MARCINKIEWICZ MULTIPLIERS ON THE HEISENBERG GROUP

Alessandro Veneruso

Let \mathbf{H}_{n} be the Heisenberg group of dimension $2 n+1$. Let $\mathcal{L}_{1}, \ldots, \mathcal{L}_{n}$ be the partial sub-Laplacians on \mathbf{H}_{n} and T the central element of the Lie algebra of \mathbf{H}_{n}. We prove that the operator $m\left(\mathcal{L}_{1}, \ldots, \mathcal{L}_{n},-i T\right)$ is bounded on $L^{p}\left(\mathbf{H}_{n}\right), 1<p<+\infty$, if the function m satisfies a Marcinkiewicz-type condition in \mathbf{R}^{n+1}.

1. Introduction

This paper deals with spectral multipliers on the Heisenberg group. We denote by H_{n} the Heisenberg group of dimension $d=2 n+1$, by $\mathcal{L}_{1}, \ldots, \mathcal{L}_{n}$ the partial sub-Laplacians and by T the central element of the Lie algebra of \mathbf{H}_{n}. The operators $\mathcal{L}_{1}, \ldots, \mathcal{L}_{n},-i T$ form a commutative family of self-adjoint operators, so they admit a joint spectral resolution and it is possible to define the operator $m\left(\mathcal{L}_{1}, \ldots, \mathcal{L}_{n},-i T\right)$ when m is a bounded Borel function on the joint spectrum of $\left\{\mathcal{L}_{1}, \ldots, \mathcal{L}_{n},-i T\right\}$. The boundedness on $L^{2}\left(\mathbf{H}_{n}\right)$ of the operator $m\left(\mathcal{L}_{1}, \ldots, \mathcal{L}_{n},-i T\right)$ is an immediate consequence of the spectral theorem and the boundedness of the function m. We prove that $m\left(\mathcal{L}_{1}, \ldots, \mathcal{L}_{n},-i T\right)$ extends to a bounded operator on $L^{p}\left(\mathbf{H}_{n}\right), 1<p<+\infty$, under suitable Marcinkiewicz-type conditions on the function m.

For the operators of the form $m(\mathcal{L})$, where $\mathcal{L}=\mathcal{L}_{1}+\ldots+\mathcal{L}_{n}$ is the sub-Laplacian on \mathbf{H}_{n}, the problem of establishing sufficient conditions on m that make the operator $m(\mathcal{L})$ bounded on $L^{p}\left(\mathbf{H}_{n}\right), p \neq 2$, has a long history. The first results are due to De Michele and Mauceri [5], who have considered a wider class of operators. Later, these results have been extended to stratified groups by Hulanicki and Stein (in [7, Chapter 6]), Hulanicki and Jenkins [10], Mauceri [15], De Michele and Mauceri [6]. The best result up to now obtained in this more general context is due to Mauceri and Meda [16] and to Christ [3]: if the function m satisfies a Hörmander condition of order $\alpha>Q / 2$ (where Q is the homogeneous dimension of the stratified group), then the operator $m(\mathcal{L})$ extends to an operator which is bounded on L^{p} for $1<p<+\infty$ and of weak type (1,1). More recently, Hebisch [9] and Müller and Stein [19] have proved that for the Heisenberg group the preceding conclusion is still true if the function m satisfies a Hörmander condition of order $\alpha>d / 2$. In the paper of Müller and Stein [19] it is also shown that this condition is

[^0]sharp. Operators of the form $m(\mathcal{L},-i T)$ have been studied by Mauceri [14]. In all these works the authors have considered classes of multipliers that satisfy conditions invariant with respect to the natural family of one-parameter dilations on the group. More recently, Müller, Ricci and Stein $[\mathbf{1 7}, 18]$ have shown the boundedness on $L^{p}\left(\mathbf{H}_{\mathbf{n}}\right), 1<p<+\infty$, of some classes of operators $m(\mathcal{L},-i T)$ where m satisfies conditions invariant with respect to a family of multi-parameter dilations, in analogy with the classical Marcinkiewicz theorem on the Euclidean space [20, Chapter IV].

Operators of the form $m\left(\mathcal{L}_{1}, \ldots, \mathcal{L}_{n},-i T\right)$, when m satisfies a Marcinkiewicz-type condition of infinite order in \mathbf{R}^{n+1}, have been studied recently by Fraser [8], who has characterised their convolution kernels and has shown that these operators are bounded on $L^{p}\left(\mathbf{H}_{n}\right), 1<p<+\infty$. Our result about the boundedness is stronger, because we only need that m satisfies a condition of finite order. Our techniques, based mainly on Littlewood-Paley decompositions, generalise those of Müller, Ricci and Stein [18].

2. Notation and preliminaries

In this paper we set $\mathbf{N}=\{0,1,2, \ldots\}, \mathbf{Z}_{+}=\mathbf{N} \backslash\{0\}, \mathbf{R}_{+}=(0,+\infty), \mathbf{R}^{*}=\mathbf{R} \backslash\{0\}$.
The $2 n+1$-dimensional Heisenberg group \mathbf{H}_{n} is the nilpotent Lie group whose underlying manifold is $\mathbf{C}^{n} \times \mathbf{R}$, with multiplication given by

$$
(z, t)\left(z^{\prime}, t^{\prime}\right)=\left(z+z^{\prime}, t+t^{\prime}+2 \operatorname{Im}\left\langle z, z^{\prime}\right\rangle\right)
$$

where $z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbf{C}^{n}, z^{\prime}=\left(z_{1}^{\prime}, \ldots, z_{n}^{\prime}\right) \in \mathbf{C}^{n}, t, t^{\prime} \in \mathbf{R}$ and $\left\langle z, z^{\prime}\right\rangle=\sum_{j=1}^{n} z_{j} \overline{z_{j}^{\prime}}$. The Lie algebra of \mathbf{H}_{n} is generated by the left-invariant vector fields $Z_{1}, \ldots, Z_{n}, \bar{Z}_{1}, \ldots, \bar{Z}_{n}, T$, where

$$
\begin{aligned}
Z_{j} & =\frac{\partial}{\partial z_{j}}+i \overline{\bar{z}_{j}} \frac{\partial}{\partial t} \\
\bar{Z}_{j} & =\frac{\partial}{\partial \bar{z}_{j}}-i z_{j} \frac{\partial}{\partial t} ; \\
T & =\partial / \partial t .
\end{aligned}
$$

H_{n} is a stratified group endowed with a family of dilations $\left\{\delta_{r}: r>0\right\}$ defined by

$$
\delta_{r}(z, t)=\left(r z, r^{2} t\right) .
$$

The bi-invariant Haar measure on \mathbf{H}_{n} coincides with the Lebesgue measure on $\mathbf{R}^{2 n+1}$. As usual, we denote by $\mathcal{S}\left(\mathbf{H}_{n}\right)$ the Schwartz space of rapidly decreasing smooth functions on \mathbf{H}_{n} and by $\mathcal{S}^{\prime}\left(\mathbf{H}_{n}\right)$ the dual space of $\mathcal{S}\left(\mathbf{H}_{n}\right)$, that is, the space of tempered distributions on \mathbf{H}_{n}. The maximal torus \mathbf{T}^{n}, which we represent by $(-\pi, \pi]^{n}$, acts by automorphisms on \mathbf{H}_{n} in the following way:

$$
a_{\vartheta}(z, t)=\left(e^{i \vartheta_{1}} z_{1}, \ldots, e^{i \vartheta_{n}} z_{n}, t\right)
$$

where $\vartheta=\left(\vartheta_{1}, \ldots, \vartheta_{n}\right) \in \mathbf{T}^{n}$. A function f on \mathbf{H}_{n} is said to be polyradial if $f \circ a_{\theta}=f$ for every $\vartheta \in \mathbf{T}^{n}$, that is, if the value of $f(z, t)$ depends only on $\left|z_{1}\right|, \ldots,\left|z_{n}\right|, t$. We denote by $L_{\mathbf{T}^{n}}^{p}(1 \leqslant p \leqslant+\infty)$ the space of polyradial functions in $L^{p}\left(\mathbf{H}_{n}\right)$. The space $L_{\mathbf{T}^{n}}^{1}$ is a commutative, closed $*$-subalgebra of $L^{1}\left(\mathbf{H}_{n}\right)$. A differential operator D on \mathbf{H}_{n} is said to be \mathbf{T}^{n}-invariant if $D\left(f \circ a_{v}\right)=D(f) \circ a_{\theta}$ for every $f \in C^{\infty}\left(\mathbf{H}_{n}\right)$ and $\vartheta \in \mathbf{T}^{n}$. The commutative algebra of T^{n}-invariant operators is generated by $\mathcal{L}_{1}, \ldots, \mathcal{L}_{n}, T$, where $\mathcal{L}_{1}, \ldots, \mathcal{L}_{n}$ are the partial sub-Laplacians on \mathbf{H}_{n} defined by

$$
\mathcal{L}_{j}=-\frac{1}{2}\left(Z_{j} \bar{Z}_{j}+\bar{Z}_{j} Z_{j}\right)
$$

The sub-Laplacian on \mathbf{H}_{n} is $\mathcal{L}=\sum_{j=1}^{n} \mathcal{L}_{j}$. The Gelfand spectrum Δ of $L_{\mathbf{T}^{n}}^{1}$ can be identified with $\left(\mathbf{N}^{n} \times \mathbf{R}^{*}\right) \cup\left([0,+\infty)^{n}\right)$. The Gelfand transform $\mathcal{G} f$ of a function $f \in L_{\mathbf{T}^{n}}^{1}$ is given by

$$
\mathcal{G} f(k, \lambda)=\int_{\mathbf{H}_{\boldsymbol{n}}} f(x) \omega_{k, \lambda}(x) d x
$$

with $(k, \lambda) \in \mathbf{N}^{n} \times \mathbf{R}^{*}$ and

$$
\omega_{k, \lambda}(z, t)=e^{-i \lambda t} e^{-|\lambda| \cdot|z|^{2}} \prod_{j=1}^{n} L_{k_{j}}\left(2|\lambda| \cdot\left|z_{j}\right|^{2}\right)
$$

where $L_{r}(r \in \mathbf{N})$ is the Laguerre polynomial of type 0 and degree r, defined by

$$
L_{r}(\tau)=\sum_{s=0}^{r} \frac{(-1)^{s}}{s!}\binom{r}{s} \tau^{s}
$$

The Godement-Plancherel measure μ on Δ is given by

$$
\begin{equation*}
\int_{\Delta} F(\psi) d \mu(\psi)=\frac{2^{n-1}}{\pi^{n+1}} \sum_{k \in \mathbf{N}^{n}} \int_{\mathbf{R}^{\cdot}} F(k, \lambda)|\lambda|^{n} d \lambda \tag{2.1}
\end{equation*}
$$

We ignore the remaining part of Δ, because it is of measure zero. By the GodementPlancherel theory, \mathcal{G} extends uniquely to a unitary operator $\tilde{\mathcal{G}}: L_{\mathbf{T}^{n}}^{2} \longrightarrow L^{2}(\Delta)$. For the proofs and further information about all these facts, see for instance $[\mathbf{2}, \mathbf{1 1}, 19]$.

3. Joint spectral multipliers

The operators $\mathcal{L}_{1}, \ldots, \mathcal{L}_{n},-i T$ form a family of commuting self-adjoint operators. Their joint spectrum (see [2]) is the subset $\Sigma_{1} \cup \Sigma_{2}$ of R^{n+1}, where

$$
\Sigma_{1}=\left\{\left(\left(2 k_{1}+1\right)|\lambda|, \ldots,\left(2 k_{n}+1\right)|\lambda|, \lambda\right): k_{1}, \ldots, k_{n} \in \mathbf{N}, \lambda \in \mathbf{R}^{*}\right\}
$$

and

$$
\Sigma_{2}=\left\{\left(\mu_{1}, \ldots, \mu_{n}, 0\right): \mu_{1}, \ldots, \mu_{n} \in[0,+\infty)\right\}
$$

Let us define

$$
\Lambda=|T|
$$

Arguing as in [18], one shows that also the operators $\Lambda^{-1} \mathcal{L}_{1}, \ldots, \Lambda^{-1} \mathcal{L}_{n},-i T$ form a family of commuting self-adjoint operators. Their joint spectrum is $(2 \mathbf{N}+1)^{\boldsymbol{n}} \times \mathbf{R}$. By the spectral theorem, the multiplier operators $m\left(\mathcal{L}_{1}, \ldots, \mathcal{L}_{n},-i T\right)$ and $m\left(\Lambda^{-1} \mathcal{L}_{1}, \ldots, \Lambda^{-1} \mathcal{L}_{n}\right.$, $-i T)$ are bounded on $L^{2}\left(\mathrm{H}_{n}\right)$ for all bounded Borel functions m defined on the corresponding joint spectra. Both these operators commute with left translations, so by [12] they are given by right convolution with tempered distributions, which we denote by $m\left(\mathcal{L}_{1}, \ldots, \mathcal{L}_{n},-i T\right) \delta$ and $m\left(\Lambda^{-1} \mathcal{L}_{1}, \ldots, \Lambda^{-1} \mathcal{L}_{n},-i T\right) \delta$, respectively. We also use the notations

$$
\begin{aligned}
& M_{m}=m\left(\mathcal{L}_{1}, \ldots, \mathcal{L}_{n},-i T\right) \delta \\
& N_{m}=m\left(\Lambda^{-1} \mathcal{L}_{1}, \ldots, \Lambda^{-1} \mathcal{L}_{n},-i T\right) \delta
\end{aligned}
$$

By the Godement-Plancherel theory, we have that $M_{m} \in L_{\mathbf{T}^{n}}^{2}$ if and only if the function

$$
\widetilde{\mathcal{G}} M_{m}(k, \lambda)=m\left(\left(2 k_{1}+1\right)|\lambda|, \ldots,\left(2 k_{n}+1\right)|\lambda|, \lambda\right)
$$

is in $L^{2}(\Delta)$. Similarly, we have that $N_{m} \in L_{\mathbf{T}^{n}}^{2}$ if and only if the function

$$
\tilde{\mathcal{G}} N_{m}(k, \lambda)=m\left(2 k_{1}+1, \ldots, 2 k_{n}+1, \lambda\right)
$$

is in $L^{2}(\Delta)$.

4. Littlewood-Paley decompositions

Fix a function $\chi \in C_{c}^{\infty}((1 / 2,2))$ such that $\chi \geqslant 0$ and $\sum_{m \in \mathbf{Z}} \chi\left(2^{-m} \lambda\right)^{2}=1$ for $\lambda>0$. Let $\psi(\lambda)=\chi(|\lambda|)$ for $\lambda \in \mathbf{R}$. For $j=\left(j_{1}, \ldots, j_{n+1}\right) \in \mathbf{Z}^{n+1}$ and $(\mu, \lambda)=\left(\mu_{1}, \ldots, \mu_{n}, \lambda\right) \in \mathbf{R}^{n+1}$ write

$$
\chi_{j}(\mu, \lambda)=\prod_{r=1}^{n} \chi\left(2^{-j_{r}} \mu_{r}\right) \cdot \psi\left(2^{-j_{n+1}} \lambda\right)
$$

Set

$$
\begin{aligned}
& \varphi_{j}=\chi_{j}\left(\mathcal{L}_{1}, \ldots, \mathcal{L}_{n},-i T\right) \delta \\
& \Phi_{j}=\chi_{j}\left(\Lambda^{-1} \mathcal{L}_{1}, \ldots, \Lambda^{-1} \mathcal{L}_{n},-i T\right) \delta
\end{aligned}
$$

The properties of χ imply (see [1]) that φ_{j} and Φ_{j} are in $\mathcal{S}\left(\mathrm{H}_{n}\right)$ and satisfy

$$
\sum_{j \in \mathbf{Z}^{n+1}} \mathcal{G} \varphi_{j}(k, \lambda)^{2}=\sum_{j \in \mathbf{Z}^{n+1}} \mathcal{G} \Phi_{j}(k, \lambda)^{2}=1
$$

For $u \in \mathcal{S}^{\prime}\left(\mathrm{H}_{n}\right)$ we define the following Littlewood-Paley functions:

$$
\begin{aligned}
& g_{1}(u)=\left(\sum_{j \in \mathbf{Z}^{n+1}}\left|u * \varphi_{j}\right|^{2}\right)^{1 / 2} \\
& g_{2}(u)=\left(\sum_{j \in \mathbf{Z}^{n+1}}\left|u * \Phi_{j}\right|^{2}\right)^{1 / 2}
\end{aligned}
$$

Arguing as in [18], it is easy to prove that g_{1} and g_{2} are isometries of $L^{2}\left(\mathbf{H}_{n}\right)$.
PROPOSITION 4.1. For $1<p<+\infty$ there exists a constant $C_{p} \geqslant 1$ such that
(a) if $f \in L^{p}\left(\mathbf{H}_{n}\right)$ then $g_{1}(f) \in L^{p}\left(\mathbf{H}_{n}\right)$ and $\left\|g_{1}(f)\right\|_{p} \leqslant C_{p}\|f\|_{p}$;
(b) if $f \in L^{2}\left(\mathbf{H}_{n}\right)$ and $g_{1}(f) \in L^{p}\left(\mathbf{H}_{n}\right)$ then $f \in L^{p}\left(\mathbf{H}_{n}\right)$ and $\|f\|_{p} \leqslant C_{p}\left\|g_{1}(f)\right\|_{p}$.
Proof: By a standard duality argument (see [20, Chapter II]), it suffices to prove (a). Moreover, by some standard randomisation argument based on Khintchin's inequality (see [21, Chapter V]), it suffices to prove that there exists $C_{p}^{\prime}>0$ such that

$$
\left\|\sum_{j_{1}=-N}^{N} \cdots \sum_{j_{n+1}=-N}^{N} \varepsilon_{j_{1}}^{(1)} \cdots \varepsilon_{j_{n+1}}^{(n+1)}\left(f * \varphi_{j}\right)\right\|_{p} \leqslant C_{p}^{\prime}\|f\|_{p}
$$

for every $N \in \mathbf{N}$ and for every choice of the $n+1$ sequences $\left\{\varepsilon_{j_{1}}^{(1)}\right\}_{j_{1} \in \mathbf{Z}}, \ldots,\left\{\varepsilon_{j_{n+1}}^{(n+1)}\right\}_{j_{n+1} \in \mathbf{Z}}$ with values in $\{-1,0,1\}$. Since $\mathcal{S}\left(\mathbf{H}_{n}\right)$ is dense in $L^{p}\left(\mathbf{H}_{n}\right)$, a standard approximation argument allows us to assume that $f \in \mathcal{S}\left(\mathbf{H}_{n}\right)$. So

$$
\begin{aligned}
& \sum_{j_{1}=-N}^{N} \cdots \sum_{j_{n+1}=-N}^{N} \varepsilon_{j_{1}}^{(1)} \cdots \varepsilon_{j_{n+1}}^{(n+1)}\left(f * \varphi_{j}\right) \\
& =\left(\sum_{j_{1}=-N}^{N} \varepsilon_{j_{1}}^{(1)} \chi\left(2^{-j_{1}} \mathcal{L}_{1}\right)\right) \cdots\left(\sum_{j_{n}=-N}^{N} \varepsilon_{j_{n}}^{(n)} \chi\left(2^{-j_{n}} \mathcal{L}_{n}\right)\right)\left(\sum_{j_{n+1}=-N}^{N} \varepsilon_{j_{n+1}}^{(n+1)} \psi\left(-2^{-j_{n+1}} i T\right)\right) f .
\end{aligned}
$$

A straight-forward calculation yields

$$
\sup _{\lambda>0}\left|\lambda^{h} \frac{d^{h}}{d \lambda^{h}}\left(\sum_{j_{r}=-N}^{N} \varepsilon_{j_{r}}^{(r)} \chi\left(2^{-j_{r}} \lambda\right)\right)\right| \leqslant A_{h}
$$

for $r \in\{1, \ldots, n\}$, where the constant A_{h} is independent of N and of the choice of the sequence $\left\{\varepsilon_{j_{r}}^{(r)}\right\}_{j_{r} \in \mathbf{Z}}$. Therefore, by a suitable multiplier theorem (see [7, Chapter 6]), we have

$$
\left\|\sum_{j_{r}=-N}^{N} \varepsilon_{j_{r}}^{(r)} \chi\left(2^{-j_{r}} \mathcal{L}^{\mathbf{H}_{1}}\right) g\right\|_{L^{p}\left(\mathbf{H}_{1}\right)} \leqslant M_{p}\|g\|_{L^{p}\left(\mathbf{H}_{1}\right)}
$$

for $g \in \mathcal{S}\left(\mathbf{H}_{\mathbf{1}}\right)$, where $\mathcal{L}^{\mathbf{H}_{1}}$ is the sub-Laplacian on \mathbf{H}_{1} and the constant M_{p} depends only on p. Applying the transference principle [4] yields

$$
\left\|\sum_{j_{r}=-N}^{N} \varepsilon_{j_{r}}^{(r)} \chi\left(2^{-j_{r}} \mathcal{L}_{r}\right) f\right\|_{L^{p}\left(\mathbf{H}_{n}\right)} \leqslant M_{p}\|f\|_{L^{p}\left(\mathbf{H}_{n}\right)}
$$

for $f \in \mathcal{S}\left(\mathbf{H}_{\boldsymbol{n}}\right)$. Similarly we obtain

$$
\left\|\sum_{j_{n+1}=-N}^{N} \varepsilon_{j_{n+1}}^{(n+1)} \psi\left(-2^{-j_{n+1}} i T\right) f\right\|_{L^{p}\left(\mathbf{H}_{n}\right)} \leqslant M_{p}^{\prime}\|f\|_{L^{p}\left(\mathbf{H}_{n}\right)}
$$

for $f \in \mathcal{S}\left(\mathbf{H}_{n}\right)$. This gives the conclusion.
As a corollary of Proposition 4.1, we obtain a weak Marcinkiewicz-type multiplier theorem. For $N \in \mathrm{~N}$ and $m \in C^{N}\left(\left(\mathbf{R}_{+}\right)^{n} \times \mathbf{R}^{*}\right)$ put

$$
\|m\|_{(N)}=\sup _{\substack{\alpha \in N^{n+1} \\|\alpha| \leqslant N}} \sup _{\substack{\mu \in\left(\mathbf{R}_{+}\right)^{n} \\ \lambda \in \mathbf{R}^{\cdot}}}\left|\left(\mu_{1} \frac{\partial}{\partial \mu_{1}}\right)^{\alpha_{1}} \cdots\left(\mu_{n} \frac{\partial}{\partial \mu_{n}}\right)^{\alpha_{n}}\left(\lambda \frac{\partial}{\partial \lambda}\right)^{\alpha_{n+1}} m(\mu, \lambda)\right|
$$

Corollary 4.2. There exists $N \in \mathbf{N}$ such that if $m \in C^{N}\left(\left(\mathbf{R}_{+}\right)^{n} \times \mathbf{R}^{*}\right)$ and $\|m\|_{(N)}<+\infty$ then the operator $m\left(\mathcal{L}_{1}, \ldots, \mathcal{L}_{n},-i T\right)$ is bounded on $L^{p}\left(\mathbf{H}_{n}\right)$, $1<p<+\infty$, with norm controlled by $\|m\|_{(N)}$.
We omit the proof of Corollary 4.2, because it is an easy but lengthy adaptment of the proof of Corollary 4.3 in [18], where the operator $m(\mathcal{L},-i T)$ is considered. The only crucial point is that we apply our Proposition 4.1 instead of the corresponding Proposition 4.1 in [18]. We remark that Corollary 4.2 has also been proved in [8], however by a different method. Once we have Corollary 4.2, arguing again as in [18] we easily obtain the following

Proposition 4.3. For $1<p<+\infty$ there exists a constant $C_{p} \geqslant 1$ such that
(a) if $f \in L^{p}\left(\mathbf{H}_{n}\right)$ then $g_{2}(f) \in L^{p}\left(\mathbf{H}_{n}\right)$ and $\left\|g_{2}(f)\right\|_{p} \leqslant C_{p}\|f\|_{p}$;
(b) if $f \in L^{2}\left(\mathbf{H}_{n}\right)$ and $g_{2}(f) \in L^{p}\left(\mathbf{H}_{n}\right)$ then $f \in L^{p}\left(\mathbf{H}_{n}\right)$ and $\|f\|_{p} \leqslant C_{p}\left\|g_{2}(f)\right\|_{p}$.

5. Functional calculus on the Gelfand spectrum

In Section 2 we have seen that the Gelfand spectrum Δ can be identified, as a measure space, with the space $\mathbf{N}^{n} \times \mathbf{R}^{*}$ equipped with the measure μ defined by (2.1). Thus Δ can be considered as a subspace of the measure space $S=\mathbf{Z}^{n} \times \mathbf{R}$ equipped with the measure $\tilde{\mu}$ defined by

$$
\int_{S} G(\psi) d \widetilde{\mu}(\psi)=\frac{2^{n-1}}{\pi^{n+1}} \sum_{k \in \mathbf{Z}^{n}} \int_{\mathbf{R}} G(k, \lambda)|\lambda|^{n} d \lambda .
$$

We consider the canonical operators $\mathcal{P}: L^{2}(S) \longrightarrow L^{2}(\Delta)$ and $\mathcal{Q}: L^{2}(\Delta) \longrightarrow L^{2}(S)$ defined by

$$
\begin{aligned}
& (\mathcal{P G})(k, \lambda)=G(k, \lambda) ; \\
& (\mathcal{Q F})(k, \lambda)= \begin{cases}F(k, \lambda) & \text { if } k \in \mathbf{N}^{n} \text { and } \lambda \in \mathbf{R}^{*} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Let G be a function on S. For $j \in\{1, \ldots, n\}$ and $h \in \mathbf{Z}$ we define the translation operator $\tau_{j}^{(h)}$ by

$$
\begin{equation*}
\left(\tau_{j}^{(h)} G\right)(k, \lambda)=G\left(k_{1}, \ldots, k_{j-1}, k_{j}+h, k_{j+1}, \ldots, k_{n}, \lambda\right) \tag{5.1}
\end{equation*}
$$

We also define the difference operator

$$
\Delta_{j}=\tau_{j}^{(1)}-\tau_{j}^{(0)}
$$

Finally we define the multiplication operator M_{j} by

$$
\begin{equation*}
\left(M_{j} G\right)(k, \lambda)=k_{j} G(k, \lambda) \tag{5.2}
\end{equation*}
$$

From (5.1) and (5.2) we immediately obtain the following commutation relations between the operators $\tau_{j}^{(h)}$ and M_{j} :

$$
\begin{aligned}
M_{i} M_{j} & =M_{j} M_{i} ; \\
\tau_{j}^{(h)} M_{i} & =M_{i} \tau_{j}^{(h)} \quad \text { if } i \neq j ; \\
\tau_{j}^{(h)} M_{j} & =M_{j} \tau_{j}^{(h)}+h \tau_{j}^{(h)} ; \\
\tau_{j}^{(h)} \tau_{i}^{(l)} & =\tau_{i}^{(l)} \tau_{j}^{(h)} ; \\
\tau_{j}^{(h)} \tau_{j}^{(())} & =\tau_{j}^{(h+l)} .
\end{aligned}
$$

These relations and simple induction arguments lead to the following
Lemma 5.1. For $\nu, \beta, q \in \mathbf{N}, m \in \mathbf{Z}_{+}, h \in \mathbf{Z}, j \in\{1, \ldots, n\}$ the following identities hold:

$$
\begin{aligned}
M_{j}^{\nu} \tau_{j}^{(h)} & =\sum_{r=0}^{\nu}(-h)^{\nu-r}\binom{\nu}{r} \tau_{j}^{(h)} M_{j}^{r} ; \\
M_{j}^{m} \Delta_{j} & =\Delta_{j} M_{j}^{m}+\sum_{r=0}^{m-1}(-1)^{m-r}\binom{m}{r} \tau_{j}^{(1)} M_{j}^{r} ; \\
M_{j}^{\nu} \Delta_{j}^{\nu+q} & =\sum_{r=0}^{\nu} \sum_{j=0}^{q+2^{\nu-1}} a_{\nu, q, r, s} \tau_{j}^{(s)} M_{j}^{r} \Delta_{j}^{r} ; \\
M_{j}^{\nu} \Delta_{j}^{\nu+q} \tau_{j}^{(h)} M_{j}^{\beta} \Delta_{j}^{\beta} & =\sum_{r=0}^{\nu+\beta} \sum_{s=0}^{2 \beta\left(q+\nu+2^{\nu-1)}\right.} b_{\nu, \beta, q, h, r, s} \tau_{j}^{(h+s)} M_{j}^{r} \Delta_{j}^{r+q} .
\end{aligned}
$$

The coefficients $a_{\nu, q, r, s}$ and $b_{\nu, \beta, q, h, r, s}$ in the last two identities are real.

Let p be a polyradial polynomial on $\mathbf{H}_{\boldsymbol{n}}$. For all $f \in L_{\mathbf{T}^{n}}^{2}$ such that $p f \in L_{\mathbf{T}^{n}}^{2}$ let us define

$$
\partial_{p}(\tilde{\mathcal{G}} f)=\tilde{\mathcal{G}}(p f)
$$

The operator ∂_{p} is thus densely defined on $L^{2}(\Delta)$ and its domain is

$$
\operatorname{Dom} \partial_{p}=\left\{F \in L^{2}(\Delta): p \cdot \tilde{\mathcal{G}}^{-1} F \in L_{\mathbf{T}^{n}}^{2}\right\}
$$

Straight-forward computations (see [5, 13, 19]) yield

$$
\begin{align*}
& \left(\partial_{|z j|} F\right)(k, \lambda) \\
& =\frac{1}{2|\lambda|}\left\{\left(2 k_{j}+1\right) F(k, \lambda)-\left(k_{j}+1\right)\left(\tau_{j}^{(1)} \mathcal{Q} F\right)(k, \lambda)-k_{j}\left(\tau_{j}^{(-1)} \mathcal{Q} F\right)(k, \lambda)\right\}
\end{align*}
$$

(5.4) $\left(\partial_{-i t} F\right)(k, \lambda)$

$$
=\frac{\partial F}{\partial \lambda}(k, \lambda)+\frac{1}{2 \lambda} \sum_{j=1}^{n}\left\{F(k, \lambda)-\left(k_{j}+1\right)\left(\tau_{j}^{(1)} \mathcal{Q} F\right)(k, \lambda)+k_{j}\left(\tau_{j}^{(-1)} \mathcal{Q} F\right)(k, \lambda)\right\}
$$

Since every polyradial polynomial on \mathbf{H}_{n} has the form

$$
p(z, t)=\sum_{i_{1}=0}^{N} \cdots \sum_{i_{n}=0}^{N} \sum_{l=0}^{N} a_{i_{1}, \ldots, i_{n}, l}\left|z_{1}\right|^{2 i_{1}} \cdots\left|z_{n}\right|^{2 i_{n}}(-i t)^{l}
$$

with $a_{i_{1}, \ldots, i_{n}, l} \in \mathbf{C}$, by (5.3) and (5.4) we can extend the operator ∂_{p} to an operator $\tilde{\partial}_{p}$ on $L^{2}(S)$ defined by

$$
\begin{equation*}
\tilde{\partial}_{p}=\sum_{i_{1}=0}^{N} \cdots \sum_{i_{n}=0}^{N} \sum_{l=0}^{N} a_{i_{1}, \ldots, i_{n}, t} \tilde{\partial}_{\left|z_{l}\right| \mid}^{i_{1}} \cdots \tilde{\partial}_{\left|z_{n}\right| \mid}^{i_{n}} \tilde{\partial}_{-i t}^{d} \tag{5.5}
\end{equation*}
$$

where
(5.6) $\quad\left(\left.\tilde{\partial}_{\mid z j}\right|^{2} G\right)(k, \lambda)$

$$
=\frac{1}{2|\lambda|}\left\{\left(2 k_{j}+1\right) G(k, \lambda)-\left(k_{j}+1\right)\left(\tau_{j}^{(1)} G\right)(k, \lambda)-k_{j}\left(\tau_{j}^{(-1)} G\right)(k, \lambda)\right\} ;
$$

(5.7) $\quad\left(\tilde{\partial}_{-i t} G\right)(k, \lambda)$

$$
=\frac{\partial G}{\partial \lambda}(k, \lambda)+\frac{1}{2 \lambda} \sum_{j=1}^{n}\left\{G(k, \lambda)-\left(k_{j}+1\right)\left(\tau_{j}^{(1)} G\right)(k, \lambda)+k_{j}\left(\tau_{j}^{(-1)} G\right)(k, \lambda)\right\} .
$$

The operator $\tilde{\partial}_{p}$ is thus densely defined on $L^{2}(S)$ and its domain is

$$
\operatorname{Dom} \tilde{\partial}_{p}=\left\{G \in L^{2}(S): \tilde{\partial}_{p} G \in L^{2}(S)\right\}
$$

This domain contains the subspace $\mathcal{Q}\left(\operatorname{Dom} \partial_{p}\right)$. Furthermore, the following identity is valid on Dom ∂_{p} :

$$
\begin{equation*}
\partial_{p}=\mathcal{P} \tilde{\partial}_{p} \mathcal{Q} \tag{5.8}
\end{equation*}
$$

Let us introduce the following notation:

$$
\begin{align*}
& \left(a \cdot \tilde{\tau}_{j}\right)=\sum_{h=-H}^{H} a^{(h)} \tau_{j}^{(h)} ; \tag{5.9}\\
& (a \cdot \tilde{\tau})=\sum_{h_{1}=-H}^{H} \cdots \sum_{h_{n}=-H}^{H} a^{\left(h_{1}, \ldots, h_{n}\right)} \tau_{1}^{\left(h_{1}\right)} \cdots \tau_{n}^{\left(h_{n}\right)} \tag{5.10}
\end{align*}
$$

where $H \in \mathbf{N}$ and $a^{(h)}, a^{\left(h_{1}, \ldots, h_{n}\right)} \in \mathbf{R}$.

Proposition 5.2.

(a) For $q \in \mathbf{N}$ and $j \in\{1, \ldots, n\}$ we have

$$
\tilde{\partial}_{|z ;|^{2}}^{q}=|\lambda|^{-q} \sum_{\nu=0}^{q}\left(a \cdot \tilde{\tau}_{j}\right) M_{j}^{\nu} \Delta_{j}^{\nu+q}
$$

where the integer H and the coefficients $a^{(h)}$ involved in the expression ($a \cdot \tilde{\tau}_{j}$) according to (5.9) depend only on q and ν.
(b) For $q \in \mathbf{N}$ and $T \in \mathbf{R}$ we have

$$
\tilde{\partial}_{T^{2}+t^{2}}^{q}=\sum_{\nu=0}^{2 q} \sum_{\substack{\beta \in \mathbb{N}^{n} \\|\beta| \leqslant 2 q-\nu}} \sum_{\gamma=0}^{[q-\nu / 2]}(a \cdot \tilde{\tau}) T^{2 \gamma} \cdot|\lambda|^{-(2 q-\nu-2 \gamma)} \frac{\partial^{\nu}}{\partial \lambda^{\nu}} M_{1}^{\beta_{1}} \cdots M_{n}^{\beta_{n}} \Delta_{1}^{\beta_{1}} \cdots \Delta_{n}^{\beta_{n}}
$$

where [.] denotes the greatest integer function and the integer H and the coefficients $a^{\left(h_{1}, \ldots, h_{n}\right)}$ involved in the expression ($a \cdot \tilde{\tau}$) according to (5.10) depend only on $q, \nu, \beta, \gamma, \operatorname{sgn} \lambda$.

Proof: By straight-forward computations, we can rewrite (5.6) and (5.7) as

$$
\begin{aligned}
& \tilde{\partial}_{\left|z_{j}\right|^{2}}=-\frac{1}{2|\lambda|}\left\{\tau_{j}^{(-1)} M_{j} \Delta_{j}^{2}+\left(2 \tau_{j}^{(0)}-\tau_{j}^{(-1)}\right) \Delta_{j}\right\} ; \\
& \tilde{\partial}_{-i t}=\frac{\partial}{\partial \lambda}-\frac{1}{2 \lambda} \sum_{j=1}^{n}\left\{\left(\tau_{j}^{(0)}+\tau_{j}^{(-1)}\right) M_{j} \Delta_{j}+\tau_{j}^{(1)}-\tau_{j}^{(-1)}\right\} .
\end{aligned}
$$

Then

$$
\begin{aligned}
\tilde{\partial}_{\mathrm{T}^{2}+t^{2}}= & T^{2}-\widetilde{\partial}_{-i t}^{2} \\
= & T^{2}-\frac{\partial^{2}}{\partial \lambda^{2}}+\frac{\partial}{\partial \lambda}\left(\frac{1}{2 \lambda} \sum_{j=1}^{n}\left\{\left(\tau_{j}^{(0)}+\tau_{j}^{(-1)}\right) M_{j} \Delta_{j}+\tau_{j}^{(1)}-\tau_{j}^{(-1)}\right\}\right) \\
& +\frac{1}{2 \lambda} \frac{\partial}{\partial \lambda}\left(\sum_{j=1}^{n}\left\{\left(\tau_{j}^{(0)}+\tau_{j}^{(-1)}\right) M_{j} \Delta_{j}+\tau_{j}^{(1)}-\tau_{j}^{(-1)}\right\}\right) \\
& -\frac{1}{4 \lambda^{2}}\left(\sum_{i=1}^{n}\left\{\left(\tau_{i}^{(0)}+\tau_{i}^{(-1)}\right) M_{i} \Delta_{i}+\tau_{i}^{(1)}-\tau_{i}^{(-1)}\right\}\right) \\
& \left(\sum_{j=1}^{n}\left\{\left(\tau_{j}^{(0)}+\tau_{j}^{(-1)}\right) M_{j} \Delta_{j}+\tau_{j}^{(1)}-\tau_{j}^{(-1)}\right\}\right) .
\end{aligned}
$$

Using these expressions for $\tilde{\mid z j}_{| |^{2}}$ and $\tilde{\partial}_{T^{2}+t^{2}}$, we can easily obtain (a) and (b) by induction on q and iterated applications of Lemma 5.1.

The reason why we have considered the space $\mathbf{Z}^{n} \times \mathbf{R}$ rather than the space $\mathbf{N}^{n} \times \mathbf{R}^{*}$ is that $\mathbf{Z}^{n} \times \mathbf{R}$ has some properties which $\mathbf{N}^{n} \times \mathbf{R}^{*}$ does not have: in particular, it is a locally compact Abelian group, so it is possible to define a Fourier transform on it. If f is a function in $L^{1}\left(\mathbf{Z}^{n} \times \mathbf{R}\right)$, the Fourier transform of f is the function $\hat{f} \in C_{0}\left(\mathbf{T}^{n} \times \mathbf{R}\right)$ defined by

$$
\hat{f}(\vartheta, s)=\sum_{k \in \mathbf{Z}^{n}} \int_{\mathbf{R}} f(k, \lambda) e^{-i(k \cdot \vartheta+\lambda s)} d \lambda
$$

The Fourier transform on $\mathbf{Z}^{n} \times \mathbf{R}$ extends uniquely to a unitary operator (apart from a multiplicative constant) from $L^{2}\left(\mathbf{Z}^{n} \times \mathbf{R}\right)$ to $L^{2}\left(\mathbf{T}^{n} \times \mathbf{R}\right)$.

If f is a suitable function on $\mathbf{Z}^{n} \times \mathbf{R}$, we have

$$
\begin{aligned}
& \widehat{\Delta_{j} f}(\vartheta, s)=\left(e^{i \vartheta_{j}}-1\right) \hat{f}(\vartheta, s) \\
& \widehat{\partial f} \\
& \frac{\partial \lambda}{\partial \lambda}(\vartheta, s)=i s \hat{f}(\vartheta, s)
\end{aligned}
$$

Correspondingly, for $\alpha \geqslant 0$ we define fractional powers $\left|\Delta_{j}\right|^{\alpha}$ and $\left|\frac{\partial}{\partial \lambda}\right|^{\alpha}$ by

$$
\begin{aligned}
& \left(\left|\Delta_{j}\right|^{\alpha} f\right)^{\wedge}(\vartheta, s)=\left|e^{i \vartheta_{j}}-1\right|^{\alpha} \hat{f}(\vartheta, s) \\
& \left(\left|\frac{\partial}{\partial \lambda}\right|^{\alpha} f\right)^{-}(\vartheta, s)=|s|^{\alpha} \widehat{f}(\vartheta, s)
\end{aligned}
$$

Similarly, for $r_{1}, \ldots, r_{n}, \rho \geqslant 0$, we define the operator $\left(1+\sum_{j=1}^{n}\left|r_{j} \Delta_{j}\right|+\left|\rho \frac{\partial}{\partial \lambda}\right|\right)^{\alpha} l$ by

$$
\begin{equation*}
\left(\left(1+\sum_{j=1}^{n}\left|r_{j} \Delta_{j}\right|+\left|\rho \frac{\partial}{\partial \lambda}\right|\right)^{\alpha} f\right)^{-}(\vartheta, s)=\left(1+\sum_{j=1}^{n} r_{j}\left|e^{i \theta_{j}}-1\right|+\rho|s|\right)^{\alpha} \hat{f}(\vartheta, s) \tag{5.11}
\end{equation*}
$$

We shall use all these notations in Section 6.

6. Multipliers on the joint spectrum

In this section m is a bounded function on ($2 \mathbf{N}+1)^{n} \times \mathbf{R}^{*}$ such that $m\left(2 k_{1}+1, \ldots, 2 k_{n}+1, \cdot\right)$ is a Borel function on \mathbf{R}^{*} for every $k=\left(k_{1}, \ldots, k_{n}\right) \in \mathbf{N}^{n}$.

Fix a function $\eta \in C_{c}^{\infty}((1 / 4,4))$ such that $\eta \geqslant 0$ and $\eta=1$ in $[1 / 2,2]$. For $j=\left(j_{1}, \ldots, j_{n+1}\right) \in \mathbf{Z}^{n+1}$ and $(\mu, \lambda)=\left(\mu_{1}, \ldots, \mu_{n}, \lambda\right) \in \mathbf{R}^{n+1}$ put

$$
\begin{equation*}
\eta_{j}(\mu, \lambda)=\prod_{r=1}^{n} \eta\left(2^{-j_{r}} \mu_{r}\right) \cdot \eta\left(2^{-j_{n+1}}|\lambda|\right) \tag{6.1}
\end{equation*}
$$

Set

$$
\begin{equation*}
N_{j}=\left(m \eta_{j}\right)\left(\Lambda^{-1} \mathcal{L}_{1}, \ldots, \Lambda^{-1} \mathcal{L}_{n},-i T\right) \delta \tag{6.2}
\end{equation*}
$$

Since the function

$$
(k, \lambda) \longmapsto\left(m \eta_{j}\right)\left(2 k_{1}+1, \ldots, 2 k_{n}+1, \lambda\right)
$$

is in $L^{2}(\Delta)$, by (6.2) and the facts established in Section 3 we have that $N_{j} \in L_{\mathbf{T}^{n}}^{2}$ for all $j \in \mathbf{Z}^{n+1}$. We consider the function $m_{j} \in L^{2}(S)$ defined by

$$
\begin{equation*}
m_{j}=\mathcal{Q} \tilde{\mathcal{G}} N_{j} \tag{6.3}
\end{equation*}
$$

where the operators \mathcal{Q} and $\tilde{\mathcal{G}}$ have been introduced in the previous sections. According to (5.11), for $\alpha \geqslant 0$ and $\beta \geqslant 0$ we define the scale-invariant localised Sobolev norm

$$
\begin{align*}
&\|m\|_{\ell^{2}\left(L^{2}\right)_{\alpha, \beta, \text { loc }}}=\left\{\sup _{j \in \mathbf{Z}^{n+1}} 2^{-\sum_{r=1}^{n+1} j_{r}} \sum_{k \in \mathbf{Z}^{n}} \int_{\mathbf{R}} \mid\left(1+\left|2^{j_{1}} \Delta_{1}\right|\right)^{\alpha} \cdots\left(1+\left|2^{j_{n}} \Delta_{n}\right|\right)^{\alpha}\right. \\
& \text { 4) }\left.\left.\left(1+\sum_{r=1}^{n}\left|2^{j_{r}} \Delta_{r}\right|+\left|2^{j_{n+1}} \frac{\partial}{\partial \lambda}\right|\right)^{\beta} m_{j}(k, \lambda)\right|^{2} d \lambda\right\}^{1 / 2} . \tag{6.4}
\end{align*}
$$

We remark that, by standard partition of unity arguments, it can easily be shown that different bump functions η lead to equivalent $\ell^{2}\left(L^{2}\right)_{\alpha, \beta, \text { sloc }}$ norms.

For $\delta>0, \gamma \geqslant 0$ and $j \in \mathrm{Z}^{n+1}$ let $W_{\delta}^{(j)}$ and $u_{\gamma}^{(j)}$ be the weights on \mathbf{H}_{n} defined by

$$
\begin{align*}
W_{\delta}^{(j)}(z, t) & =2^{-\sum_{r=1}^{n} j_{r}-(n+1) j_{n+1}} \cdot \prod_{r=1}^{n}\left(1+2^{\left(j_{r}+j_{n+1}\right) / 2}\left|z_{r}\right|\right)^{2(1+\delta)} \cdot\left(1+2^{j_{n+1}}|t|\right)^{1+\delta} ; \tag{6.5}\\
u_{\gamma}^{(j)}(z, t) & =2^{2 \gamma j_{n+1}} \cdot \prod_{r=1}^{n}\left\{1+\left(2^{j_{r}+j_{n+1}}\left|z_{r}\right|^{2}\right)^{2 \gamma}\right\} \cdot\left(2^{-2 j_{n+1}}+t^{2}\right)^{\gamma} . \tag{6.6}
\end{align*}
$$

Lemma 6.1. Suppose $1<p<+\infty$ and $\delta>0$. There exists a constant $C=C(p, \delta)>0$ such that

$$
\left\|m\left(\Lambda^{-1} \mathcal{L}_{1}, \ldots, \Lambda^{-1} \mathcal{L}_{n},-i T\right) f\right\|_{p} \leqslant C\|f\|_{p} \cdot \sup _{j \in \mathbf{Z}^{n+1}}\left(\int_{\mathbf{H}_{n}}\left|N_{j}(x)\right|^{2} W_{\delta}^{(j)}(x) d x\right)^{1 / 2}
$$

for all $f \in L^{2}\left(\mathbf{H}_{n}\right) \cap L^{p}\left(\mathbf{H}_{n}\right)$.
The proof of Lemma 6.1 follows strictly the proof of Lemma 5.1 in [18], where the operator $m\left(\Lambda^{-1} \mathcal{L},-i T\right)$ is considered. The only obvious difference is that we apply our Proposition 4.3 instead of the corresponding Proposition 4.4 in [18].

Proposition 6.2. For every $\gamma \geqslant 0$ there exists a constant $C_{\gamma}>0$ such that

$$
\begin{array}{r}
\int_{\mathbf{H}_{n}}\left|N_{j}(x) u_{\gamma}^{(j)}(x)\right|^{2} d x \leqslant C_{\gamma} \cdot 2^{n j_{n+1}} \cdot \sum_{k \in \mathbf{Z}^{n}} \int_{\mathbf{R}} \left\lvert\,\left(1+\sum_{r=1}^{n}\left|2^{j_{r}} \Delta_{r}\right|+\left|2^{j_{n+1}} \frac{\partial}{\partial \lambda}\right|\right)^{2 \gamma}\right. \\
\left.\left(1+\left|2^{j_{1}} \Delta_{1}\right|\right)^{4 \gamma} \cdots\left(1+\left|2^{j_{n}} \Delta_{n}\right|\right)^{4 \gamma} m_{j}(k, \lambda)\right|^{2} d \lambda
\end{array}
$$

for all $j \in \mathbf{Z}^{n+1}$.

Proof: By (5.11) it suffices to prove that

$$
\begin{aligned}
\int_{\mathbf{H}_{n}}\left|N_{j}(x) u_{\gamma}^{(j)}(x)\right|^{2} d x \leqslant C_{\gamma} \cdot 2^{n j_{n+1}} & \int_{\mathbf{T}^{n}} \int_{\mathbf{R}} \mid\left(1+\sum_{r=1}^{n} 2^{i_{r}}\left|e^{i \theta_{r}}-1\right|+2^{j_{n+1}}|\sigma|\right)^{2 \gamma} \\
7) & \left.\cdot \prod_{r=1}^{n}\left(1+2^{j_{r}}\left|e^{i \theta_{r}}-1\right|\right)^{4 \gamma} \cdot \widehat{m_{j}}(\vartheta, \sigma)\right|^{2} d \vartheta d \sigma .
\end{aligned}
$$

Furthermore, it suffices to prove (6.7) if $\gamma \in \mathbf{N}$: the general case will follow by interpolation. In this hypothesis $u_{\gamma}^{(j)}$ is a polyradial polynomial on \mathbf{H}_{n}. So, by (5.5) and Proposition 5.2, we have

$$
\begin{aligned}
& \tilde{\partial}_{u_{\gamma}^{(j)}}=2^{2 \gamma j_{n+1}} \sum_{\left\{r_{1}, \ldots, r_{j}\right\} \subset\{1, \ldots, n\}} 2^{2 \gamma\left(j_{r_{1}}+j_{n+1}\right)} \cdots 2^{2 \gamma\left(j_{r_{s}}+j_{n+1}\right)} \tilde{\partial}_{\left|z_{r_{1}}\right|^{2}}^{2 \gamma} \cdots \tilde{\partial}_{\left|r_{r_{s}}\right|^{2}}^{2 \gamma} \tilde{\partial}_{2^{-2} j_{n+1}+t^{2}}^{\gamma} \\
& =2^{2 \gamma j_{n+1}}\left\{\sum_{\left\{r_{1}, \ldots, r_{s}\right\} \in\{1, \ldots, n\}} 2^{2 \gamma\left(s j_{n+1}+\sum_{v=1}^{s} j_{r v}\right)}|\lambda|^{-2 \gamma s}\right. \\
& \left.\left(\sum_{m_{1}=0}^{2 \gamma}\left(a \cdot \tilde{\tau}_{r_{1}}\right) M_{r_{1}}^{m_{1}} \Delta_{r_{1}}^{m_{1}+2 \gamma}\right) \cdots\left(\sum_{m_{s}=0}^{2 \gamma}\left(a \cdot \tilde{r}_{r_{s}}\right) M_{r_{s}}^{m_{s}} \Delta_{r_{s}}^{m_{s}+2 \gamma}\right)\right\} \\
& \left\{\sum_{\nu=0}^{2 \gamma} \sum_{\substack{\beta \in \mathbb{N}^{n} \\
|\beta| \leqslant 2 q-\nu}} \sum_{q=0}^{[\gamma-\nu / 2]} 2^{-2 q j_{n+1}}(a \cdot \tilde{\tau})|\lambda|^{-(2 \gamma-\nu-2 q)} \frac{\partial^{\nu}}{\partial \lambda^{\nu}} M_{1}^{\beta_{1}} \cdots M_{n}^{\beta_{n}} \Delta_{1}^{\beta_{1}} \cdots \Delta_{n}^{\beta_{n}}\right\} \\
& =2^{2 \gamma j_{n+1}} \sum_{\left\{r_{1}, \ldots, r_{s}\right\} \subset\{1, \ldots, n\}} \sum_{\nu=0}^{2 \gamma} \sum_{|\beta| \leqslant 2 \gamma-\nu} \sum_{q=0}^{[\gamma-\nu / 2]} \sum_{m_{1}=0}^{2 \gamma} \cdots \sum_{m_{s}=0}^{2 \gamma} 2^{-2 q j_{n+1}} \\
& \cdot 2^{2 \gamma\left(s j_{n+1}+\sum_{v=1}^{s} j_{r_{v}}\right)}|\lambda|^{-(2 \gamma-\nu-2 q+2 \gamma s)} \frac{\partial^{\nu}}{\partial \lambda^{\nu}}\left(a \cdot \tilde{\tau}_{r_{1}}\right) \cdots\left(a \cdot \tilde{\tau}_{r_{s}}\right) \\
& M_{r_{1}}^{m_{1}} \Delta_{r_{1}}^{m_{1}+2 \gamma} \cdots M_{r_{e}}^{m_{0}} \Delta_{r_{a}}^{m_{0}+2 \gamma}(a \cdot \tilde{\tau}) M_{1}^{\beta_{1}} \cdots M_{n}^{\beta_{n}} \Delta_{1}^{\beta_{1}} \cdots \Delta_{n}^{\beta_{n}} .
\end{aligned}
$$

If we set $\left\{r_{s+1}, \ldots, r_{n}\right\}=\{1, \ldots, n\} \backslash\left\{r_{1}, \ldots, r_{s}\right\}$, by Lemma 5.1 we obtain

$$
\begin{gathered}
\tilde{\partial}_{u_{\gamma}^{(j)}}=\sum_{\left\{r_{1}, \ldots, r_{s}\right\} \subset\{1, \ldots, n\}} \sum_{\nu=0}^{2 \gamma} \sum_{|\rho| \leqslant 2 \gamma-\nu} \sum_{q=0}^{[\gamma-\nu / 2]} \sum_{m_{1}=0}^{2 \gamma} \cdots \sum_{m_{s}=0}^{2 \gamma} \sum_{h_{1}=0}^{m_{1}+\beta_{r_{1}}} \cdots \sum_{h_{s}=0}^{m_{s}+\beta r_{s}} 2^{2 j_{n+1}(\gamma-q)} \\
\cdot 2^{2 \gamma\left(s j_{n+1}+\sum_{v=1}^{*} j_{r_{v}}\right)}|\lambda|^{-(2 \gamma-\nu-2 q+2 \gamma s)} \frac{\partial^{\nu}}{\partial \lambda^{\nu}}(a \cdot \tilde{\tau}) \\
M_{r_{1}}^{h_{1}} \Delta_{r_{1}}^{h_{1}+2 \gamma} \cdots M_{r_{s}}^{h_{s}} \Delta_{r_{s}}^{h_{s}+2 \gamma} M_{r_{t+1}}^{\beta_{s+1} \sigma_{s}} \Delta_{r_{s+1}}^{\beta_{r_{s+1}+1}} \cdots M_{r_{n}}^{\beta_{r_{n}}} \Delta_{r_{n}}^{\beta_{r_{n}}} .
\end{gathered}
$$

We observe that in $\operatorname{supp} m_{j}$ we have $|\lambda| \sim 2^{j_{n+1}}$ and $k_{r} \sim 2^{j_{r}}$ for $r \in\{1, \ldots, n\}$. So

$$
\begin{aligned}
2^{2 j_{n+1}(\gamma-q)}|\lambda|^{-(2 \gamma-\nu-2 q)} & \sim 2^{\nu j_{n+1}} ; \\
2^{2 \gamma s_{n+1}}|\lambda|^{-2 \gamma s} & \sim 1 ; \\
M_{r} & \sim 2^{j_{r}} .
\end{aligned}
$$

By these facts and by (5.8) and (6.3) we have

$$
\begin{aligned}
& \int_{\mathbf{H}_{n}}\left|N_{j}(x) u_{\gamma}^{(j)}(x)\right|^{2} d x \\
& =\frac{2^{n-1}}{\pi^{n+1}} \sum_{k \in \mathbf{N}^{n}} \int_{\mathbf{R}} \cdot\left|\partial_{u_{\gamma}^{(j)}}\left(\tilde{\mathcal{G}} N_{j}\right)(k, \lambda)\right|^{2}|\lambda|^{n} d \lambda \\
& \leqslant \frac{2^{n-1}}{\pi^{n+1}} \sum_{k \in \mathbf{Z}^{n}} \int_{\mathbf{R}}\left|\tilde{\partial}_{u_{\gamma}^{(j)}} m_{j}(k, \lambda)\right|^{2}|\lambda|^{n} d \lambda \\
& \leqslant C_{\gamma} \sum_{\left\{r_{1}, \ldots, r_{s}\right\} \subset\{1, \ldots, n\}} \sum_{\nu=0}^{2 \gamma} \sum_{|\beta| \leqslant 2 \gamma-\nu} \sum_{m_{1}=0}^{2 \gamma} \cdots \sum_{m_{s}=0}^{2 \gamma} \sum_{h_{1}=0}^{m_{1}+\beta_{r_{1}}} \cdots \sum_{h_{s}=0}^{m_{s}+\beta_{r}} \\
& \sum_{k \in \mathbf{Z}^{n}} \int_{\mathbf{R}} \left\lvert\,\left(2^{\nu j_{n+1}} \frac{\partial^{\nu}}{\partial \lambda^{\nu}}\right)\left(2^{j_{r_{1}}} \Delta_{r_{1}}\right)^{h_{1}+2 \gamma} \cdots\left(2^{j_{r_{s}}} \Delta_{r_{4}}\right)^{h_{4}+2 \gamma}\right. \\
& \left.\left(2^{j_{r_{+1}+1}} \Delta_{r_{s+1}}\right)^{\beta_{r_{t+1}}} \cdots\left(2^{j_{r_{n}}} \Delta_{r_{n}}\right)^{\beta_{r_{n}}} m_{j}(k, \lambda)\right|^{2} 2^{n j_{n+1}} d \lambda \\
& =C_{\gamma} \cdot 2^{n j_{n+1}} \cdot \sum_{\left\{r_{1}, \ldots, r_{s}\right\} \subset\{1, \ldots, n\}} \sum_{\nu=0}^{2 \gamma} \sum_{|\beta| \leqslant 2 \gamma-\nu} \sum_{m_{1}=0}^{2 \gamma} \cdots \sum_{m_{s}=0}^{2 \gamma} \sum_{h_{1}=0}^{m_{1}+\beta_{r_{1}}} \cdots \sum_{h_{s}=0}^{m_{s}+\beta_{r}} \\
& \int_{\mathbf{T}^{n}} \int_{\mathbf{R}} \mid 2^{\nu j_{n+1}} \cdot(i \sigma)^{\nu} \cdot \prod_{v=1}^{s}\left\{2^{j_{r_{v}}}\left(e^{i \theta_{r_{v}}}-1\right)\right\}^{h_{v}+2 \gamma} \\
& \left.\cdot \prod_{u=s+1}^{n}\left\{2^{j_{r_{u}}}\left(e^{i \vartheta_{r_{u}}}-1\right)\right\}^{\beta_{r_{z}}} \cdot \widehat{m_{j}}(\vartheta, \sigma)\right|^{2} d \vartheta d \sigma \\
& \leqslant C_{\gamma}^{\prime} \cdot 2^{n_{n+1}} \cdot \sum_{\left\{r_{1}, \ldots, r_{s}\right\} \subset\{1, \ldots, n\}} \sum_{\nu=0}^{2 \gamma} \sum_{|\theta| \leqslant 2 \gamma-\nu} \sum_{m_{1}=0}^{2 \gamma} \cdots \sum_{m_{s}=0}^{2 \gamma} \\
& \int_{\mathbf{T}^{n}} \int_{\mathbf{R}} \mid\left(2^{j_{n+1}}|\sigma|\right)^{\nu} \cdot \prod_{v=1}^{s}\left(1+2^{j_{r_{v}}}\left|e^{i \beta_{r_{v}}}-1\right|\right)^{m_{v}+\beta_{r_{v}}+2 \gamma} \\
& \left.\cdot \prod_{u=s+1}^{n}\left(1+2^{j r_{u}}\left|e^{i \theta_{r_{u}}}-1\right|\right)^{\beta_{r_{u}}} \cdot \widehat{m_{j}}(\vartheta, \sigma)\right|^{2} d \vartheta d \sigma \\
& \leqslant C_{\gamma}^{\prime} \cdot 2^{n_{n+1}} \cdot \sum_{\left\{r_{1}, \ldots, r_{e}\right\} \subset\{1, \ldots, n\}} \sum_{\nu=0}^{2 \gamma} \sum_{|\beta| \leqslant 2 \gamma-\nu} \sum_{m_{1}=0}^{2 \gamma} \cdots \sum_{m_{s}=0}^{2 \gamma} \\
& \int_{\mathbf{T}^{n}} \int_{\mathbf{R}} \mid\left(1+\sum_{r=1}^{n} 2^{j_{r}}\left|e^{i \theta_{r}}-1\right|+2^{j_{n+1}}|\sigma|\right)^{\nu+|\beta|} \\
& \left.\cdot \prod_{v=1}^{s}\left(1+2^{j_{v}}\left|e^{i \theta_{v v}}-1\right|\right)^{m_{v}+2 \gamma} \cdot \widehat{m_{j}}(\vartheta, \sigma)\right|^{2} d \vartheta d \sigma \\
& \leqslant C_{\gamma}^{\prime \prime} \cdot 2^{n j_{n+1}} \cdot \int_{\mathbf{T}^{n}} \int_{\mathbf{R}} \mid\left(1+\sum_{r=1}^{n} 2^{j_{r}}\left|e^{i \theta_{r}}-1\right|+2^{j_{n+1}}|\sigma|\right)^{2 \gamma} \\
& \left.\cdot \prod_{r=1}^{n}\left(1+2^{j_{r}}\left|e^{i \vartheta_{r}}-1\right|\right)^{4 \gamma} \cdot \widehat{m_{j}}(\vartheta, \sigma)\right|^{2} d \vartheta d \sigma \text {. }
\end{aligned}
$$

Formula (6.4), Lemma 6.1 and Proposition 6.2, by the relation between $W_{\delta}^{(j)}$ and $u_{1+\delta}^{(j)}$ deducible from (6.5) and (6.6), lead directly to:
 Then for $1<p<+\infty$ there exists a constant $C_{\alpha, \beta, p}>0$, not depending on the function m, such that

$$
\left\|m\left(\Lambda^{-1} \mathcal{L}_{1}, \ldots, \Lambda^{-1} \mathcal{L}_{n},-i T\right) f\right\|_{p} \leqslant C_{\alpha, \beta, p}\|m\|_{\ell^{2}\left(L^{2}\right)_{\alpha, Q,, \text { loc }}}\|f\|_{p}
$$

for all $f \in L^{2}\left(\mathbf{H}_{n}\right) \cap L^{p}\left(\mathbf{H}_{n}\right)$.

7. Multipliers on $\mathbf{R}^{\boldsymbol{n + 1}}$

We want to prove a weaker but simpler version of Theorem 6.3, where the function m satisfies a Sobolev condition on all \mathbf{R}^{n+1} and not only on the spectrum of the operator. In this context, from the boundedness of the operator $m\left(\Lambda^{-1} \mathcal{L}_{1}, \ldots, \Lambda^{-1} \mathcal{L}_{n},-i T\right)$ we shall be able to deduce also the boundedness of the operator $m\left(\mathcal{L}_{1}, \ldots, \mathcal{L}_{n},-i T\right)$ under the same hypotheses on m.

In this section m is a bounded Borel function on $\left(\mathbf{R}_{+}\right)^{n} \times \mathbf{R}^{*}$. We extend m on all \mathbf{R}^{n+1} by putting $m=0$ outside $\left(\mathbf{R}_{+}\right)^{n} \times \mathbf{R}^{*}$. For $r=\left(r_{1}, \ldots, r_{n+1}\right) \in\left(\mathbf{R}_{+}\right)^{n+1}$ we write

$$
m^{(r)}(\mu, \lambda)=m\left(r_{1} \mu_{1}, \ldots, r_{n} \mu_{n}, r_{n+1} \lambda\right)
$$

Fix η as in Section 6 and η_{0} as in (6.1). For $\alpha \geqslant 0$ and $\beta \geqslant 0$ we define

$$
\|m\|_{L_{\alpha, \beta, \text { aloc }}^{2}}=\sup _{r \in\left(\mathbf{R}_{+}\right)^{n+1}}\left\|m^{(r)} \eta_{0}\right\|_{L_{\alpha, \beta}^{2}}
$$

where the mixed Sobolev norm $\|\cdot\|_{L_{\alpha, \theta}^{2}}$ is defined by

$$
\|g\|_{L_{\alpha, \beta}^{2}}^{2}=\int_{\mathbf{R}^{n+1}}\left|\hat{g}(\xi) \cdot \prod_{j=1}^{n}\left(1+\left|\xi_{j}\right|\right)^{\alpha} \cdot\left(1+\sum_{j=1}^{n+1}\left|\xi_{j}\right|\right)^{\beta}\right|^{2} d \xi
$$

By applying n times Lemma 2.5 in [18], we have

$$
\begin{equation*}
\|m\|_{\ell^{2}\left(L^{2}\right)_{\alpha, \beta, \beta, \text { loc }}} \leqslant C\|m\|_{L_{\alpha, \beta, \text { loc }}^{2}} \tag{7.1}
\end{equation*}
$$

THEOREM 7.1. Suppose $\|m\|_{L_{\alpha, \beta, \text { aloc }}^{2}}<+\infty$ for some $\alpha>1$ and $\beta>1 / 2$. Then for $1<p<+\infty$ there exists a constant $C_{\alpha, \beta, p}>0$, not depending on the function m, such that

$$
\left\|m\left(\Lambda^{-1} \mathcal{L}_{1}, \ldots, \Lambda^{-1} \mathcal{L}_{n},-i T\right) f\right\|_{p} \leqslant C_{\alpha, \theta, p}\|m\|_{L_{\alpha, \beta, \text { aloc }}^{2}}\|f\|_{p}
$$

and

$$
\left\|m\left(\mathcal{L}_{1}, \ldots, \mathcal{L}_{n},-i T\right) f\right\|_{p} \leqslant C_{\alpha, \beta, p}\|m\|_{L_{\alpha, \beta, s l o c}^{2}}\|f\|_{p}
$$

for all $f \in L^{2}\left(\mathbf{H}_{n}\right) \cap L^{p}\left(\mathbf{H}_{n}\right)$.

Proof: The first inequality is a direct consequence of Theorem 6.3 and (7.1). Putting

$$
(S m)(\mu, \lambda)=m(|\lambda| \mu, \lambda)
$$

we have that

$$
m\left(\mathcal{L}_{1}, \ldots, \mathcal{L}_{n},-i T\right)=(S m)\left(\Lambda^{-1} \mathcal{L}_{1}, \ldots, \Lambda^{-1} \mathcal{L}_{n},-i T\right)
$$

Then, in order to prove the second inequality, it suffices to prove that

$$
\begin{equation*}
\|S m\|_{L_{\alpha, \beta, \mathrm{sloc}}^{2}} \leqslant C_{\alpha, \beta}\|m\|_{L_{\alpha, \beta, \text { aloc }}^{2}} \tag{7.2}
\end{equation*}
$$

The proof of (7.2) is an easy adaption of the last part of the proof of [18, Corollary 2.4]. \square

References

[1] C. Benson, J. Jenkins and G. Ratcliff, 'The spherical transform of a Schwartz function on the Heisenberg group', J. Funct. Anal. 154 (1998), 379-423.
[2] C. Benson, J. Jenkins, G. Ratcliff and T. Worku, 'Spectra for Gelfand pairs associated with the Heisenberg group', Colloq. Math. 71 (1996), 305-328.
[3] M. Christ, ' L^{p} bounds for spectral multipliers on nilpotent groups', Trans. Amer. Math. Soc. 328 (1991), 73-81.
[4] R.R. Coifman and G. Weiss, Transference methods in Analysis, CBMS Regional Conference Series in Mathematics 31 (Amer. Math. Soc., Providence, R.I., 1977).
[5] L. De Michele and G. Mauceri, ' L^{p} multipliers on the Heisenberg group', Michigan Math. J. 26 (1979), 361-371.
[6] L. De Michele and G. Mauceri, ' H^{p} multipliers on stratified groups', Ann. Mat. Pura Appl. 148 (1987), 353-366.
[7] G.B. Folland and E.M. Stein, Hardy spaces on homogeneous groups, Mathematical Notes 28 (Princeton University Press, Princeton, 1982).
[8] A.J. Fraser, Marcinkiewicz multipliers on the Heisenberg group, Ph.D. Thesis (Princeton University, 1997).
[9] W. Hebisch, 'Multiplier theorem on generalized Heisenberg groups', Colloq. Math. 65 (1993), 231-239.
[10] A. Hulanicki and J. Jenkins, 'Almost everywhere summability on nilmanifolds', Trans. Amer. Math. Soc. 278 (1983), 703-715.
[11] A. Hulanicki and F. Ricci, 'A Tauberian theorem and tangential convergence for bounded harmonic functions on balls in $\mathbf{C}^{n \prime}$, Invent. Math. 62 (1980), 325-331.
[12] A. Korányi, S. Vági and G.V. Welland, 'Remarks on the Cauchy integral and the conjugate function in generalized half-planes', J. Math. Mech. 19 (1970), 1069-1081.
[13] C.-C. Lin, ' L^{p} multipliers and their $H^{1}-L^{1}$ estimates on the Heisenberg group', Rev. Mat. Iberoamericana 11 (1995), 269-308.
[14] G. Mauceri, 'Zonal multipliers on the Heisenberg group', Pacific J. Math. 95 (1981), 143-159.
[15] G. Mauceri, 'Maximal operators and Riesz means on stratified groups', Symposia Math. 29 (1987), 47-62.
[16] G. Mauceri and S. Meda, 'Vector-valued multipliers on stratified groups', Rev. Mat. Iberoamericana 6 (1990), 141-154.
[17] D. Müller, F. Ricci and E.M. Stein, 'Marcinkiewicz multipliers and multi-parameter structure on Heisenberg(-type) groups, I', Invent. Math. 119 (1995), 199-233.
[18] D. Müller, F. Ricci and E.M. Stein, 'Marcinkiewicz multipliers and multi-parameter structure on Heisenberg(-type) groups, II', Math. Z. 221 (1996), 267-291.
[19] D. Müller and E.M. Stein, 'On spectral multipliers for Heisenberg and related groups', J. Math. Pures Appl. 73 (1994), 413-440.
[20] E.M. Stein, Singular integrals and differentiability properties of functions (Princeton University Press, Princeton, 1970).
[21] A. Zygmund, Trigonometric series I (Cambridge University Press, Cambridge, 1959).
Dipartimento di Matematica
Università di Genova
Via Dodecaneso 35
16146 Genova
Italy
e-mail: veneruso@dima.unige.it

[^0]: Received 31st March, 1999
 Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/00 \$A2.00+0.00.

