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In the present paper we obtain first approximation formulae for the
regions of dynamical instability of linear canonical systems. These formulae
are analogous to the formulae for Hamilton] an systems stated by Krein
and Jakubovic [5] and proved by Pittel' and Juzefovic [8]. Special cases
were considered by Malkin [7] and Jakubovic [3]. Related papers are
Hale [2] and Jakubovifc [4]. However, our method differs from the methods
used by these authors and seems to us to be both simpler and more general.

We consider the linear canonical system

(1) Jdxldt=[Ha+eH(Qt,e)]x,

where Ho is a constant Hermitian matrix, H(r, s) is a continuous Hermitian
matrix function with period 2n in x, and / is an invertible skew-Hermitian
matrix. Without loss of generality we can take

< - -!)•

where p and q are positive integers such that p+q = n.
The unperturbed system

(2) J dxjdt = Hox

is assumed to be stable. Consequently, as shown in [1], the matrix J^HQ
has pure imaginary eigenvalues i(alt •••,»«„ and corresponding eigenvectors
fx, ••- , /„ such that

( 0 if / ^ k,

The autonomous system (2) is strongly stable with respect to perturbations
of period 27ijQ0 if and only if

OD} ^ cot (mod Qo) for l^j^p<k^n.

1 Here (x, y) denotes the usual scalar product y*x.
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If this condition is not satisfied the question arises, for what values of
(Q, s) near (£30, 0) is the system (1) unstable?

The simplest case is where

oij = cok (mod Qo) (j <Lp < k)

holds for j = j 0 , k = k0 but for no other values of j , k. We shall show that
in this case, if Q = Q0+xe> then the system (1) is unstable or stable for all
small e ^ 0 according as % lies inside or outside a certain interval (xi> Xz)-
Thus the region in the (Q, e)-plane for which (1) is unstable is given to a
first approximation near the point (Qo, 0) by the region between the lines
with slopes %i> Xz through this point.

Our starting-point is the following lemma, which was suggested by
a paper of Levinson [6].

LEMMA. Suppose the matrix function A (e) is differentiate at e = 0.
Let A (0) have an r-fold eigenvalue X and let there exist r linearly independent
corresponding eigenvectors. Then for all small e ^ 0 A (e) has r eigenvalues
of the form X+sfii+o(e) (j = 1, • • •, r).

PROOF. We can find an invertible matrix C such that

where Q—XIn_r is non-singular. Hence

where B = C^A'^C. Thus w = A+e/* is an eigenvalue of A (e) if and only
if the determinant

B12+o(l)
eB21+o(e) 5

vanishes, i.e. if and only if

det (Bn-pl,) det {Q-XI^+fie, p) = 0,

where /(e, /i) is a polynomial of degree n in /*, the coefficients of which are
functions of e tending to zero as e -> 0. It follows at once from Rouch6's
theorem that if BX1 has eigenvalues /ilt • • •, fxr then A(e) has eigenvalues
X+Sflj+0(e) (j = 1, • • ., r).

Putting T — Qt and Q = £20+%e, the system (1) takes the form

(3) x' = (ii.+x^J-^Ho+sHir, e)]x,
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where the prime denotes differentiation with respect to x. Let X(x, s) be the
fundamental matrix for (3) such that X(0, s) = I. In particular,

X(r, 0) = erQolj-lH«.

By standard theorems on the differentiability of solutions with respect to a
parameter, X(r, e) is differentiate with respect to s at e = 0 and Xe(r, 0)
is the solution of the system

Y' = flf7-iff0Y+flj7-i[ff(T, O)-xQo1Ho]X(t, 0)

which vanishes at T = 0. Therefore, by the variation of constants formula,

Xe(x, 0) =

The stability of the system (3) is determined essentially by the eigen-
values of the monodromy matrix X(2n, e). If C is the matrix with columns
/i , •••./« then

C-1X(27t, 0)C = e*«Q-lD,

where D = \iwlt • • •, icon]. Hence

C-1X{2TT, e)C =

where

B = C-lXe{2n, 0)C

But C is /-unitary, so that C"1/"1 = J~rC*. Therefore

(4) B = JJ"Qo^^'^ie-^'^J^^H(r,

Now the (j, k)^1 element of the matrix C*H(r, 0)C is the scalar product
(H(x, 0)/t, ft). Hence the (/, A)tt element of the matrix in the integrand
in (4) is

where ay = 1 for / ^ p and = — 1 for / > p.
Let the Fourier expansion of H (T, 0) be

(5) H(x, 0 ) ~ f H^e*'\

Since ZT(T, 0) is Hermitian we have #<-•> = H{t)*. If to* = o>s+hQ0 for
some integer h the value of the integral of f!jlc{x) over the interval (0, 2n) is
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So far our argument has been completely general. We now restrict
attention to the case mentioned at the outset and suppose that

co} = cok (mod Qo)

holds for / = 1, k = n and for no other values of /, k with / ^ p < k.
Moreover we put

(6) m = K - c

The stability of the system (3) is determined by the two eigenvalues of
X(2n, e) in the neighbourhood of X = e2"iu>1lQ<>. By the lemma and its proof
these eigenvalues have the form X-\-eixi-\-o{e), where fit and ptt are the eigen-
values of the 2 x 2 matrix

(hi *>

It follows that if plt p2 are the eigenvalues of the matrix

then the eigenvalues of X(2n, s) near X have the form

The quadratic equation with roots plt p2 has real coefficients and dis-
criminant

A =

where

(7) «i.. = m-HiHMh, h) + (H^fn, /J±2

If x u e s inside the interval fa, Xz) t n e n ^ < 0. Hence px, p2 are not
real and (3) is unstable for small e ^ 0. If % lies outside the interval
fa, X2) then A > 0. Hence px, p2 are real and distinct. Since px =fc pz the
corresponding eigenvalues of X{2TC, e) cannot be mutually inverse with
respect to the unit circle for small e ^ 0 and therefore each must lie on
the unit circle. Again, since pt =£ p2, each is simple. Therefore the system
(3) is stable. Thus if m ^ 0 the system (3) is unstable or stable for small
e # 0 according as x lies inside or outside the interval fa, Xz) determined by
(5), (6), (7).

If m = 0 the same argument shows that, for any x, the system (3)
is stable or unstable for small s / 0 according as

In particular, we certainly have stability if H(0) > 0.

https://doi.org/10.1017/S1446788700005590 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700005590


[5] Dynamical instability of linear canonical systems 251

References

[1] W. A. Coppel and A. Howe, 'On the stability of linear canonical systems with periodic
coefficients', / . Austral. Math. Soc. 6 (1965), 169 — 196.

[2] J. K. Hale, 'On the behavior of the solutions of linear periodic differential systems near
resonance points'. Contributions to the theory of nonlinear oscillations, Vol. 5, pp.
65—89. Annals of Mathematics Studies, Princeton, 1960.

[3] V. A. JakuboviS, 'On the dynamic stability of elastic systems' (Russian), Dokl. A had.
Nauk SSSR 121 (1958), 602-605.

[4] V. A. Jakubovic, "The small parameter method for canonical systems with periodic
coefficients', / . Appl. Math. Mech. 23 (1959), 17-43.

[5] M. G. Krein and V. A. JakuboviC, 'Hamiltonian systems of linear differential equations
with periodic coefficients' (Russian), Proc. Internal. Sympos. Nonlinear Vibrations,
Izdat. Akad. Nauk Ukrain. SSR, Kiev, 1963, Vol. 1, 277-305.

[6] N. Levinson, "The stability of linear, real, periodic self-adjoint systems of differential
equations', / . Math. Anal. Appl. 6 (1963), 473-482.

[7] I. G. Malkin, Some problems of the theory of nonlinear oscillations (Russian) (Gosud.
Izdat. Tehn. Teor. lit., Moscow, 1956).

£8] B. G. Pittel' and G. I. JuzefoviC, 'Construction of domains of dynamical instability for
canonical systems with periodic coefficients' (Russian), Vestnik Leningrad Univ.
17 (1) (1962), 89-101.

Department of Mathematics
Institute of Advanced Studies
The Australian National University
Canberra, A.C.T.

https://doi.org/10.1017/S1446788700005590 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700005590

