely to implement stringent control measures and might
have a lower prevalence, so direct comparison across settings does
not allow for a better characterization of this potential selection
bias. Interestingly, the pooled test data from schools and work-
places can be considered as complementary to reported cases, the
former approach focusing on the asymptomatic and paucisympto-
matic portion of the infected population, while the latter focuses on
newly symptomatic people who receive a test leading to a notifica-
tion to the surveillance system.

The general lack of information about individuals and local
practices constitutes another important limitation of this work.
The modalities of selection of individuals participating in pooled
testing, as well as test sensitivity and specificity, could vary across
time and space in unexpected fashion, with incentives to participate

Table 2. Correlation between SARS-CoV-2 prevalence estimated from pooled test data and other indicators of the dynamics of SARS-CoV-2 in Switzerland
(Spearman’s rank correlation coefficient with 95% credible interval)

Prevalence (Switzerland)

Schools Care centres Selected workplaces

Prevalence (Switzerland)

Schools 0.91 (0.87 to 0.96) 0.93 (0.88 to 0.97)

Care centres 0.91 (0.87 to 0.96) 0.95 (0.90 to 0.98)

Selected workplaces 0.93 (0.88 to 0.97) 0.95 (0.90 to 0.98)

Event–based indicators

Reported cases (all) 0.90 (0.87 to 0.94) 0.73 (0.66 to 0.80) 0.84 (0.80 to 0.87)

COVID–19 hospitalizations (all) 0.87 (0.83 to 0.90) 0.54 (0.45 to 0.62) 0.67 (0.63 to 0.71)

COVID–19 deaths (all) 0.84 (0.81 to 0.86) 0.21 (0.11 to 0.31) 0.46 (0.41 to 0.50)

Reported cases by age group:

Aged 0–19 0.89 (0.86 to 0.92) 0.38 (0.30 to 0.47) 0.53 (0.49 to 0.58)

Aged 20–59 0.89 (0.85 to 0.92) 0.75 (0.69 to 0.82) 0.84 (0.81 to 0.88)

Aged 60 and above 0.93 (0.90 to 0.96) 0.89 (0.84 to 0.93) 0.93 (0.91 to 0.95)

Reported cases by region:

Central 0.91 (0.86 to 0.95) 0.63 (0.45 to 0.80) 0.69 (0.52 to 0.83)

Eastern 0.89 (0.82 to 0.94) 0.58 (0.42 to 0.73) 0.80 (0.70 to 0.89)

Lake Geneva 0.55 (0.14 to 0.86) 0.74 (0.43 to 0.91) 0.78 (0.62 to 0.89)

Mittelland 0.92 (0.86 to 0.97) 0.84 (0.69 to 0.93) 0.66 (0.59 to 0.77)

Northwest 0.93 (0.88 to 0.96) 0.56 (0.41 to 0.64) 0.70 (0.61 to 0.76)

Zurich 0.92 (0.89 to 0.94) 0.74 (0.64 to 0.82) 0.89 (0.84 to 0.92)
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or not participate depending on local conditions and policies. The
quality of the data reported by the local teams may also vary. As the
primary objective of the program was practical and aimed at
providing information to local authorities, a systematic protocol
was not immediately established at the time of the earliest testing,
and some information was not recorded. For instance, we could not
access the detailed results of each pool, but only obtained the
proportion of positive pools, together with the average pool sizes
by week and canton. This could lead to an underestimation of the
uncertainty in our prevalence estimates. For the same organiza-
tional reasons, pooled test data were not available at some times and
places, emphasizing the importance of using Gaussian processes to
stabilize the estimates over time.

Our approach has several important strengths, despite the limi-
tations. The simulation study showed that our model based on
Gaussian processes could provide reliable prevalence estimates even
with sample sizes as small as 100 if the true prevalence remains below
5%(whichwas the case inmost settings throughout the SARS-CoV-2
pandemic).We accounted for the temporal correlation of prevalence
and thus limit the impact of missing or scarce data on the estimates.
We modelled the imperfect sensitivity of RT-PCR in the context of
pool testing, and propagated all sources of uncertainty into the
results. We provide an R package that makes the application of our
method easy with minimal pool test data (number of pools, number
of positive pools, and pool size). Since the beginning of the SARS-
CoV-2 pandemic, other approaches that share commonalities with
our model have been proposed to appropriately analyze pooled test
data. McLure et al. have developed a R package that also provides
flexible functions to model the prevalence over time, but does not
account for test sensitivity [29]. The European Center for Disease
Prevention andControl has also developedmethods that adjusted for
imperfect test sensitivity, but they did not account for the correlation
of pooled test results over time [30].

Conclusion

Pooled testing can be used as a reliable approach to monitor the
dynamics of SARS-CoV-2, especially as part of a wider health
protection response aimed at mitigating the immediate conse-
quences of an outbreak by identifying and isolating infectious cases.
It is more affordable than alternatives based on event-based sur-
veillance or large-scale prevalence studies, but can provide highly
accurate estimates with relatively small sample sizes as long as
(1) prevalence remains lower than 5% and (2) appropriate tools
are used to account for imperfect testing and space–time correl-
ation. For these reasons, it could be considered in pandemic pre-
paredness plans as a potential addition to traditional surveillance
strategies in situations of low to intermediate circulation of SARS-
CoV-2 and other viruses.

Supplementary material. The supplementary material for this article can be
found at http://doi.org/10.1017/S0950268824000876.
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