
11

The renormalization group

Renormalization invariance states that physical observables must be independent of the
renormalization scheme chosen in their theoretical evaluation. The differential approach
to renormalization invariance was pioneered by Stueckelberg–Peterman [75] and by Gell-
Mann–Low [76], where it has been pointed out that the QED coupling constant is momentum
dependent due to the definition of the renormalized charge. Such a consideration led to
write a differential equation for the photon propagator. Later on, the study of the scaling
behaviour in field theory (experimental observation of the Bjorken scaling [36] in deep
inelastic scattering) gave rise to the Callan–Symanzik equation (CSE) [132], which is a
very powerful technique for expressing the renormalization invariance constraints on the
short-distance behaviour of the Green functions. The CSE takes into account the fact that
scaling cannot be strictly implemented because of the necessity of a mass scale in the theory.
In the ε-regularization, such a mass scale renders the coupling constants dimensionless (see
Table 9.1). A generalization of the uses of the CSE to arbitrary Green functions has been
proposed [123,171]. The central idea was to treat g, mi , αG as coupling constants of various
interaction terms in the Lagrangian.

The meaning of the renormalization group can be seen from a simple example. Let us
consider a field φ. One can renormalize it in two different renormalization schemes which
we call R1 and R2. Then, the renormalized field in terms of the bare one is:

φR1 = Z (R1)φB , φR2 = Z (R2)φB , (11.1)

where: Z (Ri ) is the renormalization constant for each scheme Ri , and φB is the bare field.
As the bare field is by definition independent of the scheme, we can then, deduce:

φR1 = Z (R1, R2)φR2 , (11.2)

with:

Z (R1, R2) ≡ Z (R1)/Z (R2) , (11.3)

which should be finite as do the renormalized fields, despite the fact that the renormalization
constants Z (Ri ) are divergent. Analogous reasoning can be applied for other parameters
of the Lagrangian. The operation which relates quantities of two different renormaliza-
tion schemes can be interpreted as a transformation from R1 to R2. The set of all these
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11 The renormalization group 99

transformations is called the renormalization group. One can use the invariance of physi-
cal quantities under this group in order to study the asymptotic behaviour of the Green’s
functions. This can be done as shown below using the renormalization group equation.

11.1 The renormalization group equation

The ε-regularized Green function reads:

�R(ν, p1, . . . , pN ; g, αG, mi ) = Z��B(ν, p1, . . . , pN ; g, αG, mi ) . (11.4)

The ν-independence of �B implies the zero of the total derivative:

ν
d�B

dν
= 0 , (11.5)

which is equivalent to:{
ν

∂

∂ν
+ ν

dαs

dν

∂

∂αs
+

∑
j

ν

m j

dm j

dν
m j

∂

∂m j
+ ν

dαG

dν

∂

∂αG
− 1

Z�

ν
d Z�

dν

}
�R = 0 . (11.6)

By introducing the universal β function and anomalous dimensions γi :

αsβ(αs) = ν
dαs

dν

∣∣∣∣
gB ,m B fixed

,

γm = − ν

m R
i

dm R
i

dν

∣∣∣∣
gB ,m B fixed

,

γi = ν

Zi

d Zi

dν

∣∣∣∣
gB ,m B fixed

, (11.7)

one can transform Eq. (11.6) into the renormalization group equation (RGE):{
ν

∂

∂ν
+ β(αs)αs

∂

∂αs
−

∑
j

γm(αs)m j
∂

∂m j
+ βG

∂

∂αG
− γ�

}
�R = 0 . (11.8)

For NG, NN P and NF external gluon, ghost and fermion lines:

γ� = −1

2
[NGγ3Y M + NFγ2F + NF P γ̃3] . (11.9)

The expressions of the previous universal parameters can be easily deduced from their
definitions as we shall show below.

11.2 The β function and the mass anomalous dimension

Noticing that, in the M S scheme, β(αs) is mass-independent, one can, therefore, write
[110,111]:

αsβ(αs, ε) = ν
dαR

s

dν
= ν

d

dν

(
αB

s ν−ε Z−1
α

) = −εαR
s − αR

s

1

Zα

ν
d Zα

dν
. (11.10)
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100 III M S scheme for QCD and QED

The fact that Zα is ν-independent allows us to also write:
{
αR

s β(αs, ε) + εαR
s + (

αR
s

)2
β(αs, ε)

∂

∂αR
s

}
Zα = 0 . (11.11)

Using the expression of the Zα in terms of the 1/ε poles into the previous differential
equation, one gets from the finite terms:

αR
s β(αs, ε) = −εαR

s + (
finite term ≡ αR

s β(αs)
)

. (11.12)

Using this relation into the 1/ε term, one can deduce:

β(αs) = αR
s

∂ Zα

∂αR
s

, (11.13)

i.e., β(αs) is nothing else than the coefficient of the 1/ε-term of Zα . The different coefficients
of β are given in Table 11.1, showing that β is negative for n ≤ 11 where n is the number
of flavours. We shall see in the discussion of the running coupling that this negativity is
important for an asymptotically free theory. We apply the same reasoning for obtaining the
quark mass anomalous dimension defined as:

γm(αs) = − ν

m R

dm R

dν

∣∣∣∣
gB ,m B fixed

≡ ν

Zm

d Zm

dν
. (11.14)

where B and R refer to renormalized and bare quantities. Using the fact that in the
M S scheme, Zm is only function of ν and αs , one gets:

ν
d Zm

dν
≡

{
ν

∂

∂ν
+ β(αs, ε)αs

∂

∂αs

}
Zm . (11.15)

To lowest order of αs , noting that the only dependence on Zm is from αs , and using the
previous expression of the β function in Eq. (11.10), the previous differential equation can
be written as:

ν
d Zm

dν
=

{
−εαs

∂

∂αs
+ αsβ(αs)

∂

∂αs

}
Zm . (11.16)

Using the expression of Zm , which is generically given by:

Zm = 1 +
∑

n

1

ε̂n
Z (n)

m , (11.17)

one can obtain that the mass anomalous dimension is given by the opposite of the 1/ε pole
coefficient in our sign convention (d = 4 − ε). Analogous reasoning applies to the other
anomalous dimensions, i.e., they are the opposite of the 1/ε̂-coefficient. Their expressions
are given in Table 11.1. The coefficients of the quark mass anomalous dimension and β

functions have been calculated in the M S scheme by: [133] (γ2), [134] (β2), [135] (γ3 and
β3) and [136] (γ4 and β4).
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11 The renormalization group 101

11.3 Gauge invariance of β(αs) and γm in the M S scheme

One can also prove the gauge invariance of β and γm . This property leads to a great simplicity
in their evaluation, as one can perform the calculation in a given gauge like the Feynman
gauge αG = 1. For completing the proof, we start from a dimensionless Green’s function
� associated to a gauge-invariant amplitude. Using the fact that the bare Green’s function
is independent of the renormalization scale ν and of the gauge αG , one has the RGE:{

ν
∂

∂ν
+ β(αs)αs

∂

∂αs
− γm(αs)m

∂

∂m
+ βG

∂

∂αG

}
�R = 0 . (11.18)

The fact that it is gauge invariant gives:(
∂

∂αG
+ αsρ

∂

∂αs
+ σm

∂

∂m

)
�R = 0 , (11.19)

with:

αsρ ≡ dαs

dαG

∣∣∣∣
gB , ε fixed

and σ ≡ 1

m

dm

dαG

∣∣∣∣
gB , ε fixed

. (11.20)

We apply the commutators of the operators in Eqs. (11.18) and (11.19) into �R :

[{. . .} , (. . .)]�R = 0 . (11.21)

Eliminating ∂�R/∂αG with the help of Eq. (11.19), one obtains a third independent RGE:{[
Dβ̄ − β̄

∂(αsρ)

∂αs

]
αs

∂

∂αs
+

[
Dγ̄m − β̄αs

∂σ

∂αs

]
m

∂

∂m

}
�R(αs, αG, m) = 0 , (11.22)

where:

D ≡ ∂

∂αG
+ αsρ

∂

∂αs
, β̄ ≡ β − ρβG , γ̄m ≡ γm − σβG . (11.23)

However, �R depends only on the two conditions in Eqs. (11.18) and (11.19). Therefore
the third equation should be trivially satisfied:

Dβ̄ − β̄
∂(αsρ)

∂αs
= 0

Dγ̄m − β̄αs
∂σ

∂αs
= 0 . (11.24)

Therefore, the RGE becomes:{
ν

∂

∂ν
+ β̄(αs)αs

∂

∂αs
− γ̄m(αs)m

∂

∂m

}
�R = 0 , (11.25)

which shows that the physical consequences of the RGE are gauge invariant. Recalling that
in the M S scheme:

gB = νε/2gR

(
1 +

∑
n

an

ε̂n

)
≡ νε/2gR Z1/2

α , (11.26)
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102 III M S scheme for QCD and QED

and using the previous definition of ρ, one gets:

ρ = − 1

Zα

d Zα

dαG

∣∣∣∣
gB , ε fixed

= − 1

Zα

{
∂a1

∂αG

1

ε
+ ∂a2

∂αG

1

ε2
+ · · ·

}
. (11.27)

Then:

ρ
(

1 + a1

ε

)
= − ∂a1

∂αG

1

ε
+ O

(
1

ε2

)
, (11.28)

which is only satisfied if and only if ρ = 0 because ρ is independent of ε (see its definition
and its relation with β̄ and β). One should notice that it is also due to the fact that in the
M S scheme, Zα has no constant term other than 1 (the ln 4π − γ term being al-
ready absorbed into 1/ε̂). Inserting ρ = 0 into Eq. (11.24), one gets the desired
result:

∂β

∂αG
= 0 , (11.29)

showing that β is gauge independent. With similar proofs, one also obtains σ = 0, leading
to the gauge independence of γm .

11.4 Solutions of the RGE

One can now solve the RGE. If D is the dimension of � in units of mass and if one scales
the momenta p1, . . . , pN by a dimensionless factor λ, the Euler theorem on homogeneous
function gives:

{
λ

∂

∂λ
+

∑
j

m j
∂

∂m j
+ ν

∂

∂ν
− D

}
�R(λp1, . . . , λpN ; αs, αG, m j , ν) = 0 . (11.30)

Introducing for convenience the dimensionless variables:

t ≡ ln λ x j ≡ m j/ν , (11.31)

one arrives at the desired form of the RGE:{
− ∂

∂t
+ β(αs)αs

∂

∂αs
−

∑
j

(1 + γm(αs))x j
∂

∂x j
+ βG

∂

∂αG
+ D − γ�

}

× �R(et p1, . . . , et pN ; αs, αG, x j , ν) = 0 , (11.32)

with the solution:

�R(et p1, . . . , et pN ; αs, αG, x j , ν)

= λD�R(p1, . . . , pN ; ᾱs, αG, x̄ j , t = 0) exp

{
−

∫ t

0
dt ′γ�[ᾱs(t ′, αs)]

}
. (11.33)
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Table 11.1. Anomalous dimension γi = ν
Zi

d Zi
dν

≡ coefficient of −1/ε̂ and

coefficients of the β function in the M S scheme for SU (N )c × SU (n)F

Fermion field γ2F = (
αa
π

)
N 2−1

2N
αG
2 + O (

αs
π

)2

Gluon field γ3Y M = − (
αs
π

) {
N
4

(
13
3 − αG

) − 2
3

(
1
2

)
n
}

Ghost field γ̃3 = − (
αs
π

)
N
8 (3 − αG)

Mass γm = [γ1 ≡ 2]
(

αs
π

) + [
γ2 ≡ 1

6

(
101
2 − 5n

3

)] (
αs
π

)2

+ [
γ3 ≡ 1

96

[
3747 − (

160ζ3 − 2216
9

)
n − 140

27 n2
]] (

αs
π

)3

+ [
γ4 ≡ 1

128

[
4603055

162 + 135680
27 ζ5 − 8800ζ5

+ (− 91723
27 − 34192

9 ζ3 + 880ζ4 + 18400
9 ζ5

)
n

+ (
5242
243 + 800

9 ζ3 − 160
3 ζ4

)
n2 + (− 332

243 + 64
27 ζ3

)
n3

]] (
αs
π

)4

for N = 3 ; ζ3 = 1.2020569 . . . , ζ4

= 1.0823232 . . . , ζ5 = 1.0369277 . . .

Coupling constant β(αs) ≡ ν

αs

dαs
dν

= − ν

Zα

d Zα

dν

= [
β1 = − 1

2

(
11 − 2

3 n
)] (

αs
π

) + [
β2 = − 1

4

(
51 − 19

3 n
)] (

αs
π

)2

+ [
β3 = − 1

64

(
2857 − 5033

9 n + 325
27 n2

)] (
αs
π

)3

+ [
β4 = − 1

128

[(
149753

6 + 3564ζ3

) − (
1078361

162 + 6508
27 ζ3

)
n

+ (
50065
162 + 6472

81 ζ3

)
n2 + 1093

729 n3
]] (

αs
π

)4
for N = 3

Gauge βG = ν
dαG
dν

= −αGγ3Y M

Three-gluon γ1Y M = − [(
17
6 − 3

2 αG

)
N
4 − 2

3
1
2 n

] (
αs
π

)
Ghost-gluon-ghost γ̃1 = αG

N
4

(
αs
π

)
Fermion-gluon-fermion γ1F = 1

2

[
(3 + αG) N

4 − αG
N 2−1

2N

]

where ᾱs, ᾱG and x̄ j are respectively the running QCD coupling, gauge and mass, solutions
of the differential equations:

dᾱs

dt
= ᾱsβ(ᾱs) : ᾱs(0, αs) = αR

s (ν) ,

dᾱG

dt
= βG (ᾱs) : ᾱG(0, αs) = αG(ν) , (11.34)

and:

dx̄i

dt
= −[1 + γm (ᾱs)]x̄i (t) : x̄i (0, αs) = x R

i (ν) . (11.35)
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104 III M S scheme for QCD and QED

Their explicit expressions will be given later on. One should notice that the Green function
has acquired an extra dimension induced by the exponential factor, which explains the name
anomalous dimension.

11.5 Weinberg’s theorem

In connection with the power counting theorem, one can derive a theorem on the asymptotic
behaviour of the Green’s function at large external momenta. This theorem is known as
Weinberg’s theorem [137].

It states that if non-exceptional momenta1 are parametrized as:

pil = λkil : l = 1, m , (11.36)

the renormalized Feynman amplitude of a Feynman diagram G behaves as:

�R(p1, . . . , pn) ∼ λα ln λβ , (11.37)

when λ → ∞ and ki kept fixed. Here β is undetermined, while:

α = max d(H ) (11.38)

where d(H ) is the superficial degree of divergence of the subdiagram H consisting of
continuous path of lines connected to the external lines with momenta pi1 , . . . , pim . For
a renormalizable theory like QCD, the constant d(H ) can be obtained from Eq. (9.15) by
taking r = 0. In other word, the Weinberg theorem tells us that the asymptotic limit in the
deep Euclidean region λ → ∞ is given by the naı̈ve power counting times a logarithmic
factor.

11.6 The RGE for the two-point function in the M S scheme

In order to illustrate this discussion, let us consider the generic two-point correlator:

�(q2) ≡ i
∫

d4x eiqx 〈0|T J (x)H (JH (0))† |0〉 , (11.39)

where JH (x) is the hadronic current of quark and/or gluon fields. In n = 4 − ε dimen-
sion, �(q2) acquires an extra ν−ε dimension. The renormalized two-point correlator is
[28,110,111]:

�R(q2, αs, mi , ν) ≡ �B
(
q2, αB

s , m B
i , ε

) − ν−εC
(
q2, αB

s , m B
i , ε

)
, (11.40)

1 A momentum configuration (p1, . . . , pn ) of momenta are non-exceptional if no non-trivial partial sum pi1 + pi2 + · · · pim where,
(i j take any of the label 1, . . . n) vanishes. On the contrary, an example of vanishing trivial sum is p1 + p2 + · · · + pn = 0,
which is due to the energy-momentum conservation.
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where in the M S scheme, C is the ε-pole terms:

C
(
q2, αB

s , m B
i , ε

) =
∑

k

1

εk
Ck(q2, αs, m j ) , (11.41)

where, as usual, Ck are constants or polynomials in m2
j/q2. Using the fact that �B is

independent of ν, implies the differential equation:
{

ν
∂

∂ν
+ β(αs)αs

∂

∂αs
−

∑
j

γm(αs)m j
∂

∂m j

}
�R(q2, αs, mi , ν)

= −ν
d

dν

(
ν−ε

∑
k

1

εk
Ck

)
. (11.42)

Rewriting:

ν
d

dν

(
ν−ε

∑
k

1

εk
Ck

)
=

{
ν

∂

∂ν
+ ν

dαs

dν

∂

∂αs
−

∑
j

γm(αs)m j
∂

∂m j

}
ν−ε

∑
k

1

εk
Ck ,

(11.43)

using:

ν
dαs

dν
= −εαs + αsβ(αs) , (11.44)

and the fact that the equation is finite for ε → 0, one gets:

lim
ε→0

: ν
d

dν

(
ν−ε

∑
k

1

εk
Ck

)
= − ∂

∂αs
(αsC) , (11.45)

and the set of recursive equations for k ≥ 1:
{

αsβ(αs) −
∑

i

γmmi
∂

∂mi

}
Ck = ∂

∂αs
(αsCk+1) . (11.46)

The dimensionless condition of � reads:{
ν

∂

∂ν
+ λ

∂

∂λ
+

∑
j

m j
∂

∂m j

}
�(λ2, ν2, αs, mi , ν) = 0 , (11.47)

where t ≡ ln λ. Therefore, one arrives at the RGE for the two-point function:
{

− ∂

∂t
+ β(αs)αs

∂

∂αs
−

∑
j

(1 + γm(αs))x j
∂

∂x j

}
�(t, αs, xi ) = ∂

∂αs
(αsC) ≡ D ,

(11.48)
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with the solution:

�(t, αs, xi ) = � (t = 0, ᾱs(t), x̄i (t)) −
∫ t

0
dt ′ D[t − t ′, ᾱs(t ′), x̄i (t

′)] , (11.49)

where ᾱs and x̄i are running parameters solutions of the differential equations given in
Eq. (11.34), and which will be given explicitly in the following.

11.7 Running coupling

11.7.1 Lowest order expression and the definition of the QCD scale �

Solving the differential equation in Eq. (11.34), the expression of the running coupling, to
one-loop accuracy is:

a(0)
s (t, αs) = as(ν)

1 − β1as(ν)t
, (11.50)

where:

as ≡ αs

π
,

t ≡ 1

2
ln

−q2

ν2
, (11.51)

and β1 is the first coefficient of the β function given in Table 11.1. It shows that for t → +∞,
a(0)

s → 0 for β1 < 0, which is satisfied for the number of quark flavours n f ≤ 11. In this
case, the theory is asymptotically free and the use of perturbation theory is legitimate. The
point αs = 0 is an UV fixed point as shown in Fig. 11.1 because the β-function has a
negative slope at the origin.

0 αs

β (αs)

We can also re-write the solution as:

t =
∫

dz

z

1

β(z)
≡ ϕ(z) + constant (11.52)
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11 The renormalization group 107

where the constant term is a renormalization group invariant (RGI) quantity, which one
identifies as:

t − ϕ(z) ≡ 1

2
ln ν2 + 1

β1as(ν)
= constant ≡ 1

2
ln �2 , (11.53)

where � is a RGI but renormalization scheme-dependent quantity. Therefore, the running
coupling, in terms of � to one-loop accuracy, reads:

a(0)
s (q2) = 1

−β1

1
1
2 ln −q2

�2

. (11.54)

11.7.2 Renormalization group invariance of the first two coefficients of β

Before discussing the high-order expression of the coupling, let us discuss the renormal-
ization group invariance of the first two coefficients of the β function. Let βa and βb the
β functions related to two different values of the subtraction νa and νb of the M S scheme.
Using Eq. (11.52), we have:

tb ≡ 1

2
ln

−q2

ν2
b

=
∫ ᾱs (tb,αs (ν2

b ))

αs (νa )

dz

z

1

βa(z)
≡ ϕ(z) . (11.55)

Applying the operator νb∂/∂νb to both sides of Eq. (11.55), and using the fact that
ᾱs(tb, αs(ν2

b )) obeys the differential equation:{
νb

∂

∂νb
+ βbαs(νb)

∂

∂αs(νb)

}
ᾱs(tb, αs(νb)) = 0 , (11.56)

one obtains:

−1 = −
(

1

αs(νa)βa

)
βbαs(νb)

∂αs(νa)

∂αs(νb)
=⇒ βa = βb

(
αs(νb)

αs(νa)

) (
∂αs(νb)

∂αs(νa)

)
. (11.57)

Using the αs expansion:

βa = βa
1

(αs

π

)
(νa) + βa

2

(αs

π

)2
(νa) + · · · ,

βb = βb
1

(αs

π

)
(νb) + βb

2

(αs

π

)2
(νb) + · · · , (11.58)

and the relation:

αs(νa) = αs(νb) + cα2
s (νb) , (11.59)

where c is an arbitrary constant depending on the subtraction scale, one can easily
deduce:

βa
1 = βb

1 and βa
2 = βb

2 , (11.60)

which achieves the proof of the RGI invariance of β1 and β2. The higher-order terms of the
β function will be affected by the coefficient c and hence on the subtraction scale.
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11.7.3 Higher order expression

The previous result can be extended to higher orders. To order α2
s , one can write the solution

of Eq. (11.52) as:

t =
∫

dz

z2

π

β1 (1 + (β2/β1)(z/π ))
+ constant

= π

β1

{
−1

z
+ β2

β1

1

π
ln

(
1 + (β2/β1)(z/π )

z

)}
+ constant , (11.61)

where the constant is a RGI quantity which has been fixed to be ln � to lowest order. At the
two-loop level, it is convenient to fix it as in [138]:

constant ≡ ln �(1 loop) − β2

β2
1

ln

(
− β1

2π

)
. (11.62)

Therefore, we get the RGI quantity to two loops:

ln ν + 1

β1as
− β2

β2
1

ln

(
1 + (β2/β1)(as)

asπ

)
= ln �(two loops) − β2

β2
1

ln

(
− β1

2π

)
. (11.63)

Expanding Eq. (11.61), and inserting the expression of the running αs to one loop, we
deduce:

as(q2)(2) = a(0)
s

{
1 − a(0)

s

β2

β1
ln ln

ν2

�2

}
. (11.64)

It is not difficult to show that, to order α2
s , one can relate the one- and two-loop values of

� as:

�(two loops) =
(

− β1

2π

)β2/β
2
1

�(1 loop) (11.65)

To three-loop accuracy the running coupling can be parametrized as:

as(ν) = a(0)
s

{
1 − a(0)

s

β2

β1
ln ln

ν2

�2

+ (
a(0)

s

)2
[
β2

2

β2
1

ln2 ln
ν2

�2
− β2

2

β2
1

ln ln
ν2

�2
− β2

2

β2
1

+ β3

β1

]
+ O(

a3
s

)}
, (11.66)

with βi are the O(ai
s) coefficients of the β function in the M S scheme for n f flavours (see

Table 2.2), which, for three flavours, read:

β1 = −9/2 , β2 = −8 , β3 = −20.1198 . (11.67)
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� is a renormalization group invariant scale but is renormalization scheme dependent. The
running coupling αs has been measured from LEP, τ decays2 and deep-inelastic scattering
data. We shall discuss these determinations in the next chapter. The present world average
is [16,139]:

αs(MZ ) = 0.1181 ± 0.0027 . (11.68)

11.8 Decoupling theorem

The decoupling theorem of Appelquist and Carazzone [140] states that the effect of heavy
particles (fermion, boson) of mass M2

H � −q2 can be ignored below their thresholds.
However, in the M S and M S schemes, these heavy particles could contribute to the universal
β and γ functions as they are mass independent, and therefore the M S and M S schemes
do not a priori satisfy this theorem. In order to satisfy this theorem, one should modify the
scheme. References [141–143] have proposed to absorb into the renormalization constant,
not only the 1/ε̂ pole but also terms of the type lnn MH/ν coming from heavy fermion or
boson loops (ν being the scale of the M S scheme). In such an effective theory, one can
relate the QCD scale of n light quarks to the one with n light plus one heavy flavour. To
one loop, this relation is:

�n+1 = �n

(
M2

H

p2

) 1
3β1

. (11.69)

At the heavy quark threshold p2 = 4M2
H , one can see that the heavy quark effect tends

to decrease slightly the value of �. One can see more explictly such effects in Table 11.2.

11.9 Input values of αs and matching conditions

We shall discuss below, how this decoupling is used in the practical evaluation of the running
coupling. In so doing, we run the value of αs(MZ ) in the range given in Table 11.2, to lower
scales by taking appropriately the threshold effects due to heavy quark productions. We run
this value until Mb = 4.6–4.7 GeV, using the two-loop relation:

αs

π
= a(0)

s

(
1 − a(0)

s

β2

β1
ln ln(−q2/�2)

)
(11.70)

and for n f flavours, we note that:

β1 = −11

2
+ n f

3
and β2 = −51

4
+ 19

12
n f . (11.71)

2 This process gives so far the most precise measurement of αs at MZ as a modest accuracy at the τ -mass becomes a precise value
at the Z -mass because the errors decrease faster than the running of αs . Also, here, compared with some other determinations, we
have relatively the best theoretical control including the perturbative corrections to order α4

s , the non-perturbative condensates
and the resummation of the asymptotic series.
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Table 11.2. Value of αs and � to two-loops at different scales
and flavours

αs(MZ ) �5[MeV] αs(Mb) �4[MeV] αs(Mc) �3[MeV] αs(Mτ )

0.112 160 0.198 240 0.312 290 0.277
0.118 225 0.218 325 0.372 375 0.319
0.124 310 0.241 432 0.463 480 0.378
0.127 360 0.254 495 0.528 540 0.417

Following references [144,145], we do the matching condition α(5)
s = α(4)

s at this
b-mass, in order to extract αs for four flavours. We continue iteratively this procedure
for completing Table 11.2, which is one of the basic inputs of numerous phenomeno-
logical analyses discussed in this book. We use here the value of the perturbative pole
mass to two-loops: Mb = 4.62 GeV and Mc = 1.42 GeV which we shall discuss later on.
Notice that doing a similar procedure at the three-loop level, we reproduce the value of
αs given in [139]. In this case, one can use the three-loop relation at the subtraction scale
MH [146]:

α
(n f −1)
s = α

(n f )
s

[
1 − 0.291667a2

s − [5.32389 − (n f − 1)0.26247]a3
s

]
, (11.72)

where: as ≡ α
(n f )
s /π .

11.10 Running gauge

The running gauge ᾱG is the solution of the differential equation in Eq. (11.35). To leading
order in αs , it reads [110]:

ᾱG(−q2) = α̂G[
1
2 ln (−q2/�)

]δ/−β1

{
1 + N

4δ

α̂G[
1
2 ln (−q2/�)

]δ/−β1

}−1

, (11.73)

where for SU (N )c × SU (n)F :

δ = 13

12
N − n

3
. (11.74)

α̂G is a renormalization group invariant parameter defined to one loop as:

α̂G = αG(ν)

1 − N
4δ

αG(ν)

(
1

−β1as(ν)

)δ/−β1

. (11.75)

It is interesting to notice that for n ≤ 9, the running gauge tends to the Landau gauge
(αG = 0) for −q2 → ∞. One also obtains:

ᾱG(q2) = αG(ν) , (11.76)
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for αG = 0 (Landau gauge) to all orders and for αG = 4δ (peculiar gauge) to lowest order
in αs .

11.11 Running masses

The running masses are solutions of the differential equation in Eq. (11.35). Analogously
to �, one can also introduce an invariant mass m̂i [28]. The expression of the running quark
mass in terms of the invariant mass m̂i is [28]:

m̄i (ν) = m̂i (−β1as(ν))−γ1/β1

{
1 + β2

β1

(
γ1

β1
− γ2

β2

)
as(ν)

+ 1

2

[
β2

2

β2
1

(
γ1

β1
− γ2

β2

)2

− β2
2

β2
1

(
γ1

β1
− γ2

β2

)
+ β3

β1

(
γ1

β1
− γ3

β3

) ]
a2

s (ν) + O(
a3

s

)}
,

(11.77)

where γi are the O(ai
s) coefficients of the quark-mass anomalous dimension (see

Table 11.1). For three flavours, we have:

γ1 = 2 , γ2 = 91/12 , γ3 = 24.8404 . (11.78)

As we shall see later on, QSSR is, at present, the most appropriate theoretical method for
extracting the absolute values of the light quark masses. A long list of these determinations
is given in the recent review [54] (see also [57] and the chapter on quark masses in this
book), where the QSSR results are compared with the ones from chiral perturbation theory
and lattice calculations. We only quote below the results:

m̄d (2 GeV) = (6.5 ± 1.2) MeV, m̄u(2 GeV) = (3.6 ± 0.6) MeV , (11.79)

and:

m̄s(2 GeV) = (117.4 ± 23.4) MeV , (11.80)

and the bounds from the positivity of the spectral functions:

90 MeV ≤ m̄s(2 GeV) ≤ 168 MeV . (11.81)

The running masses of the c and b quarks have been also extracted directly from the J/ψ

and ϒ sum rules. To two-loop (order αs) accuracy, one obtains [149]:

m̄c(Mc) = (
1.23+0.02

−0.04 ± 0.03
)

GeV m̄b(Mb) = (
4.23+0.03

−0.04 ± 0.02
)

MeV . (11.82)

From the D and B meson systems, one obtains to order α2
s [150]:

m̄c(Mc) = (
1.10 ± 0.04

)
GeV m̄b(Mb) = (

4.05 ± 0.06
)

MeV , (11.83)
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which agree with the former within the errors though the central values are slightly lower.
These results can be compared with different results based on non-relativistic and some
other approaches [16].

11.12 The perturbative pole mass

The notion of perturbative pole mass can be useful in the phenomenology of the heavy
quark systems. However, unlike in QED, where the pole mass is well-defined, due to
the observation of the lepton, this definition is ambiguous in QCD due to confinement.
Attempts to define the pole mass within perturbation theory have been done in the literature
[141,133,148]. By analogy with QED, one can define the pole mass as the pole of the quark
propagator. For definiteness, on can start with the bare quark propagator:

SF (p) = 1

p̂ − MB − iε
, (11.84)

After interaction, one has:

SF (p) =
(

1

1 − �2

)
1

p̂ − MB
[
1 + �1

1−�2

] (11.85)

which shows explicitly the wave function and the mass renormalization constants in
Eq. (9.20). An explicit evaluation of �1,2 in the M S scheme gives:

�B
1 = (gBν−ε/2)2 CF

(16π2)1−ε/4

∫ 1

0
dx

×
[
�(ε/2)

(
R2

ν2

)−ε/2

[2(2 − x) − ε(1 − x) + (1 − αG)(1 − 2x)]

+ (1 − αG)2x(1 − x)
p2

M2
B − p2x

]
(11.86)

�B
2 = (gBν−ε/2)2 CF

(16π2)1−ε/4

∫ 1

0
dx

×
[
�(ε/2)

(
R2

ν2

)−ε/2

[−2x + ε(1 − x) + (1 − αG)2(1 − x)]

+ (1 − αG)2x(1 − x)
p2

M2
B − p2x

]
, (11.87)

where:

R2 = (1 − x)
(
M2

B − p2x
) − iε′. (11.88)
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αG is the covariant gauge parameter and CF = (N 2 − 1)/(2N ) for SU (N )c. These para-
metric integrals lead to:

�B
1 =

(αs

π

)
CF

1

2

{
3

ε̂
+ 5

2
− 3

2
ln

M2
B − p2

ν2

+
(

1

2

)
M2

B

−p2

[
1 −

(
4 + M2

B

−p2

)
ln

(
1 − p2

M2
B

)]

+ (1 − αG)

[
− 1

2
− 1

2

M2
B

−p2
+ 1

2

M2
B

−p2

(
1 + M2

B

−p2

)
ln

(
1 − p2

M2
B

)]}
, (11.89)

�B
2 =

(αs

π

)
CF

1

4
[−1 + (1 − αG)]

{
2

ε̂
+ 1 − ln

M2
B − p2

ν2

+
(

M2
B

−p2

)2

ln

(
1 − p2

M2
B

)
− M2

B

−p2

}
, (11.90)

with:

1/ε̂ ≡ 1/ε + 1

2
(ln 4π − γ ) , (11.91)

which shows that �B
2 vanishes to order αs in the Landau gauge αG = 0. Their asymptotic

expressions are:

�B
1

∣∣
p2�M2 =

(αs

π

)
CF

1

2

{
3

ε̂
+ 5

2
− 3

2
ln

−p2

ν2
+ 1

2
(1 − αG) + O

(
M2

−p2
ln

−p2

M2

) }
,

�B
2

∣∣
p2�M2 =

(αs

π

)
CF

1

4
[−1 + (1 − αG)]

{
2

ε̂
+ 1 − ln

−p2

ν2
+ O

(
M2

−p2
ln

−p2

M2

) }
,

(11.92)

and:

�B
1

∣∣
p2�M2 =

(αs

π

)
CF

1

2

{
3

ε̂
− 3

2
ln

M2
B

ν2
+ 3

4
+ 5

6

(−p2

M2
B

)

+ (1 − αG)

[
−1

4
− 1

12

(−p2

M2
B

)] }
,

�B
2

∣∣
p2�M2 =

(αs

π

)
CF

1

4
[−1 + (1 − αG)]

{
2

ε̂
− ln

M2

ν2
+ 1

2
− 2

3

(−p2

M2
B

) }
, (11.93)

At p2 = M2 = ν2, one gets:

�B
1

∣∣
p2=M2=ν2 =

(αs

π

)
CF

1

2

[
3

ε̂
+ 2

]
, (11.94)
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which is gauge independent. It is related to the pole mass, which is defined at the pole
p2 = M2 of the full quark propagator through Eq. (11.85). In terms of the running mass,
the pole mass reads:

Mpole = m̄(p2)

{
1 + �1(p2 = M2)

1 − �2(p2 = M2)

}
, (11.95)

Therefore, the previous expressions gives [148]:

Mpole = m̄(p2)

{
1 +

(
4

3
+ ln

p2

M2

) (αs

π

)}
, (11.96)

which is gauge and renormalization scheme independent. The IR finiteness of the result to
order α2

s has been explicitly shown in [133]. The independence of Mpole on the choice of
the regularization scheme has been demonstrated in [148]. The extension of the previous
result to order α2

s is [151]:

Mpole = m̄(p2)

[
1 +

(
4

3
+ ln

p2

M2

) (αs

π

)

+
[

K Q +
(

221

24
− 13

36
n

)
ln

p2

M2
+

(
15

8
− n

12

)
ln2 p2

M2

] (αs

π

)2
]

, (11.97)

where, in the RHS, M is the pole mass and:

K Q = 17.1514 − 1.04137n + 4

3

∑
i 
=Q

�

(
r ≡ mi

MQ

)
. (11.98)

For 0 ≤ r ≤ 1, �(r ) can be approximated, within an accuracy of 1% by:

�(r ) � π2

8
r − 0.597r2 + 0.230r3 , (11.99)

while, its values in the following limiting cases are:

�(r → 0) � 3

4
ζ (2)r + O(r2) ,

�(r → ∞) � 1

4
ln2 r + 13

24
ln r + 1

4
ζ (2) + 151

288
+ O(r−2 ln r ) ,

�(r = 1) � 3

4
ζ (2) − 3

8
. (11.100)

As, one can notice, the behaviour of �(r → ∞) is quite bad, such that in the effective
field theory where the heavy quark mass tends to infinity, one should write a well-defined
relation in this limit. This can be achieved by introducing the coupling and light quark
masses in the effective field theory in terms of the corresponding quantities in the full

https://doi.org/10.1017/9781009290296.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290296.018


11 The renormalization group 115

theory [144]:

αeff
s (ν) = αs(ν)C(αs(ν), x)

meff(ν) = m(ν)H (αs(ν), x) , (11.101)

where x ≡ ln(m̄2
h/ν

2) and:

C(αs, x) = 1 +
∑
k≥1

Ck

(αs

π

)k
, Ck(x) =

∑
0≤i≤k

Cik xi ,

H (αs, x) = 1 +
∑
k≥1

Hk

(αs

π

)k
, Hk(x) =

∑
0≤i≤k

Hik xi , (11.102)

with:

C1 = x

6
, C2 = 11

72
+ 11

24
x + x2

36
,

H1 = 0 , H2 = 89

32
+ 5

36
x + x2

12
, (11.103)

and by expressing αeff
s in terms of the pole mass:

αeff
s = αs

{
1 + X

6

(αs

π

)
+

(
− 7

24
+ 19X

24
+ X2

36

) (αs

π

)2
}

, (11.104)

where X ≡ ln(M2
h/ν2). In this way, the previous expression becomes:

Mpole = m̄(p2)

[
1 +

(
4

3
+ ln

p2

m̄2

) (αs

π

)

+
[

K Q(m̄ f /m̄) +
(

173

24
− 13

36
n

)
ln

p2

m̄2
+

(
15

8
− n

12

)
ln2 p2

m̄2

] (αs

π

)2
]

,

(11.105)

where m̄ is the running mass of the finite mass heavy quark, n is the number of finite
mass quark flavours and the summation in K Q through �(m̄ f /m̄) runs over the n − 1
lightest quarks. For instance, in the case of the bottom quark mass, one uses n = 5, and
deduce:

Mb = m̄b(p2)

[
1 +

(
4

3
+ ln

p2

m̄2
b

) (
αeff

s

π

)

+
[

K Q(m̄ f /m̄b) + 389

72
ln

p2

m̄2
b

+ 35

24
ln2 p2

m̄2

] (αs

π

)2
]

, (11.106)

where, by neglecting the u and d quark masses:

K Q(m̄ f /m̄b) = 9.278 + 4

3

∑
f ≡s,c

�(m̄ f /m̄b) . (11.107)
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Finally, a recent order α3
s evaluation leads to [152]:

m̄(Mpole) = Mpole

[
1 − 4

3

(αs

π

)
+ [−14.3323 − 1.0414n]

(αs

π

)2

+ [−198.7068 + 26.9239n − 0.65269n2]
(αs

π

)3
]

. (11.108)

However, one should be careful when using the previous mass in the OPE, as, in order to
be consistent, one should use the same truncations in the mass definition and in the hadronic
correlator to be analysed. For this reason, the re-summed result obtained to leading order
in (β1αs) term within the large n f -limit [154], should also be used with care. Using the
previous relation with the pole and running mass as well as a direct estimate of the two-loop
order αs running mass from the ψ and ϒ-sum rules, one obtains the value of the pole mass
to two-loop accuracy [149]:3

M PT 2
c = (1.42 ± 0.03) GeV , M PT 2

b = (4.62 ± 0.02) GeV . (11.109)

It is informative to compare these values with those of the pole masses from non-
relativistic sum rules to two loops [149]:

M N R
c = (

1.45+0.04
−0.03 ± 0.03

)
GeV , M N R

b = (
4.69+0.02

−0.01 ± 0.02
)

GeV , (11.110)

and, recently, to three loops of order α2
s

4 including a resummation of the Coulombic
corrections [156]:

M N R
b = (4.60 ± 0.02) GeV , (11.111)

in good agreement with the former results.
If one uses the value of the running mass obtained to three-loop accuracy [156], and the

three-loop relation between the pole and the running mass, one obtains:5

M PT 3
b � (4.7 ± 0.07 ± 0.02) GeV , (11.112)

which, although slightly higher, is in agreement within the errors with the two-loop result.
Recent extension of the sum rules analysis [157,159] have led to more accurate values

of the pole mass. The one using the relation between the pole and the 1S meson mass gives
[159]:

M PT 3
b � (4.71 ± 0.03) GeV , (11.113)

in agreement with the two-loop αs result given in Eq. (11.109).
One can also compare the previous values with the dressed mass:

Mnr
b = (4.94 ± 0.10 ± 0.03) GeV , (11.114)

3 We shall discuss these different points in more details in the chapter on quark masses.
4 This result can be considered to be an improvment of the Voloshin value of 4.8 GeV [155].
5 This value is slightly lower than the one given in [149], as the value of the running mass used there is higher. However, the

results agree within the errors.
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obtained from a non-relativistic Balmer formula based on a b̄b Coulomb potential and
including higher order α4

s -corrections [94], or the mass obtained from the fit of the spectra
within potential models [12]:

Mpot
b � (4.8 ∼ 4.9) GeV. (11.115)

This non-relativistic mass is slightly higher than the one from the sum rules. One can
remark that the mass difference is :

Mnr
b − M PT

b ≈ (100 ∼ 200) MeV . (11.116)

The interpretation of this mass difference is not very well understood. If one has in
mind that the non-relativistic pole mass contains a non-perturbative part, which can be of
the same origin as the one induced by the truncation of the perturbative series at large
order, then one might eventually consider this value as a phenomenological estimate of
the renormalon contribution, which is comparable in strength with the estimate of about
100–133 MeV from the summation of higher-order corrections of large-order perturbation
theory [154].

An extension of the previous analysis of the J/ψ and ϒ-systems to the case of the D, B
and D∗, B∗ mesons leads to the value to order αs [149]:

M PT 2
b = (4.63 ± 0.08) GeV , (11.117)

in good agreement with the previous results, but less accurate. This result has been confirmed
by recent estimates to order α2

s [150]:

M PT 3
c = (1.47 ± 0.06) GeV , M PT 3

b = (4.69 ± 0.06) GeV , (11.118)

11.12.1 The b and c pole mass difference

One can also use the previous results, in order to deduce the mass difference between the b
and c (non)-relativistic pole masses:

Mb(Mb) − Mc(Mc) = (3.22 ± 0.03) GeV , (11.119)

in good agreement (within the errors) with potential model expectations [12,16], and with
the heavy quark symmetry (HQET) result from the B and D mass difference [164] (see also
Chapter 44):

Mb(Mb) − Mc(Mc) � (M̄ B − M̄ D)

{
1 − λ1

2M̄ B M̄ D
+ O

(
1

M3
Q

)}
� (3.4 ± 0.04) ,

(11.120)

where one has used the QSSR estimate of the heavy quark kinetic term inside the meson
[165,166]:

λ1 � −(0.5 ± 0.2) GeV2. (11.121)
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A direct comparison of this mass difference with the one from the analysis of the inclusive
B-decays needs however a better understanding of the mass definition and of the value of
the scale entering into these decay processes. If one chooses to evaluate these pole masses
at the scale ν = Mb, which might be a natural scale for this process, one obtains to two-loop
accuracy:

Mc(ν = Mb) = (1.08 ± 0.04) GeV, (11.122)

which leads to the mass difference:

Mb − Mc|ν=Mb = (3.54 ± 0.05) GeV . (11.123)

11.13 Alternative definitions to the pole mass

It has been argued that the pole masses can be affected by non-perturbative terms induced
by the resummation of the QCD perturbative series [154] (see chapter on power corrections)
and alternative definitions free from such ambiguities have been proposed (residual mass
[158] (see also [160]) and 1S mass [159]). Assuming that the QCD potential has no linear
power corrections, the residual or potential-subtracted (PS) mass is related to the pole mass
as:

MPS = Mpole + 1

2

∫
|�q|<µ

d3�q
(2π )3

V (�q) . (11.124)

The 1S mass is defined as half of the perturbative component to the 3S1 Q̄ Q ground state,
which is half of its static energy 〈2Mpole + V 〉.6 The running and short distance pole mass
defined at a given order of PT series will be used in the following discussions in this book.

11.14 M S scheme and RGE for the pseudoscalar two-point correlator

In order to illustrate the discussions in the previous sections, let us consider the two-point
correlator:

�5(q2) ≡ i
∫

d4x eiqx 〈0|T JP (x) (JP (0))† |0〉 , (11.125)

where:

JP = (mi + m j )ψ̄ i (iγ5)ψ j , (11.126)

is the light quark pseudoscalar current.

6 These definitions might still be affected by a dimension-two term advocated in [162,161,438], which might limit their accuracy
[163].
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11.14.1 Lowest order perturbative calculation

We shall be concerned with Fig. 8.1 discussed in Section 8.2.5 for massless quarks
(Fig. 11.2):

q

p

p-q

Using Feynman rules, it reads:

iνε�5(q2) = (mi + m j )
2(−1)N

∫
dn p

(2π )n

× Tr
{

(iγ5)
i

p̂ − mi + iε′ (iγ5)
i

p̂ − q̂ − m j + iε′

}
. (11.127)

Parametrizing the quark propagators à la Feynman (Appendix E) and using the properties
of the Dirac matrices (Appendix D) and momentum integrals (Appendix F) in n-dimensions,
one obtains for the bare correlator:

νε�B
5 (q2) = (mi + m j )

2 N

4π2

∫ 1

0
dx

(
2

ε
+ ln 4π − γ

) (
R2 − iε′

ν2

)−ε/2

×
{(

3 + ε

2

)
q2x(1 − x) − 2

(
1 + ε

4

) (
m2

i x + m2
j (1 − x) + mi m j

)}
,

(11.128)

where:

R2 ≡ −q2x(1 − x) + m2
i x + m2

j (1 − x) , (11.129)

and γ = 0.5772 . . . is the Euler constant. Two limiting cases are particularly interesting:

νε�B
5

(
q2 � m2

i, j

) = (mi + m j )
2q2 N

8π2

[ (
2

ε
+ ln 4π − γ − ln

(−q2

ν2

))

×
[

1 + 2

(
m2

i + m2
j − mi m j

)
−q2

]

+ 2 + ε

4
ln2

(−q2

ν2

)
− ε

2
(ln 4π − γ + 2) ln

(−q2

ν2

) ]
, (11.130)
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and:

νε�B
5 (q2 = 0) = (mi + m j )

N

4π2

[ (
m3

i ln
m2

i

ν2
+ m3

j ln
m2

j

ν2

)

−
(

2

ε
+ ln 4π − γ − 1

) (
m3

i + m3
j

) ]
. (11.131)

The case q = 0 is useful for the Ward identity discussed in Eq. (2.17) and for the definition
of the scale-invariant condensate which will be discussed in Part VII.

One can explicitly check the Ward identity perturbatively by evaluating the longitudinal
part of the axial-vector current correlator defined in Eq. (2.18). One obtains:

qµqν�
µν

5 = N

8π2
q2

∫ 1

0
dx

[
m2

i x + m2
j (1 − x) + mi m j

] (
R2 − iε′

ν2

)−ε/2

�(ε/2) ,

(11.132)

which by comparison gives:

qµqν�
µν

5 = �5(q2) − (mi + m j )
N

4π2

(
m3

i ln
m2

i

ν2
+ m3

j ln
m2

j

ν2

)
. (11.133)

Finally, one can extract the spectral function by using:

ln R2 = ln |R2| − iπθ (−R2) . (11.134)

Therefore, one can deduce:

Im�5(t) = Im
(
qµqν�

µν

5

)
= N

8π2
(mi + m j )

2t

(
1 − (mi − m j )2

t

)

× λ1/2

(
1,

m2
i

t
,

m2
j

t

)
θ [t − (mi + m j )

2] . (11.135)

11.14.2 Two-loop perturbative calculation in the M S scheme

For a pedagogical illustration, we consider a massless quark inside the quark loop. The
corresponding two-loop perturbative contribution comes from Fig. 11.3.

+ +

Fig. 11.3. Two-loop perturbative contribution to the pseudoscalar two-point function.
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A routine application of the previous rules leads to [167]:

�B
5 (q2) = νε

3

8π2

(
m B

i + m B
j

)2
q2

[
2

ε
+ ln 4π − γ + 2 − ln

(−q2

ν2

)

− ε

2
(ln 4π − γ + 2) ln

(−q2

ν2

)
+ ε

4
ln2

(−q2

ν2

)

+
(

gBν−ε/2

4π2

)2 [
4

ε2
+ 4

ε
(ln 4π − γ ) + 29

3ε
+ O(1)

] (−q2

ν2

)−ε
]

. (11.136)

Introducing the renormalized parameter (we shall omit the index R):

gBν−ε/2 = g
[
1 + O

(αs

π

)]
,

m B
i = mi

[
1 − 2

ε

(αs

π

)]
, (11.137)

one can deduce [167]:

�5(q2) = 3

8π2
(mi + m j )

2q2

[
2

ε
+ ln 4π − γ + 2 − ln

(−q2

ν2

)

+
(αs

π

) [
− 4

ε2
+ 5

3ε
+ ln2

(−q2

ν2

)

−
(

17

3
+ 2(ln 4π − γ )

)
ln

(−q2

ν2

) ]]
. (11.138)

This expression tells us that the lowest order term proportional to ε induce via the mass
renormalization a non-zero finite term. It also shows how the non-local:

1

ε
ln

(−q2

ν2

)
(11.139)

pole has disappeared after renormalization. The disappearance of this term is a double check
of the calculation as well. Finally, one can also use the RGE for checking the ln-coefficient.
This can be done by working with the RGE of the two-point correlator given in Section
11.6. In so doing, we consider the coefficient of the 1/ε-terms:

D = D0 +
(αs

π

)
D1 , (11.140)

with:

D0 = − 3

8π2
(xi + x j )

22e2t ,

D1 = − 3

8π2
(xi + x j )

2 10

3
e2t . (11.141)
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where xi ≡ mi/ν is a dimensionless mass and t ≡ −1/2 ln(−q2/ν2). Expressing �5 in
terms of xi , one has:

�5(t, αs, xi, j ) = − 3

8π2
(xi + x j )

2e2t q4

×
[
−2t + ln 4π − γ + 2 +

(αs

π

) (
4at2 + 2bt + c

) ]
, (11.142)

where a, b, c have to be determined. Using the RGE, one obtains the constraint:

D0 = − 3

8π2
(xi + x j )

22e2t ,

D1 = − 3

8π2
(xi + x j )

2e2t

× [−8at − 2b − 2γ1(ln 4π − γ + 2) + 2γ12t] , (11.143)

where γ1 = 2 is the mass anomalous dimension. The fact that D1 cannot depend on t
implies:

−4a + 2γ1 = 0 =⇒ a = 1 . (11.144)

The relation between C1 and D given in Eq. (11.48) implies:

C (0)
1 = D0 . (11.145)

C (1)
1 is not fixed by the RGE but we know it from the previous calculation:

C (1)
1 = 3

8π2
(xi + x j )

2e2t 5

3
, (11.146)

while we deduce from Eq. (11.48):

2C (1)
1 = D1 . (11.147)

The recursive relation implies:

C (1)
2 = 3

8π2
(xi + x j )

2e2t 2γ1 . (11.148)

Inserting the previous expressions into the one of D1, one can deduce:

−2b − 2γ1(ln 4π − γ + 2) = 10

3
. (11.149)

One can see that the RGE and an explicit evaluation of the 1/ε-coefficient to order αs

allows one to fix the coefficients of the 1/ε2, ln2 and ln at that order. This impressive result
allows to have a double check of the direct calculation.
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