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TOLERANCE RELATIONS ON LATTICES

HANS-J. BANDELT

The lattice of all tolerance relations (that is, reflexive,

symmetric compatible relations) on a lattice is investigated.

For modular lattices some examples are given which show that

such relations do naturally occur.

A tolerance relation on a lattice is a reflexive and symmetric binary

relation satisfying the Substitution Property (with respect to the lattice

operations). Tolerance relations have been studied by Chajda, Zelinka,

and others during the past decade. Although there are now numerous

articles about tolerance relations on lattices, it has hardly ever been

made clear how tolerance relations are related to the structure theory of

lattices, nor why they deserve any interest. Now, tolerance relations

"generalize" congruence relations (drop transitivity), but this would

hardly serve to motivate them. For, there is no analogue amongst tolerance

relations to the relationship of congruences and homomorphisms. As we see

it there are two places where tolerance relations do arise naturally: the

first is the study of (local) polynomial functions on lattices, and the

second is the study of convex sublattices maximal with respect to certain

properties. Let us commence with the first aspect. A polynomial function

is any n-ary operation which is built up by the lattice operations and

constants. Kindermann proved the following result: an order-preserving

n-ary operation on a finite lattice is a polynomial function if and only if

it preserves all tolerance relations; in particular, every order-

preserving function is a polynomial function if and only if the finite
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lattice is "tolerance simple", that is, there are at most two (trivial)

tolerance relations. It is quite clear that it is much easier to

determine whether a lattice has a proper tolerance relation than to test

all order-preserving functions. It is the second aspect which serves as

the main motivation for our present work. For a given lattice, we are

interested in convex sublattices endowed with certain properties, either in

their own right or since they form (in some sense) the building blocks of

the lattice. If the given property is hereditary to subintervals, one may

consider maximal convex sublattices with the property. It rarely happens

that they actually form the blocks (alias classes) of some congruence

relation; in general, they overlap, like maximal relatively complemented

convex sublattices of a modular lattice or maximal cx-complete convex

sublattices of a distributive lattice. Nevertheless, these "blocks" share

some properties with congruence blocks, for instance, intervals which are

projective into some block must also belong to some block. In either case,

this is governed by a tolerance relation, where two elements are related

if and only if they belong to a common block.

The organisation of the material is as follows. The first section

provides the basic tools to decide whether a given binary relation on a

lattice is a tolerance relation. In Section 2 the lattice of all tolerance

relations is investigated. In particular, this lattice turns out to be

pseudocomplemented, and (at least in the modular case) there is a

convenient description of pseudocomplements. This is applied in the final

section to some "canonical" tolerance relations arising in modular and

distributive lattices. Some results of Herrmann, KurinnoT, and Jakubfk can

be seen in this light.

1. Basic facts

A reflexive and symmetric binary relation £, on a lattice L is

called a tolerance relation if £ is compatible, that is £ is a sub-

2
lattice of L . E(L) denotes the lattice of all tolerance relations on

' L and 6(£) denotes the congruence lattice of L .

In order to prove that a given binary relation is a tolerance

relation, Lemma 1.1 often facilitates the computations involved. This is,

of course, analogous to the corresponding fact for congruence relations
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Tolerance relations on lattices 369

(see [9], Lemma 1.3.8).

LEMMA 1.1. A reflexive binary relation £ on L is a tolerance

relation if and only if the following five properties are satisfied for

t, x, y € L :

(1) (x, y) € £ if and only if (x A y, x v y) € £ ,

(2) (t, x), (t, } ) ( ? , and t S x, y imply that

(3) (t, x), (t, y) € £ , and x, y 2 t imply that

(t, x * y) i Z ,

(!») (£, x) € £ and x < t, j/ imply that (t v y, y) * £ ,

(5) (t, y) € 5 and t, x ^ y imply that (t A x, x) € 5 .

Proof. It is quite easy to see that every tolerance relation £ has

properties (l) through (5). Assume now that £ is a reflexive binary

relation satisfying (l)-(5). Symmetry is trivial. Suppose x, y belong

to an interval [u, v] where (u, v) € £ . Then by (h), (x A y, v) € £ ,

and hence by (5), ( X A I / , X V J / ) € £ . Thus, (l) implies

(6) (u, v) € £ and x, y € [w, u] imply that (x, y) i £ .

Let (u, D ) , (X, J / ) € £ ; we claim that (w v x, v v y) 6 £ . Indeed, we

have (u A u, w v u), (x A j/, x v !/) € £ by (l), and thus by (h),

((u A u) v (x A y), u V w v (x A y)) ,

((w A v) v (x A y), (u A y) v x V £/) € £ .

Applying (2), we get

((M A D ) V ( X A I / ) , U V I > V X V I / ) € £ .

Since u v x, v M y € [ ( M A V ) v ( x A j / ) , u v y v x v y ] ,we conclude

using (6) that (M V X, U V y) € £ . Similarly, using (3), (5), (6), one

proves that (u A x, v A y) € £ .

The lemma is best explained by Figure 1, that is, a reflexive (and

symmetric) relation £ is seen to be a tolerance relation if and only if

it passes the following test: whenever there are pairs in £ labelled by

"w<" in the six Hasse diagrams, then in either case the pair (a, b)

must belong to £ . Note that it is necessary to make the checks

corresponding to each of the diagrams.
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FIGURE 1

For a subset A of L and a tolerance relation £ , let AE, denote

the set of all b i. L such that (a, b) € E, for some a i A . Whenever

A is a convex sublattice, so is AE, . For, if a, b £ A and

(a, x ) , (i>, y) f E. , then for t I [x * y, x v y] ,we have

s = (t v (a A £>)) A (a v b) € yj and (s, t) f ? .

2
Every subset 4 of L which is maximal with respect to A c £ is called

a block of £ . Obviously, X is a block of £ if and only if A is the

intersection of all {a}£ where a £ A . Hence every block of £ is a

convex sublattice of L (of. [7], Theorem 2). On the other hand, for a

standard sublattice S of L (in the sense of [S]), the relation

0[S] = {(x, y) a: A y = ( ( I A J ) v t ) A (a; v y) and

x v y = ((x v j/) A S ) v (x A y) for some s, t € 5}

is a congruence relation and S is a block of 0[S] (see [S]). We assert

that 0[S] is the least tolerance relation £ on L such that a c E, .

Indeed, if x •S. y in L and s, t S. S such that x = (x v t) A y and

y = {y A s) v x , then (s, t) € £ and x = (z/ A t) v x , whence
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(x, y) € £ . Note that this observation applies to E3], Theorem 3, and to

most results in [6].

To every tolerance relation £ on L there corresponds the set Q

of all intervals [a, b] of L which are contained in some block of £ ,

that is (a, b) € £ . The next lemma characterizes the sets Q of

intervals which give rise to tolerance relations. Recall that an interval

[x, y] is called weakly perspective into [u, v] if either u £ x and

v v x = y or y - v and u A y = x {of. [9]).

LEMMA 1.2. Let Q be a set of intervals such that L = U Q . The

relation

KQ = {(x, y) € L
2 | [x A y, x V y] € Q)

is a tolerance relation if and only if the following conditions are

satisfied:

(T) if [x, y] is weakly perspective into some [u> v] € Q ,

then [x, y] € Q ,

(8) if [t, x], [t, y] € Q , then [t, x v y] ( { ,

(9) if [x, 3], [;/, s] € Q , t/ien [x A y, a] € § .

Proof. If £,, is a tolerance relation, then (7), (8), (9) are

trivially satisfied. Assume now that the set Q satisfies (7), (8), (9).

The relation %,Q is symmetric t>y definition and is reflexive since Q

covers L and (7) holds. Now, (l) is trivially true, (7) implies (2) and

(3), (8) implies (It), (9) implies (5). Hence Lemma 1.1 completes the

proof.

The relation £_ defined in Lemma 1.2 is a congruence relation if and

only if the conditions

(10) [x, y), [y, 3] € Q imply that [x, 3] € Q

and (7) are satisfied.

Lemmas 1.1 and 1.2 provide us with the necessary information required

in Section 3 below. There are, however, many more ways to describe

tolerance relations. For instance, every compatible relation containing

the partial order £ corresponds to a tolerance relation, and vice versa
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(see [/]). Proposition 1.3 offers a characterization of tolerance

relations in terms of certain mappings on.the ideal lattice J(L) .

(Principal ideals are written as (a] (a € L) .)

PROPOSITION 1.3. For a lattice L , there is a 1-1 correspondence

between tolerance relations £, and those mappings T : J(£) •+ J(L) which

satisfy A c AT for all ideals A of L and preserve finite inter-

sections and (nonvoid) directed unions.

Proof. Given £ , the mapping T : /I i—»- /I? [A i J(L)) has the

desired properties. Moreover, T satisfies

(11) (a, b) € C if and only if (a] c (2>]T and (b] <= {a]x .

Conversely, given the mapping T , define a relation £ by (ll). It is

readily verified that £ is a tolerance relation. Further, if b € (a]t ,

then (a A b] c (2J]T and (b] c {a]x n (fc]x = (a A b]i , whence

(a A b, b) € 5 an<i thus

(a]T c (a]£ = U {x}£ c U U ] T = (a]x .
:r£cz xS

Consequently, for every ideal A , we have

AT = U (a]x = U
aZA aZA

completing the proof.

2. The lattice =(£)

Very little is known about the tolerance lattice 5(L) of a lattice

L . Since E(L) can be regarded as a subalgebra lattice of a universal

algebra, H(L) is algebraic (e/. Section 3 in [5]). What about

identities? If L is distributive, so is 5(L) (see [5], Theorem 16).

However, if L is modular, then E(L) is in general not modular:

consider the tolerance relations £-, E, , £„ on the lattice L given by

Figure 2. The diagrams exhibit the blocks of E, , £ , £ , and

5Q « ?! = ?0 n 5 2 • Since £Q v ^ = £Q v £2 = L
2 , we have an N?

sitting inside E(L) .
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FIGURE 2

Therefore the variety of distributive lattices is the only nontrivial

lattice variety V for which all members have modular tolerance lattices.

It might be true that the tolerance lattices of members in any nontrivial

variety V other than the variety of distributive lattices generate the

variety of all lattices. At least, this "tolerance generated" variety must

contain V . Indeed, every lattice L is isomorphic to a sublattice of

E(M) , where M is obtained by adjoining a new 0 to L ; the desired

embedding of L in H(M) is given by x >—>• E,x = (x] u L (x € L) .

We now proceed to prove the main result of this section. As we have

already seen 5(L) is in general far from being distributive. However,

E(L) shares with Q{L) a local distributivity at the bottom u , that is

E(L) is O-modular and O-distributive (in the sense of [J5]).
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Recall that weak projectivity is the transitive extension of weak

perspectivity: if for some natural number n and

[u, v] = [aQ, feg], [a^ i j , . . . , \an, b^\ = [x, j/]

every [a., £>.] is weakly perspective into [a . , fc ..,]

(i = 0, ..., n-1) , then [w, u] is weakly projective into [a:, t/] (c/.

[9]).

LEMMA 2.1. Given X, € E(L) and 9 € 9(L) , Zet 6 fee the set of

alt intervals [x, y] such that (u, v) € 6 whenever (M, v) (. t, and

[u, v] is weakly projective into [x, y] . Then E,n (defined as in Lemma

1.2) is a congruence relation and the relative pseudocomplement of £ in

6 .

Proof. Clearly, L is covered by Q and (7) is true. To verify

(10), let [x, y], [y, z] € Q and assume that (u, v) € t, and [", v] is

weakly projective into [x, z] . An easy induction shows that there exists

t € [u, v] such that [u, t] and [t, v] are weakly projective into

[a;, y] and [jy, z] , respectively; for a single instance of weak

perspectivity this is pictured in Figure 3. Consequently, (w, t) and

{t, v) belong to 8 , whence (u, v) must be in 6 . We conclude that

5O is a congruence relation. By construction £n is the largest

tolerance relation with L n C c 6 , and we are done.

t = u V y

FIGURE 3
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In the presence of weak modularity, the pseudocomplement of a

tolerance relation can be described in a more convenient way. A lattice L

is called weakly modular if for every proper interval [r, s] which is

weakly projective into [x, y] , there exists a proper subinterval [u, v]

of [x, y] which is weakly projective into [r, s] {cf. [9]). As in the

proof of [9, Theorem III.It.9] one obtains

LEMMA 2.2. Let E, be a tolerance relation on a weakly modular

lattice L . The pseudocomplement £* of E, is a congruence relation and

consists of all pairs {x, y) such that (u, v) ^ E, for every proper

subinterval [u, v] of [x A y, x v y] .

Proof. If [x, y] is an interval which contains no pair u < V with

(u, v) € E, , then by weak modularity for every interval [r, s] which is

weakly projective into [x, y] , we must have {r, s) ^ E, . Hence Lemma

2.1 finishes the proof.

LEMMA 2.3. Let £L and £ be tolerance relations on L such that

[that is, g± c £* ). Then

I(x, y)€ L | for i = 0, 1, there exists z. £ L such that

x A y = zQ A z±, x v y = zQ V z^ {x A y, zj i

is the join of £n and £, in H(L) .

Proof. Since £ , £ c £ c £ v ? , it suffices to verify that £

is a tolerance relation. We will check properties (l) through (5). (l) is

trivial. Since £L n £ = w , (x, y) € £ if and only if there is some

self dual diagram as given by Figure it.

FIGURE 4
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Hence by d u a l i t y we need o n l y check (2 ) and {h). I f (t, x), ( £ , y) € £

and t 5 x, y , t h e n t h e r e a r e [t, u.), (t, v.) € £ . ( i = 0 , 1 ) such

t h a t

* = "o A "l = % A \ ' X = U0 V "l ' » = U0 V "l •

Then [t, u. V v.) t £,. (i = 0, l) and x V # = u v v v u V u .

Since (t, (u V u ) A [u V y )) € £Q n C = u , we must have

t = [u v u ) A [u v y ) , whence (£, x v y) € ? , which proves (2).

Now, if (a;, £) € 5 and x £ ty j/ , then there are (x, 2.) € £•

(i = 0, l) such that x = z A 3 , and t = s v z . Then

( j / , y v s ^ ) € ^ (i = 0 , 1 ) a n d i v i / = ! / V z 0 V 3 1 . S i n c e

G/» (j/ v s
0)

 A (i/ V S
X ) ) f ? Q n ^ = W , we m u s t h a v e

U ~ [y v z0)
 A (j/ V S-L) « whence (i/, t V y) € £ , which proves (1*). By

Lemma 1.1, the proof is complete.

A lattice L is called 0-modular if it contains no N,. with bottom

element 0 , that is, for x, y, z € L , x S y and y A 2 = 0 imply that

x = {x V z) A y {of. [75]).

THEOREM 2.4. For ewerz/ lattice L > the tolerance lattice E(L) is

0-modular, pseudocomplemented and algebraic.

Proof. It remains to check 0-modularity. Let £ , £ , £„ € S(£)

such that £•]_ E € 2 » Co n ?2 = a) , and ?Q V ̂  = E,Q v ?2 . If

(x, z) € 52 and x < 2 , then (a, 3) f L V ̂  , whence by Lemma 2.3

there are yQ, y± £ L such that x = yQ A ̂  , 3 = yQ v ̂  , and

(*> 2/̂ ) e £.£ U = 0, 1) . Since (x, i/0) € CQ n ?2 = u , we have x = j/Q

and thus 1/ = 2 . Hence (x, 3) € £ , and therefore £ = £ .

Consequently, E(£) is 0-modular.

The lattice A(L) of all compatible reflexive relations is isomorphic

to the square (E(£)) (see [7]). Hence A(£) is also 0-modular and

pseudocomplemented.
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Note that every finite distributive lattice is isomorphic to a

tolerance lattice. This is a corollary to [9, Theorem II.3.17]: every

finite distributive lattice is isomorphic to the congruence lattice of a

sectionally complemented lattice. Indeed, on a sectionally complemented

lattice there are no tolerance relations other than congruence relations

(cf. [»]).

3. Examples

We will now demonstrate that there are several canonical tolerance

relations on any modular lattice. On a distributive lattice one can find

even more.

First some terminology. A lattice L is atomistic if every element

of L is the join of atoms; L is relatively atomistio if every interval

of L is an atomistic lattice. L is discrete if every bounded chain is

finite. L is weakly atomic if every proper interval contains two elements

u and v such that v covers u ; if L does not contain such a pair,

then L is dense.

THEOREM 3.1. For a modular lattice L , define

Q = {{x, y) € L | [x A y, x v y] is of finite length} ,

£, = {(x, y) € L | [xhy,xVy]is complemented} .

Then 0 is a congruence relation and £ is a tolerance relation on L .

The blocks of

(i) 6 ,

(ii) 9* ,

(Hi) 6** ,

(iv) £ ,

(v) 6** n ?

are the maximal convex sublattices of L which are

(i) discrete,

(ii) dense,

(Hi) weakly atomic,
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(iv) relatively complemented,

(v) relatively atomistic,

respectively.

Proof. It is not hard to see that 9 is a congruence relation and

that the blocks of 9, 9*, 6** are of the asserted form. To prove that C

is a tolerance relation, let a, b, c, x € L such that a S b, c and

a 2 x £ £> V c . If u is a relative complement of b A x in [a, b] and

if V is a relative complement of a A (w v x) in [a, c] , then u v v

is a relative complement of a; in [a, b V c] . Indeed, by modularity, we

have

(u v v) A x = (w v v) A {u v x) A x = [w v (y A (u v a;))] A X

= u A x = a ,

u v v v x = [u v (b A a;)] v [y v (c A (M V a;))] = & v c .

Hence, whenever [a, b] and [a, a] are complemented, so is [a, b V a] .

Dually, [a A b, e] is complemented if [a, c] and [i>, c] are

complemented. By modularity, intervals which are weakly perspective into

complemented intervals are complemented. Thus, applying Lemma 1.2, we get

that 5 is a tolerance relation. The blocks of £ are necessarily the

maximal relatively complemented convex sublattices of L . It is routine

to check that a complemented modular lattice is atomistic if and only if it

is weakly atomic. Hence the blocks of 9** n E, are the maximal relatively

atomistic convex sublattices of L .

For a modular lattice L of finite length, the blocks of the relation

£ in Theorem 3.1 are the maximal atomistic intervals of L . These

intervals were studied in [70], [73]. Some of the results in these papers

follow (with remarks in [']) from the fact that £ is a tolerance

relation. If L is a distributive lattice, then £ can be characterized

as the intersection of all tolerance relations with exactly two overlapping

blocks (of. [2]).

Completeness conditions in distributive lattices also give rise to

natural tolerance relations. A lattice L is called <a-complete if for

every nonempty subset A of L with fewer than a elements, the join

V A and the meet A A exist. For a cardinal a , a denotes its

successor cardinal. Then L is a-complete if and only if L is
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<a -complete. L i s conditionally <a-complete if every interval of L is
<a-complete. L is called <a-homogeneous if L is conditionally
<ct-complete and does not contain any a-complete proper interval.

PROPOSITION 3.2. Let L be a distributive lattice and let a be an

uncountable cardinal. Then

E, = {(x, y) € L \ [x A y, x v y] is <a-complete}

is a tolerance relation. The blocks of E, and £a n (C +) * are the
a

maximal conditionally <a-complete convex sublattvces and the maximal

<a~homogeneou8 convex sublattices of L , respectively.

Proof. Let [x, y] and [x, z] be <a-complete intervals. Assume

that A is a nonempty subset of [x, y v z] with fewer than a elements.

Then

u = V y A a and v = V z A a

exist. Since £ is distributive, u V u is an upper bound of -4 . If w

is any upper bound of A , then u £ y A w and v £ z A u , whence

u v v £ u . We conclude that u V v = V A . Dually, if [x, z] and

[y, z] are <a-complete, then [x t\ y, z] is <a-complete. It is readily

seen that an interval which is weakly perspective into an <a-complete

interval is also <a-complete. Thus an application of Lemmas 1.2 and 2.2

completes the proof.

Proposition 3.2 applies to the results in [JJ], §§1, 3, which are

proved for relatively complemented distributive lattices. In this case, of

course, all the £ are congruence relations. For arbitrary distributive

lattices this does not hold (see [ H ] , Example 1.8). For modular lattices,

Ca may even fail to be a tolerance relation, as our final example shows.

Consider the modular lattice K = FM( M ) of 1141, where D denotes the

chain of integers with bounds added (see Figure 5, p. 380). By [J4],

Hilfssatz 2, D 3i [0, a] 3 [a, l] , and hence a is doubly irreducible.

Thus L = K - {a} is a noncomplete modular lattice. Since [0, b] and

[0, c] are complete and b v c = 1 , £^ is not a tolerance relation of
1

L .
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FIGURE 5

References -

[/] Hans-J. Bandelt, "Local polynomial functions on lattices", Houston J.

Math, (to appear).

[2] Hans-J. Bandelt, "Tolerances on median algebras", submitted.

[3] Ivan Chajda, "Notes on lattice congruences", Casopis Pest. Mat. 103

(1978), 255-258.

[4] Ivan Chajda, "A characterization of distributive lattices by-

tolerance lattices", Arch. Math. (Brno) 15 (1979), 203-204.

[5] Ivan Chajda and Bohdan Zelinka, "Lattices of tolerances", Easopis

Pest. Mat. 102 (1977), 10-21+.

[6] Ivan Chajda and Bohdan Zelinka, "Minimal compatible tolerances on

lattices", Czechoslovak Math. J. 27 (102) (1977), 1*52-459.

[7] Ivan Chajda and Bohdan Zelinka, "Tolerances and convexity",

Czechoslovak Math. J. 29 (104) (1979), 584-587..

[S] E. Fried and E.T. Schmidt, "Standard sublattices", Algebra

Universalis 5 (1975), 203-211.

[9] George Gratzer, General lattice theory (Birkhauser Verlag, Basel and

Stuttgart, 1978).

[70] Christian Herrmann, "S-verklebte Summen von Verbanden", Math. Z. 130

(1973), 255-274.

https://doi.org/10.1017/S0004972700007255 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700007255


Tolerance relations on lattices 381

[7 7] J. Jakubfk, "Conditionally a-complete sublattices of a distributive

lattice", Algebra Universalis 2 (1972), 255-261.

[72] M. Kindermann, "Uber die Aquivalenz von Ordnungspolynomvoll-

standigkeit und Toleranzeinfachheit endlicher Verbande",

Contributions to general algebra, 1̂ 5-lli9 (Proc. Klagenfurt

Conf., Klagenfurt, 1978. Verlag Johannes Heyn, Klagenfurt,

1979).

[73] P.M. HypHHHofl [G.£. KurinnoT], "HoBoe flOHasaTe/ibCTBO Teopenbi

An/iyopca" [A new proof of a theorem of Dilworth], Vestnik

Har'kov. GOB. Univ. No. 93 Mat. Vyp. 38 (1973), 11-15, 1.

[74] Aleit Mitschke und Rudolf Wille, "Freie modulare Verbande F M L M . ) ",

Proceedings of the University of Houston Lattice Theory

Conference, Houston, Texas, 1973, 383-396 (Department of

Mathematics, University of Houston, Houston, Texas, 1973).

[75] J.C. Varlet, "A generalization of the notion of pseudo-

complementedness", Bull. Soc. Roy. Sci. Liege 37 (1968),

1^9-158.

Universitat Oldenburg,

Fachbereich IV - Mathematik,

Ammerlander Heerstrasse 67-99,

Postfach 2503,

2900 Oldenburg,

F.R. Germany.

https://doi.org/10.1017/S0004972700007255 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700007255

