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MARCINKIEWICZ MULTIPLIERS ON THE HEISENBERG GROUP

ALESSANDRO VENERUSO

Let Hn be the Heisenberg group of dimension In + 1. Let A , • • •, £n be the partial
sub-Laplacians on Hn and T the central element of the Lie algebra of Hn. We prove
that the operator m(C\, . . . , £„ , -iT) is bounded on Z^(Hn), 1 < p < +oo, if the
function m satisfies a Marcinkiewicz-type condition in R™+1.

1. INTRODUCTION

This paper deals with spectral multipliers on the Heisenberg group. We denote by H n

the Heisenberg group of dimension d = In + 1, by £\,..., £n the partial sub-Laplacians
and by T the central element of the Lie algebra of Hn. The operators £ i , . . . , £n, —iT form
a commutative family of self-adjoint operators, so they admit a joint spectral resolution
and it is possible to define the operator m(£i,...,£„, —iT) when m is a bounded Borel
function on the joint spectrum of {£u..., Cn, —iT}. The boundedness on L2(Hn) of the
operator m(£i , . . .,Cn, —iT) is an immediate consequence of the spectral theorem and the
boundedness of the function m. We prove that m(Ci,..., £„, — iT) extends to a bounded
operator on V(Hn), 1 < p < +oo, under suitable Marcinkiewicz-type conditions on the
function m.

For the operators of the form m(£), where C = C\ + ... + £„ is the sub-Laplacian
on Hn, the problem of establishing sufficient conditions on m that make the operator
m(£) bounded on I/(Hn), p =£ 2, has a long history. The first results are due to De
Michele and Mauceri [5], who have considered a wider class of operators. Later, these
results have been extended to stratified groups by Hulanicki and Stein (in [7, Chapter 6]),
Hulanicki and Jenkins [10], Mauceri [15], De Michele and Mauceri [6]. The best result
up to now obtained in this more general context is due to Mauceri and Meda [16] and
to Christ [3]: if the function m satisfies a Hormander condition of order a > Q/2 (where
Q is the homogeneous dimension of the stratified group), then the operator m(£) extends
to an operator which is bounded on IP for 1 < p < +oo and of weak type (1,1). More
recently, Hebisch [9] and Miiller and Stein [19] have proved that for the Heisenberg group
the preceding conclusion is still true if the function m satisfies a Hormander condition of
order a > d/2. In the paper of Miiller and Stein [19] it is also shown that this condition is
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sharp. Operators of the form m{C, —iT) have been studied by Mauceri [14]. In all these
works the authors have considered classes of multipliers that satisfy conditions invariant
with respect to the natural family of one-parameter dilations on the group. More recently,
Miiller, Ricci and Stein [17, 18] have shown the boundedness on f ( H n ) , 1 < p < 4-oo, of
some classes of operators m(£, —iT) where m satisfies conditions invariant with respect
to a family of multi-parameter dilations, in analogy with the classical Marcinkiewicz
theorem on the Euclidean space [20, Chapter IV].

Operators of the form m{C\,..., Cn, —iT), when m satisfies a Marcinkiewicz-type
condition of infinite order in R"+1, have been studied recently by Fraser [8], who has
characterised their convolution kernels and has shown that these operators are bounded
on Z/(Hn), 1 < p < -t-oo. Our result about the boundedness is stronger, because we
only need that m satisfies a condition of finite order. Our techniques, based mainly on
Littlewood-Paley decompositions, generalise those of Miiller, Ricci and Stein [18].

2. NOTATION AND PRELIMINARIES

In this paper we set N = {0 ,1,2 , . . .} , Z + = N \ { 0 } , R + = (0,+oo), R ' = R \{0} .
The 2n + 1-dimensional Heisenberg group H n is the nilpotent Lie group whose un-

derlying manifold is C n x R, with multiplication given by

(2, t) (*', t') = (z + z', t + f + 2 Im <2, z'))

where z = (zu • • •, zn) e C , z' = (z[,...,z'n) € Cn, t,t' eR and <z, z') = £ ZjZ1,. The
_3=l _

Lie algebra of H n is generated by the left-invariant vector fields Z\,..., Zn, Z\,..., Zn,T,

where

z - A iz I-
Zj- dz-~lZjdt'

T = d/dt.

Hn is a stratified group endowed with a family of dilations {Sr : r > 0} defined by

6r(z,t) = (rz,r2t).
The bi-invariant Haar measure on H n coincides with the Lebesgue measure on R2n+1. As
usual, we denote by <S(Hn) the Schwartz space of rapidly decreasing smooth functions on
Hn and by <S'(Hn) the dual space of <S(Hn), that is, the space of tempered distributions
on H n . The maximal torus T n , which we represent by (-7T,7r]n, acts by automorphisms
on H n in the following way:
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where # = (Oi,..., dn) 6 T n . A function / on H n is said to be polyradial if / o o# = /
for every i9 6 T n , that is, if the value of f(z,t) depends only on | z i | , . . . , \zn\,t. We
denote by L^n (1 < p ^ +oo) the space of polyradial functions in £"(H n ) . The space
L T n is a commutative, closed *-subalgebra of L ^ H n ) . A differential operator D on H n

is said to be TT-invariant if D(f oa^)= £>(/) o a# for every / € C°°(Hn) and i? G T" .
The commutative algebra of T"-invariant operators is generated by £ j , . . . , £ „ , T, where
Ci,...,C,, are the partial sub-Laplacians on H n defined by

n
The sub-Laplacian on H n is C = X) C>j- The Gelfand spectrum A of L^.- c a n D e identified

J=I

with (N"xR' )u( [0 , +oo)n ). The Gelfand transform Qf of a function / € Z-T» i s given

by
Of(k,X)=L f{x)u>k,x{x)dx

JHn
with {k, A) € N " x R* and

where LT (r € N) is the Laguerre polynomial of type 0 and degree r, defined by

a=0 "•

The Godement-Plancherel measure /J on A is given by

(2.1) f F(i>) dn(ip) = ^ - j 53 f F{k,X)\X\ndX.

We ignore the remaining part of A, because it is of measure zero. By the Godement-
Plancherel theory, Q extends uniquely to a unitary operator Q : L^* —> £ 2 (A) . For the
proofs and further information about all these facts, see for instance [2, 1 1 , 19].

3. J O I N T SPECTRAL MULTIPLIERS

The operators d,...,Cn, -iT form a family of commuting self-adjoint operators.
Their joint spectrum (see [2]) is the subset Ei U E2 of R"+ 1 , where

and
E2 = {(MI, • • •,/in,0) : Mi, •. •, A*n e [0,+oo)}.
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Let us define

A = | T | .

Arguing as in [18], one shows that also the operators A"1^,..., A " 1 ^ , —iT form a fam-
ily of commuting self-adjoint operators. Their joint spectrum is (2N + 1)" x R. By the
spectral theorem, the multiplier operators m{C\,..., Cn, —iT) and m (A~lC\,,.., A~lCn,
—iT) are bounded on L2(Hn) for all bounded Borel functions m defined on the corre-
sponding joint spectra. Both these operators commute with left translations, so by [12]
they are given by right convolution with tempered distributions, which we denote by
m(£i , . . . , Cn, —iT)5 and m(A"1£i , . . . , A~l£,n, —iT)S, respectively. We also use the no-
tations

Mm = m(C1,...,£n,-iT)S;

Nm = m(A-»A, • • •, A- 'A,, -iT)S.

By the Godement-Plancherel theory, we have that Mm G L\* if and only if the function

<?Mm(fc, A) = m((2fc, + 1)|A|,..., (2kn + 1)|A|, A)

is in L?(A). Similarly, we have that Nm e L\n if and only if the function

GNm{k, A) = m(2fci + 1 , . . . , 2kn + 1, A)

is in L2(A).

4. LITTLEWOOD-PALEY DECOMPOSITIONS

Fix a function \ € C5c((l/2,2)) such that x > 0 and E x(2~mA)2 = 1 forv ' mez
A > 0. Let ip(\) = x{\M) for A e R. For j = (jx,..., jn+l) e Zn + 1 and

(/i, A) = (MI, • • •, tin, A) e R n + 1 write

X;(M,A) = nx(2-^Mr)-'A(2-in+1A).

Set

The properties of x imply (see [1]) that <pj and <&j are in <S(Hn) and satisfy
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For u € <S'(Hn) we define the following Littlewood-Paley functions:

gi(u)=

( \ 1 / 2

*(«) = E !«••/ •
VeZ»+' /

Arguing as in [18], it is easy to prove that <?i and gi are isometries of £2(Hn) .

PROPOSITION 4 . 1 . Forl <p< +oo there exists a constant Cv ^ 1 such that

(a) iff € W(Hn) then 9l(f) e L*(Hn) and ^ ( / J ^ < Cp \\f\\,;

(b) iff g L2(Hn) and S l( /) € L»(H,,) then / e Z/(Hn) and
| |

PROOF: By a standard duality argument (see [20, Chapter II]), it suffices to
prove (a). Moreover, by some standard randomisation argument based on Khintchin's
inequality (see [21, Chapter V]), it suffices to prove that there exists C'p > 0 such that

N

2
ji=-N

for every N e N and for every choice of the n + 1 sequences {e^}>,gz> • • • > {^"^'Ln+ieZ
with values in {-1,0,1}. Since <S(Hn) is dense in L^Hn), a standard approximation
argument allows us to assume that / e <S(Hn). So

E -
jl=-N ),

I N

= E

N

E
AT

»*. = - #

A straight-forward calculation yields

sup
A>0

I E £(n+I)Vi(-2"-''i+iir) I /.

for r e { 1 , . . . , n}, where the constant Ah is independent of N and of the choice of the
sequence {ej, }yrez- Therefore, by a suitable multiplier theorem (see [7, Chapter 6]), we
have
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for g e <S(Hi), where £ H ' is the sub-Laplacian on Hi and the constant Mf depends only
on p. Applying the transference principle [4] yields

N

for / 6 <S(Hn). Similarly we obtain

N

E 4£M-2

for / € 5(H n ) . This gives the conclusion. D

As a corollary of Proposition 4.1, we obtain a weak Marcinkiewicz-type multiplier
theorem. For N € N and m € CN({R+)n x R*) put

. . . .
| | m | | w = sup sup

N+' (R

I Ml—— j . . . 1 ^ — 1 IX—
)

COROLLARY 4 . 2 . There exists N € N such that if m 6 CA r((R+)" x R*)
and ||m||(Af) < +oo then the operator m(£i, . . . , £ „ , - i T ) is bounded on i / (H n ) ,
1 < p < +oo, with norm controlled by ||m||(jv)-

We omit the proof of Corollary 4.2, because it is an easy but lengthy adaptment of
the proof of Corollary 4.3 in [18], where the operator m(C, —iT) is considered. The
only crucial point is that we apply our Proposition 4.1 instead of the corresponding
Proposition 4.1 in [18]. We remark that Corollary 4.2 has also been proved in [8],
however by a different method. Once we have Corollary 4.2, arguing again as in [18] we
easily obtain the following

PROPOSITION 4 . 3 . For 1 < p < +oo there exists a constant Cv ~2 1 such that

(a) iff e L*(Hn) then g2(f) e L»(Hn) and | |S 2(/) | | P ^ Cp \\f\\p;

(b) iff e L2(Hn) and g2(f) e V(Hn) then f e L»(Hn) and
\\f\\P<Cp\\g,(f)\\p.

5. FUNCTIONAL CALCULUS ON THE GELFAND SPECTRUM

In Section 2 we have seen that the Gelfand spectrum A can be identified, as a
measure space, with the space N n x R* equipped with the measure n defined by (2.1).
Thus A can be considered as a subspace of the measure space S = Z" x R equipped with
the measure p, defined by

G(k, A) |A|» dX.
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We consider the canonical operators V : L2(S) —> L2(A) and Q : L2(A) —> L?(S)
denned by

(VG)(k,\) =

0 otherwise.

Let G be a function on S. For j € { 1 , . . . , n} and h € Z we define the translation operator
r f by
(5.1) {rjh)G)(k, A) = G(ku..., *,_!, fc, + ft, *J + 1 | . . . A , A).

We also define the difference operator

Finally we define the multiplication operator M,- by

(5.2) (MjG)(k,X) = kjG(k,X).

From (5.1) and (5.2) we immediately obtain the following commutation relations between
the operators rj and Mf.

_eo_o) _ _c>+o
Ti Ti ~ Ti

These relations and simple induction arguments lead to the following

LEMMA 5 . 1 . Forv,0,q € N, m e Z+, h € Z,j € {1, . . . , n} t ie following
identities hold:

MfA, = A,MJ" + g (-l)m"r f ^ J rf'jMT;

r=O »=0

r=0 »=0

The coefficients av,,ir>J and ft,,^,,^.^, in t ie last two identities are reai.
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Let p be a polyradial polynomial on H n . For all / € L\n such that pf g L\* let us

define

dP(Sf)=G(pf).

The operator dp is thus densely defined on L2(A) and its domain is

Domd,, = {Fe L2(A) : p • Q~lF G L^.}.

Straight-forward computations (see [5, 13, 19]) yield

(5.3) ( 0 M , F ) ( M )

= 2^| {(2^ + l)F(k,X) - {ki + \){r^QF)(k,\) - kj^QF^X)};

(5.4) (d-itF)(k,\)

= ^(k, A) + -L £ {F(k, A) - (ki + l)(rj1)QF)(fc, A) + ^ ( T ^ ' Q F ) ^ , A)} .

Since every polyradial polynomial on Hn has the form

p(z,«) = E • • • E E«i,,..,w ki*1 • • • W2i- (-a)'
ij=0 «n=0 1=0

with Oj,,...^,! € C, by (5.3) and (5.4) we can extend the operator dp to an operator dp on
L2(S) defined by

(5.5) Bp = E • • • E E«*. *-,. ̂ .,. • • • %,,. -̂«
J1=0 >n=0 1=0

where

(5.6) (5,,,.G)(fc,A)

= 2 ^ | {(2*, + l)G(fc, A) - (tj + l)(7fG)(fc, A) - fc^rJ^Gjtfc, A)} ;

(5.7) (8_«G)(*,A)

The operator 9P is thus densely defined on L2(S) and its domain is

Domdp = {G e L2(S) : 4.G 6 i 2 ( 5 ) } .

This domain contains the subspace Q(Domdp). Furthermore, the following identity is
valid on Dom dp:

(5.8) dp = VdpQ.
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Let us introduce the following notation:

(5.9) (o -7 j )= £ ) aWrjk ) ;

(5.10) (a-f)= £ ••• £ ) 0<*i.~.MT(*»>...7i».)
Al=-H hn=-H

where ffeNand o(/l),o(kl /l") € R.

PROPOSITION 5.2.

(a) For g e N and j € { 1 , . . . , n } we have

i/=0

where the integer /f and the coefficients a^h' involved in the expression

(a • Tj) according to (5.9) depend only on q and v.

(b) For q € N and T 6 R we have

2q [«-"/2]

4 ^ = E E E (a
7=0

where [•] denotes the greatest integer function and the integer H and the

coefficients o'hl *") involved in the expression (a • f) according to (5.10)

depend only on q, u, 0,7, sgn A.

PROOF: By straight-forward computations, we can rewrite (5.6) and (5.7) as

Then

dX dX
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Using these expressions for B\Zj\i and &n+t*, we can easily obtain (a) and (b) by induction
on q and iterated applications of Lemma 5.1. D

The reason why we have considered the space Zn x R rather than the space N n x R*
is that Z " x R has some properties which N " x R* does not have: in particular, it is a
locally compact Abelian group, so it is possible to define a Fourier transform on it. If /
is a function in Ll{Zn x R), the Fourier transform of / is the function / 6 Co(Tn x R)
defined by

M«)= E
The Fourier transform on Z" x R extends uniquely to a unitary operator (apart from a
multiplicative constant) from L2(Z" x R) to L2(T" x R).

If / is a suitable function on Z" x R, we have

Correspondingly, for a ^ 0 we define fractional powers |Aj | a and I—I by

(5.11)

We shall use all these notations in Section 6.

6. MULTIPLIERS ON THE JOINT SPECTRUM

In this section m is a bounded function on (2N + l ) n x R* such that

m(2&i + 1 , . . . , 2kn + 1, •) is a Borel function on R* for every k = (kit ...,kn)e N".

Fix a function TJ e C~( ( l /4 , 4)) such that r) ^ 0 and r? = 1 in [1/2,2]. For

3 = (Ji, • • •.3n+i) 6 Z"+ 1 and (n, A) = {ftu..., fin, A) 6 R n + 1 put

(6.1) VM A) =
r = l

Set
(6.2) Nj = (mr,j)(\-

lCu...,A.-1Cn,-iT)5.
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Since the function

(fc, A) >—» (nnb)(2*I + 1 , . . . , 2*. + 1, A)

is in £2(A), by (6.2) and the facts established in Section 3 we have that Nj e

j e Zn + 1. We consider the function m,j 6 £2(S) defined by
for all

(6.3) mj = QQNj

where the operators Q and Q have been introduced in the previous sections. According
to (5.11), for a ^ 0 and j ? ^ 0 w e define the scale-invariant localised Sobolev norm

-A.|)a

(6.4)

We remark that, by standard partition of unity arguments, it can easily be shown that
different bump functions r) lead to equivalent t?(L2)a0^loc norms.

For 8 > 0, 7 ^ 0 and j € Zn+1 let Wf
0) and u^' be the weights on Hn defined by

(6.5)

(6.6) z, t) =

LEMMA 6 . 1 . Suppose 1 < p < +oo and 5 > 0. There exists a constant
C = C(p, 6) > 0 such that

• sup
jeZ»+'

1/2

fora lJ /eL 2 (H n )nLP(H n ) .

The proof of Lemma 6.1 follows strictly the proof of Lemma 5.1 in [18], where the
operator m(A~1£, — iT) is considered. The only obvious difference is that we apply our
Proposition 4.3 instead of the corresponding Proposition 4.4 in [18].

PROPOSITION 6 . 2 . For every 7 ^ 0 there exists a constant C7 > 0 such that

dx E I27'
\ 4 i

• |2*- A» | )
47

*, A)

*T

d\

foraJi;eZn+1.

https://doi.org/10.1017/S0004972700022012 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700022012


64 A. Veneruso

PROOF: By (5.11) it suffices to prove that

(6.7)

[12]

E 2> I*5"' " '

did da.

Furthermore, it suffices to prove (6.7) if 7 € N: the general case will follow by inter-
polation. In this hypothesis utf) is a polyradial polynomial on Hn. So, by (5.5) and
Proposition 5.2, we have

, . _ O27JM-1 2 2 7 ( i r 1 + j n + l ) . . . 2 2 7 ( > . + j n + l ) 5 2 7 2 . . . g p 7 a T̂f_

U n r.}c{l n}

(a-frJM^A™ (a • rr.) M^K?;

]E E

27

ma=0

[7-"/2] 27 27

EE E E E •••E
-v q-0 vm-0 m,=0

^ 7 ( a • • ? > , ) • • • ( « -Tr.)

M™1 A™1+27 • • • Mr7'A™'+27 (a • f) Mf1 • • • Mjf-Af1 • • •

If we set { r J + i , . . . , r n} = { 1 , . . . , n} \ { r i , . . . , ra}, by Lemma 5.1 we obtain

27 [7-V/2] 27 27

: E E - E
-y_i/ ^=0 mi=0 ma=0 /i!=o

E E E E - E E ••• E
h,=0

A - .

We observe that in suppwij we have |A| ~ 2Jn+1 and kT ~ 2Jr for r € { 1 , . . . , n}. So

Mr
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By these facts and by (5.8) and (6.3) we have

*eZ»

c; •

27 2-y 27 mi+/3r, m.+ft.,

E E E E - E E •• E
7-i/ mi=O m,=0 /n=0 h,=0

• +27

* .« A , , , , ) 1 " ' • • • (2*- A , . )*" m,ik. A)

27 27 27 Tn\+$rx ma+0ra

E E E - - E E ••• E
l,->n} "=0 |0|$27-i/ n»i=O m.=0 hi=O h,=0

u=»+l
27 27 27

E E E E-E
-1/ mi=O m.=0

tl=J+l
27 27 27

E E E E - E
7—1/ mi?=O m , = 0

»=1

X 2 7

l + £2*|e'*'-l| + 2*'+1M]
r=l /

2

d-d da.
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Formula (6.4), Lemma 6.1 and Proposition 6.2, by the relation between W^ and
u[jls deducible from (6.5) and (6.6), lead directly to:

THEOREM 6 . 3 . Suppose IIHI^IL'),, „,,,,,. < +°° f°r s o m e a > 1 and /? > 1/2.
Tien for 1 < p < +oo there exists a constant Ca,0# > 0, not depending on the function
m, such that

fmfA-1/:,,..., A~lCn, -iT)f\\p < COJ>J, l|m[|/S(iS)afl,loc | | / | |p

forali/eL2(Hn)niP(Hn).

7. MULTIPLIERS ON R n + 1

We want to prove a weaker but simpler version of Theorem 6.3, where the function m

satisfies a Sobolev condition on all R n + 1 and not only on the spectrum of the operator. In
this context, from the boundedness of the operator m(A~1£i, . . .,A~l£n, —iT) we shall
be able to deduce also the boundedness of the operator m{C\,..., £„, — iT) under the
same hypotheses on m.

In this section m is a bounded Borel function on (R + ) n x R*. We extend TO on all
R n + 1 by putting m = 0 outside (R + ) n x R*. For r = (n,..., rn + 1) e (R+)n + 1 we write

m ( r ) ( / i , A) = m(ri(ti,..., ?•„/*„, r n + i A) .

Fix r\ as in Section 6 and % as in (6.1). For a ^ 0 and /? ̂  0 we define

||m||x,2 = sup ||w'r'?}o||L2

where the mixed Sobolev norm || • \\Lt is defined by

By applying n times Lemma 2.5 in [18], we have

THEOREM 7 . 1 . Suppose \\m\\L2 ^ >u>c < +oo for some a > 1 and fi > 1/2. Then
for 1 < p < +oo there exists a constant C a , ^ > 0, not depending on the function m,
such that

^ ( A - 1 ^ , . . . , A"1^, -iT)f\\p < CaAp Hmll^^ll/Hp

and

!«.(£„ ... ,£n, -iT)\l

forail/€L2(Hn)ni/(Hn).
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PROOF: The first inequality is a direct consequence of Theorem 6.3 and (7.1).
Putting

we have that

Then, in order to prove the second inequality, it suffices to prove that

The proof of (7.2) is an easy adaption of the last part of the proof of [18, Corollary 2.4]. D
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