
COMMA-FREE CODES 

S. W. GOLOMB, BASIL GORDON AND L. R. WELCH 

1. A General Combinatorial Problem. Let n be a fixed positive integer, 
and consider an alphabet consisting of the numbers 1, 2, . . . , n. With this 
alphabet form all possible ^-letter words (ai a2 . . . ak), where k is also fixed. 
There are evidently nk such words in all. 

Definition: A set D of ^-letter words is called a comma-free dictionary if 
whenever (ai a 2 . . . ak) and (bi b2. . . W are in Z>, the "overlaps" (a2 a3 . . . ak 

i i) , (a8 . . . a* i i i2), . . . , (afc fti . . . i*_i) are not in D. 

The problem to be investigated here is that of determining the greatest 
number of words that a comma-free dictionary can possess. We denote this 
number by Wk(n). 

THEOREM 1. 

Wk(n) < | E p(d) nk/d, 

where the summation is extended over all divisors d of k, and fx(d) is the Môbius 
function, defined by 

f 1 i f d = l 
ix (d) = -j 0 if d has any square factor 

[(— l ) r if d = pi p2 . . . pr, where pi, . . . , pr are distinct primes. 

Proof. Let d be a divisor of k. We say that a word (#i a2. . . ak) has subperiod 
d if it is of the form (ai a2 . . . ad a\ a2 . . . ad . . . a± a2 . . . ad), and if d is the 
smallest number for which this is true. For example, if k = 6, then (aaaaaa) 
has subperiod 1, (a b a b a b) has subperiod 2 if a ^ i, (a b c a b c) has sub-
period 3 if a 7^ b or £ 9^- c, and all other words have subperiod 6. Any word w 
of a comma-free dictionary must have subperiod k because otherwise ww would 
contain an overlap of w. (Consider for example, [a b c a b c] [a b c a b c].) We 
shall call words of subperiod k primitive. 

For later purposes it is convenient to call two words equivalent if one is a 
cyclic permutation of the other, and to speak of (#i a2. . . ak), (a2. . . ak a\),... , 
(ak a\ . . . ajfc-i) as forming an equivalence class. If (a± a2 . . . ak) is primitive, 
then its equivalence class is also called primitive, and consists of k distinct 
words. At most one of these can be a word in D, for otherwise a contradiction 
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would again arise upon considering the overlaps of ww. Hence, if Pk(n) is the 
total number of primitive words, then 

Wk{n) <\pk{n). 

But since each of the nk words has some subperiod, Pk(n) satisfies the equation 

£ Pa(n) = n\ 
d/k 

from which we obtain 

Pt(n) = £ /i(d) nm 

d/k 

by Môbius inversion. For the Môbius inversion formula, cf. (3, p. 28). 

2. Results for k odd. Theorem 1 gives a general upper bound for Wk(n), 
of which a few examples are 

Wx{n) < n, W2(») < *(»* - »), Wz(n) < \(n* - n), W,{n) < \{n± - n2). 

In many cases this upper bound is actually attained. We believe this to be true 
for all odd k, and have proved it for all odd k < 15. Note, from the proof of 
Theorem 1, that the upper bound will be attained if and only if a word can 
be chosen from each primitive equivalence class so as to form a comma-free 
dictionary. 

THEOREM 2. For arbitrary n, 

Wk(n) = \ £ „(<*) nm 

K d/k 

ifk= 1, 3, 5, 7, 9, 11, 13, 15. 

Proof. For k = 1, the proof that Wi(n) = n is immediate. For the other 
values of k we shall show how to select a word from each primitive equivalence 
class in such a way that a comma-free dictionary is obtained. 

(i) In the case k = 3, let D be the set of all words (a b c) satisfying the 
inequalities a < b > c. It is immediately seen that D is comma free. In order 
to show that the number of words in D is \{nz — n), one could, of course, 
count the number of solutions of the inequalities a < b > c, where a, bf c are 
integers between 1 and n. But it is simpler to observe that if (&i a2 a$) is any 
primitive word (that is, one for which a\ — a2 = a% does not hold), then some 
cyclic permutation of it clearly satisfies a < b > c. In particular ^ ( 4 ) = 20, 
a fact which will be useful in section 5. 

(ii) For k = 5, the procedure is similar but more complex. Let D consist of 
all words (a b c d e) satisfying a < b > c, d > e, and also of all words satis
fying a<b<c<d^>e. It can be readily verified that D is comma-free. In 
order to show that the number of elements in D is the upper bound (in this 
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case l(nb — n)), we must prove that every primitive equivalence class contains 
a word of D. For this purpose let + denote any number which is > 0, and 
— any number which is < 0. Using this notation the elements of D can be 
characterized as those words (a b c d e) for which the sequence of differences 
b — a, c — b, d — c, e — d is of one of the forms + ~~ — — , + — + —, or 
_|—|—|- —. These patterns are precisely those which begin with an odd 
number of + 's and end with an odd number of —'s, a property which we shall 
call property P . (Incidentally, in the case k = 3 our dictionary consisted of 
words [a b c] for which the differences b — a, c — b were of the form + —, 
that is, possessed property P.) Given any primitive word (p qr s t) we form the 
differences q — p, r —q, s — r, t — s, p — t obtained by representing p, q, r, 
s, t as points on a circle. We call p — t the improper difference. By performing a 
suitable cyclic permutation on (p q r s t) we can arrange matters so that any 
one of the five differences becomes the improper one. 

Now by primitivity, both + 's and —'s appear among the differences, and 
since the total number of signs is 5, there must occur someplace a run of —'s 
followed by a run of + ' s , the lengths of these runs being of opposite parity 
(note that this result depends only on the fact that the total number of signs 
is odd). Permuting cyclically we can put the run of + 's at the beginning, the 
run of —'s at the end, and make the improper difference have the sign which 
occurred an even number of times. The proper differences will then satisfy 
property P , and hence, given any primitive word, some cyclic permutation of 
it is in D. 

(iii) For k = 7 we use the same method. Every primitive word has some 
cyclic permutation with property P. Its proper differences will then have one 
of the following 8 patterns: 

(+ + + + + - ) (+ + + - + - ) (+ + + ) ( + - + + + -) 
(+ - + ) ( + - - + + ")(+ + ") (+ ) 
Letting D consist of all such words, we find that D is comma-free. (The veri
fication begins to become tedious, but is straightforward. The first overlap 
of two words in D begins with an even number of + ' s , hence is not in D, the 
second overlap ends with a + , etc.) 

(iv) When k — 9, the difficulty arises that there may be more than one word 
in a primitive equivalence class with property P . This happens for words 
(ai a2 a% a4 a5 a6 a-i a8 a9) with a\ < a2 > a3, a4 < a5 > a6, a7 < a8 > a9. 
Here the permutations (a4 a?, aQ a7 a8 a9

 ai a2 #3) and (ai a8 a9 a,\ a2 a3 a4 a5 a&) 
also have property P . But notice that these words consist of three blocks of 
three letters, each of the type used for k = 3. This suggests the idea of ordering 
the 3-letter words (a b c) with a < b > c in some fashion (say lexicographi
cally), and choosing for the dictionary D that one of the three possibilities 
which is of the form W\ < w2 > Wz in this ordering. For example, in the case 
of the word (1 3 1 1 2 2 2 3 1), the permutation (12 2 2 3 1 1 3 1) would be 
selected for Z>, because (122) < (231) > (131) if lexicographic ordering is 
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employed. Adopting this convention, the dictionary which results is comma-
free. 

(v) For k = 11, 13, and 15 the same methods can be used, but the work 
becomes increasingly cumbersome. It is conceivable that all odd k can be 
treated in this manner, but we have stopped with the proof that 15Wn(n) 
= nlb — n5 — nz + n. 

This case, the first where k has two distinct prime factors, is particularly 
powerful evidence for the validity of the general conjecture. 

3. Results for Even k. When k is even, the results are much less complete, 
and we cannot even formulate a plausible conjecture as to the value of Wk(n). 
We begin with 

THEOREM 3. W2(n) = [|^2], where [x] denotes the integral part of x. 

Proof. Let D be any comma-free dictionary, and define A to be the set of 
all integers which begin some word of D but never end a word of D. Similarly, 
let B be the set of integers which both begin and end words of D, and C the 
set of integers which only end words of D. For example, if D = {(43), (41), 
(35), (25), (15)}, then 

A = {4,2}, B = {3,1}, C= {5}. 

D must evidently consist of words of the forms (a b), (a c), (bi b2)} or (b c), 
where a £ A, b, bi, b2 £ B, and c £ C. But (bib2) cannot occur, for there is some 
word in D ending in b\y and some word beginning with b2, and the comma-free 
property therefore excludes (b± b2). This leaves only words of the forms (a b), 
(a c), (b c), and it is immediately seen that the set of all these is comma-free. 
If a is the number of elements of A, 13 of B, and 7 of C, then the number of 
words in D is at most afi + fly + ya. Maximizing the quantity afi + (3y + 7« 
subject to the constraint a + fl + 7 = n, we see that a, /?, 7 should be chosen 
as nearly equal as possible, in which case 

a/3 + fiy + ya = [\n2]. 

For example, if n = 3 we would take A = { 1 } , 5 = {2}, C — {3}, and obtain 
D = {(12), (13), (23)}. It is not difficult to see that for arbitrary n we may 
choose D to be the set of all words w congruent to one of these words (mod 3), 
where 

(ai a2 . . . ak) = (bi b2 . . . bk) (mod m) 

means 
aj = bj (mod m), j = 1, 2, . . . , k. 

Thus for n = 5, D = {(12), (15), (42), (45), (13), (43), (23), (53)}. 

THEOREM 4. If k is any even integer, then the upper bound given by Theorem 1 
is not attained by Wk (n) provided that n > 3^*. 
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Proof, Let k = 2j, and let L be a comma-free dictionary. We define Si to 
be the set of all j-tuples (ai a 2 . . . a ;) which form the first half of some word in 
L, and S2 to be the set of ^-tuples (aj+i aj+2 . . . an) which form the second 
half of some word in L. Then we put 

A = Si n s2', s = Si n s2, c = s/ n s2, z> = 5/ n s2', 

where the prime denotes complementation. The four sets A, B, C, D are 
mutually exclusive and mutually exhaustive, so that any j-tuple is in one 
and only one of them. Hence to every ^-letter word we may associate a pair 
(AA), (AB), . . . or (DD) depending on which set its first half falls into and 
which set its second half falls into. As in the proof of Theorem 3, it is seen that 
for words in L the type (BB) cannot arise, and hence only (^45), (AC), and 
(BC) remain. 

The upper bound of Theorem 1 was the number of primitive equivalence 
classes. To prove Theorem 4, we will show the existence of a primitive ^-letter 
word, such that no cyclic permutation of it has any of the forms (AB), (AC), 
or (BC). 

Consider the following particular blocks of length j : 

(1, 1, 1, . . . , 1, m) 1 < m < n. 

Let Tt be the cyclic permutation which shifts each letter i units to the left. 
Define 

(l if Tt (1, 1, . . . , m) e A U D 
Fm(i) = \2ifTi (1 ,1 f » ) 6 S 

(3 if Tt (1, 1, . . . , m) e C 

For each m, Fm(i) is a function with a domain of j elements and a range of 3 
elements. There can be at most 3 J such functions, and since n > 3^fc = 3y, 
there exist two distinct integers p and m such that Fv = Fm for all i. We now 
claim that no cyclic permutation of the word 

w = (1 1 . . . p 1 1 . . . m) 

is of the form (AB), (AC), or (BC). For any permutation of w consists of a 
cyclic permutation of (1 1 . . . p) followed by the same cyclic permutation of 
(1 1 . . . m) or vice versa. Since Fv = Fm, we therefore get only the forms 
(AA), (AD), (DA), (DD), (BB), or (CC). 

In particular, when k = 4, Theorem 4 proves that 4.W±(n) < n4 — n2 for 
n > 9. By more delicate arguments it can be shown that this inequality is 
true for n > 5. On the other hand, if n = 1, 2, 3, then 4 W±(n) = n4 — n2, as 
is seen by considering the dictionary D of words (abed) satisfying a < c, 
b > d. The question of whether or not ^ ( 4 ) = 60 is still open. The best that 
can currently be proved is ^ ( 4 ) > 56. 

4. Asymptotic Results. In this section we shall prove some theorems 
about the asymptotic behavior of Wk(n) when k is fixed and n —> oo. 
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THEOREM 5. The limit 

lim k = ak 
JÎ4m W 

exists. 

Proof. We shall show that if n0 is any fixed integer, then 

This fact, coupled with the obvious boundedness of the ratio in question, proves 
the existence of the limit. 

Consider then the integer n0, and let D be a comma-free dictionary contain
ing Wk(n0) words. For any arbitrary w, form the set S of all words w such that 

w ss wo (mod Wo), 

where w0 € ZX (The definition of congruence is given after Theorem 3 together 
with an example of the present procedure.) 5 is clearly comma-free, and so 
if it contains Sk(n) elements, then 

Wk(n) > Sk(n). 

But it is easy to see that 

n m „ k " " M k 

n->co W flo 

This completes the proof of the theorem. 

THEOREM 6. If k is odd, then ak = 1/k. 

Proof. By Theorem 1, 

Wk(n) < \ Z »(d) nm. 
K d/k 

If k is fixed and »—»<», the right hand side is asymptotically n*/k. Hence, 

l i m ~~iF~ < k • 
n-4co M K 

On the other hand, consider the dictionary D defined as follows: Put k = 
2j — 1 and let D consist of all words (ai a2 . . . ak) such that a5 is greater 
than any of the other a / s . D is comma-free, as is easily verified, and the 
number of elements in D is equal to 

M - l k 

m ~-r 

This shows that 
Wj^n) ^ 1 

lim —-J 
W->co n* ^ife ' 

and thus establishes Theorem 6. 
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THEOREM 7. If k is even, then l/ek < ak < 1/k. 

Proof. The first part of Theorem 6 holds for any fixed k. Hence, ak < 1/k. 
To obtain a lower bound, we divide the integers from 1 to n into two disjoint 
classes U and V. Then let D be the set of all words (ai a2 . . . ak) such that 
ax Ç U and a2, . . . , ak £ F. D is clearly comma-free, and if the number of 
elements in V is v, then D contains (n — v)vlc~1 words. If v could take on all 
real values, then the maximum of this expression would occur for 

k - 1 
v = 

and would have the value 

n_ 
k 

nk_( _ l V - 1 

The fact that v must be an integer has no effect, since taking 

i 1 
— n k 

gives a lower bound for Wk(n) which is still asymptotically 

Hence 

nk ( _ A*"1 

i / A*-1 l 

For k = 4, Theorem 7 gives the bounds 

256 < ai < 4 • 

A better bound can be obtained from Theorem 5. As shown after Theorem 4, 
Wi(3) = 18, and hence 

Wt(S) _ 18 _ 2 
«4 > 34 - g l - g • 

The exact value of ak for even k is still an open question. 

5. Applications. From their researches in the transfer of genetic infor
mation from parent to offspring, Crick, Griffith, and Orgel (1) advance the 
following hypothesis. Genetic information, they suggest, is encoded into a 
giant molecule (chromosome) by means of an affixed sequence of nucleotides, 
of which there are four types. Each such sequence is uniquely decodeable into 
a new protein molecule, consisting of a long sequence of amino acids, of which 
there are twenty types. They propose that each amino acid is specified by 
three consecutive nucleotides. However, only twenty of the sixty-four 
sequences of three nucleotides "make sense." Crick, Griffith, and Orgel 
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theorize that the twenty sequences of nucleotides actually corresponding to 
amino acids form a comma-free dictionary. As we have seen, PF3(4) = 20, 
which agrees with the number of amino acids. The reasonableness of this con
dition can be seen if we think of the sequence of nucleotides as an infinite 
message, written without punctuation, from which any finite portion must be 
decodeable into a sequence of amino acids by suitable insertion of commas. 
If the manner of inserting commas were not unique, genetic chaos could 
result. 

In their search for optimum coding techniques, Shannon, McMillan, and 
others have studied codes which are uniquely decipherable in the large—that is, 
when the entire message is available. This is a larger class than the comma-free 
messages, which must be uniquely decipherable in the small. In communications 
applications where only disjointed portions of a message are likely to be 
received, comma-free codes may indeed be useful. An excellent discussion 
of codes uniquely decipherable in the large is presented in (2). 
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