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VARIETIES OF GROUPS AND OF
COMPLETELY SIMPLE SEMIGROUPS

MARIO PETRICH AND NORMAN R. RE ILLY

Completely simple semigroups form a variety if we consider them

both with the multiplication and the operation of inversion.

Denote the lattice of all varieties of completely simple semi-

groups by L(CS) and that of varieties of groups by L(G) . We

prove that the mappings V •*• V n G and V -*• V v 6 are

homomorphisms of L(C5) onto L(G) and the interval [G, CS] ,

respectively. The homomorphism 1/ •*• {V n G, V v G) is an

isomorphism of L(CS) onto a subdirect product. We explore

different properties of the congruences on L(CS) induced by

these homomorphisms.

1. Introduction and suiranary

The class of completely simple semigroups is one of the most studied

objects in semigroup theory. If considered as a class of universal

algebras with the given binary operation and the unary operation of

inversion it becomes a variety given by a simple set of identities:

x = xx~ x , x = (x"1)"1 , xx"1 = x"1* , xx"1 = (xyx){xyx)~1 .

The recent construction of the free completely simple semigroup due to

Clifford [I] and Rasin [6] raised the hope that the varieties of completely

simple semigroups can be determined via a description of fully invariant

congruences on a free completely simple semigroup on a countably infinite

set. Indeed, Rasin [6] characterized fully invariant congruences in terms
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of certain endomorphisms of the structure group of the free completely

simple semigroup.

The present work represents a study of the la t t ice of varieties of

completely simple semigroups by means of two homomorphisms of this l a t t i ce :

1/ -• 1/ n G , 1 /+1 /VG,

where G stands for the variety of all groups. We prove that the

combination of the two homomorphisms is an isomorphism of the lattice of

varieties of completely simple semigroups onto a precisely described

subdirect product. Various properties of the above homomorphisms, and the

congruences they induce, are discussed in some detail.

Section 2 contains most of the preliminary material needed in the

later sections. A characterization of the variety V n 6 is described in

Section 3. The homomorphism I/ + N G is discussed in Section k, and the

homomorphism V -*• f v 6 in Section 5. Finally, in Section 6, the

homomorphism 1/ ->- (1/ n 6, 1/ v G) is proved to be an isomorphism onto a

subdirect product.

We note that KleTman [3] has performed'an analogous analysis for the

lattice of varieties of inverse semigroups. There is a remarkable

difference between the case of varieties of inverse semigroups and the

varieties of completely simple semigroups: the mapping 1/ + (1/ n G, V v G)

for inverse semigroup varieties is not one-to-one.

2. Preliminaries

In general, we use the notation and terminology of Howie [2] or

Petrich [5]. In particular, we adopt the notation in [5] for Rees matrix

semigroups, and use the description of congruences on a Ree's matrix semi-

group presented in [23. In order to minimize the typographical complexity

we modify the standard notation for a sandwich matrix and denote the

(j, k)th entry by [j, k] .

We will consistently use the following notation:

G - the variety of all groups,

R8 - the variety of all rectangular bands,

RG - the variety of all rectangular groups (orthodox completely

simple),
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CS - the variety of all completely simple semigroups,

F(C) - the lattice of fully invariant subgroups of the group

G ,

[A, B] - the interval of a lattice with minimum A and maximum

B ,

Ty - the semigroup of all transformations on a set X ,

L(V) - the lattice of all subvarieties of a variety V of

completely simple semigroups,

End S - the semigroup of all endomorphisms of a semigroup S .

The first result provides a form for endomorphisms of a Rees matrix

semigroup expressed by means of three unique parameters.

LEMMA 2.1 ([6]). Let S = M(J, G, A; P) , where P is normalized.

Let cp i T' , (o € End G , \j> (. T. be such that

(1) [X, £]u> = [1*, l<p][Xih lcpl^tX^, £<p][li|i, icp]"1 ( H A, t ( I) .

Then 6 = 6(<p, w, i|i) defined by

(i, g, X)6 = (icp, [li | i , i<pr1(0u))[H|>, l<p][Xi|>, l i p ] " 1 , Xi|»)

is an endomorphism of S . Conversely, every endomorphism of S can be so

written uniquely.

A construction of the Rees matrix representation of a free completely

simple semigroup follows.

LEMMA 2.2 ([/], [6]). Let X = {x. \ i € J} be a nonempty set, fix

1 £ I and let I' = I\{l} . Let

Z = \q. | i € 1} u {[j, k] | 3, k € I'} ,
If

F- be the free group on Z , and let P = (tj, k])

[1. fc] = [j. 1] = 1 j fie identity of F^ . Then

F = M(J, Fz, I; P)

is a free completely simple semigroup over X , with embedding
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NOTATION 2.3. We fix a countably infinite set X , and in addition

to the above notation, introduce

F = < q € | i i J > , Fp = < [ j , k ] | 3 , k i I ' ) ,

the free subgroups of F- generated by the sets {q . \ i € l] and

{[j, k] | j, k € I'} , respectively. We will consistently use the notation

F = U(l, F , I; P) introduced above.

Note that F = F * F , the free product of F and F . As a

consequence of Lemma 2.1, we have

COROLLARY 2.4. If 6(cp, w, i|i) -is an endomorpMsm of F , then

F oi c F .
V ~ V

LEMMA 2.5 ([6]). Any fully invariant congruence on F is either

(i) idempotent separating or

(ii) a left group congruence or

(Hi) a right group congruence or

(iv) a group congruence.

We will need only fully invariant idempotent separating congruences,

for they are precisely the ones which correspond to the varieties in the

interval [RB, CS] . In this context, the following special case of ([2],

Lemma 1*.19) is of particular interest.

LEMMA 2.6. Let S = M(J, G, A; P) . If N is a normal subgroup of

G , then p« defined on S by

(i, g, \)pN(j, h, y) » i = j , gh'
1 € N , \ = u ,

is an idempotent separating congruence on S , and every such congruence is

obtained in this way. Writing P/N for the A x I matrix with the

{j, fc)th entry equal to the (j, k)th entry of P modulo N , S/p is

isomorphic to M(I, G/N, I; P/N) .

NOTATION 2.7. We will consistently use the notation p.. introduced

above. For a variety V of completely simple semigroups, we denote by

the fully invariant congruence on F corresponding to V . Also let
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E(FZ) = {<D€ End Fz | there exist cp, i|> € TJ. such that (l) holds} ,

E(Fp) = {<» € End F | there exist «p, i(» € T̂ . such that (l) holds} .

Hence E^V) consists precisely of endomorphisms of F_ that arise

in association with endomorphisms of F . The latter are uniquely

determined by the functions {q. \ i € i) •+ F~ , (p, ty ? T independently.

Furthermore, E(F ) consists precisely of endoaorphisms of F that

extend to elements of E(F_) .

LEMMA 2.8 ([6]). Let N be a normal subgroup of F_ . Then p.,

is fully invariant if and only if Mo c N for all w € E(F_) .

DEFINITION 2.9. A normal subgroup of F (respectively, F ) is

^-invariant if it is invariant under all w € ^{FT) (respectively,

E(F ) ) . The set of all E-invariant subgroups of F^ (respectively,

F ) will be denoted by N (respectively, W ) . For any N € N , let

N = N n F , ff = f f n F .
<7 <7 P P

It is clear that N (respectively, W ) is a sublattice of the

lattice of all normal subgroups of F_ (respectively F ) , and that each

element of W is the intersection with F of an element of N (for
P P

example, its normal closure in F^ ).

PROPOSITION 2.10 ([6]). The interval [RB, CS] is a complete

modular lattice anti-isomorphic to the lattice N .

We take advantage of the basic results on varieties of groups as found

in [4]. In particular, we recall that the lattice of group varieties is

anti-isomorphic to the lattice of fully invariant subgroups of the free

group Fv on a countable number of generators X .

NOTATION 2.11. If U is a group variety corresponding to the fully

invariant subgroup N of F« and G is any group, then the smallest

normal subgroup H of G for which G/H € (i will be denoted by N(G) or
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3 . A c h a r a c t e r i z a t i o n o f 1 / n G

We prove here some basic statements which will be used in la ter

sections. In par t icular , we determine the fully invariant subgroup of F

which corresponds to the variety V n G .

LEMMA 3 . 1 . Let N e N .

(i) N is a fully invariant subgroup of F .

Let U be the corresponding group variety, so that U[F ) = N

(ii) U[FZ) C N .

(Hi) U(F ) e N .
«• p> - p

Proof. (i) Any mapping of the free generators of F into F
& a

extends uniquely to an endomorphism of F~ , and conversely, every

endomorphism of F is uniquely determined by its action on the free

generators of F? . Condition (l) for membership in £[F-) relates only

to the free generators of F and is trivially satisfied if we choose ip

and i|» to be the identity mappings.

It follows that any mapping of the free generators of F into F

extends to an element of EC^V) • Consequently, any endomorphism of F

extends to an element of E[F j . Hence, N must be invariant under any

endomorphism of F and is thus fully invariant in F

(ii) , (Hi) In the same way, any mapping of the free generators of

F into Fz (or F ) extends to an element of E(fz) . In particular,

there exist K, w € E(^z) which restrict to bijections of the free

generators of F onto those of £"„ and F , respectively.
q 6 p

The hypothesis N € W implies

N K c N , N w c N n F = N .
q - ' q - p p .

The res t r ic t ions of K and w to F are isomorphisms of F onto F_
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and F , respectively, and thus

which completes the proof.

NOTATION 3.2. Let V € [RB, CS] and p(f) = p^ . Then N = N n F

is a fully invariant subgroup of F and so determines a variety of

groups, which we denote by l/g .

We are now ready for the characterization theorem.

THEOREM 3.3. If V t [RB, CS] and p{V) = 9[} , then VQ = V n G .

Proof. The free group on a countable number of generators in Vp is

simply FJNp • Clearly, F /N £ V n G and so l/g c 1/ n G .

For the converse containment, let H be any group in V n G . Let

{7z. | i € J} be any countable subset of H . Now {if q. \ i € l\ is a

set of relatively free generators of the relatively free group F /N . If

we can show that there exists a homomorphism <p of F /N into H such

that (N q.)<f = h. , for all i € I , then we shall have, by the

arbitrariness of H and the h. , that every countably generated subgroup

of any element of V n G is a homomorphic image of F /N and therefore

must satisfy all the laws of Vg . Hence, 1/ n G satisfies the laws of

VQ and so V n G c l/_ , as required.

We will show that such a homomorphism (p exists.

We start with the homomorphism 6 of F into H defined on the

generators by: (i, q^, i)& = h^ . Since (l, 1, l) is an idempotent, we

must have (l, 1, 1)6 = 1 . Hence

(l, qt, l)6 = [(1, 1, l)(i, qv i)(l, 1, l)]e
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For ease of reference, l e t

F u = {(1, g, 1) iF \ g IFZ) .

Since H € 1/ , we have 6 o 9 2 P« > which implies that the homomorphism

0 factors uniquely through

natural homomorphism of F onto

• Hence 8 = yt|i , where p is the

and f is a homomorphism of

into H . We illustrate this situation by the diagram

6

The homomorphism

( I , <7it IJ

However, the mapping

F /N

is such that, for all i € I ,

5 : ff a •* (1, a, l)pffl

of FF /ff into F /p.. = F y is a monomorphism. Let (p =F-,-,/PM F.-P Then ip

is a homomorphism of F /N into # such that

Thus cp is the required homomorphism.

4. The projection of L(CS) onto L(G)

We explore here the relationship between varieties of completely

simple semigroups and varieties of groups by considering the projection of

L(CS) onto L(G) given by V •*• V n G . First we introduce two mappings

which will prove to be elements of E(iO and will play an important role

in our discussion. Recall that F, = F * F
Z q p
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NOTATION 4 . 1 . Let ir and ir be the p ro jec t ions of F onto F
IP L 1

and F , respectively.

The next result summarizes the most salient features of these

projections.

LEMMA 4.2. (i) IT , ir € E[FZ) .

(ii) If N € W , then ffir = N , Ntr = N .

(Hi) ir induces a lattice homomorphism of N onto F(F )

Proof. (i) It suffices to produce mappings <p, ty : I •*• I in each

case so that condition (l) is satisfied. For ir take icp = ity = 1 for

all i (. I , and for ir let <p = ty be the identity mapping on I . (in

addition, one has q .ir = q. and o .IT = 1 , for all i € I .)

Cii; Let N (. hi . Then Mr c /I/ since TT € E(FZ) , and Nu c F

by the definition of Tf , so that WIT C N n F . On the other hand,

since N c F , we have N = N TT C ^TT , and thus Wrr = N . The same

type of argument can be used to prove that Nu = N

(Hi) Let M, N € N . By part (ii) and Lemma 3.1 (i-', we have

Nit = N which is a fully invariant subgroup of F ; thus

if : N ->• F(F ) . In addition,

{M n ff)ir = (M n ff) = M n f f n ? = (« n f ) n (if n f 1

(M v /V)ir = (MOTT = (Aftr ] (WTT ) = Mn v ffw ,

and thus Tf determines a l a t t i c e homomorphism of N i n t o T[F ) . Since

F i s a free group on a countable number of gene ra to r s , any N € F ( F )

determines a va r i e ty of groups U , say. Then M = U(F~) € N and

Aftr = ff . Consequently, t he homomorphism induced by IF maps W onto
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NOTATION 4.3. For any (/ € L(CS) , let

V = {S € CS | all subgroups of S are in V] .

It is readily verified that I' is a variety of completely simple

semigroups. We are now ready for the principal result of this section.

THEOREM 4.4. The mapping

X : f -*• V n G (l/ e L{CS))

is a homomorphism of L(CS) onto L(G) . Denote by a. the congruence

induced by x • F°r an\} " ^ l-(C-S) , we have

Va = [V n G, V] .

Proof. Let V € [R8, CS] be determined by the fully invariant

congruence p.. on F . By Theorem 3.3, the variety of groups determined

by the fully invariant subgroup N of F is just 1/ n G . Combining

the mappings

V ->- p., •*• N •*• N ->• V n G
N q

we obtain, by Lemma U.2 (Hi), a homomorphism of [R8, CS] onto L(G) .

It is then straightforward to verify that this homomorphism extends to a

homomorphism of L(CS) onto L(G) .

The statement concerning I/a needs no formal argument.

The rest of the section is devoted to characterizations of the maxima

of a-classes in terms of identities and subgroups of F^ . In the context

of completely simple semigroups, group identities are written in the form

u = V with u f 1 # v . In the interest of simplicity, we will frequently

abbreviate expressions of the form u[x , ..., x ) for words in the

variables x. to u[x.) . However, for an identity

u[x , . . . , x ) = v[x , . . . , x ) , it need not be the case that all

variables appear on both sides of the identity.

LEMMA 4.5. Let u[x , ..., x ) = v[x , ... , x ) be a group identity

and S be a completely simple semigroup. Then all subgroups of S

satisfy u[x.) = v[x.) if and only if S satisfies u[x.) = v[x.) , where
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X. =

P-roo£. Assume that all subgroups of S satisfy the identity

u[x.) = v{x.) . If we assign any value to the variables x , a; , ..., x ,

all the variables x. will be contained in the maximal subgroup of S

containing x . Since u[x.) = v[x.) is valid in that subgroup,

u[x.) = v[x.) is valid in S .

Conversely, assume that 5 satisfies the identity u(x.) = v[x.] .
If If

If all variables x , x , ..., x assume values in the same subgroup G

of S , then x. = x. for 1 £ i S n , and G satisfies the identity

COROLLARY 4.6. If U is a variety of groups given by the set of

identities {u (x.) = v (x.)} ,. , then U is determined by the system of
Ct If Ot %r Ot fcrt

identities {u (x.) = v (x.)} ,. , where x. = [xx~ )x.(xx~ ) and x is a

fixed variable.

NOTATION 4.7. For any 5 C CS , let <S> denote the subvariety of

CS generated by S .

PROPOSITION 4.8. For any U € L(G) , we have U=<F/p w > where

Proof. First note that M € W and that M = U(F ) is the fully

invariant subgroup of F corresponding to 0 . Theorem 3.3 then gives

that <f/PM> rt G = U . Let V Z L(.CS) be such that V n G = U . If V

is a variety of groups, left or right groups, then clearly V c<F/p > .

Otherwise, let V be determined by the fully invariant congruence p on

F . Since Ify = U , we must have M = U(F ) c N . But then p c p and

thus M E < F / P W
> • fiy t h e maximality of U , the result follows.

Indeed, we see from Proposition h.Q that
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F/pM S M(J, FZIM, I; P/M)

is a relatively free object in U .

COROLLARY 4.9. Let V € [R8, CS] and p(l/) = pff . Then V is the

maximum element of its a-clase if and only if N is a fully invariant
subgroup of F^ .

Proof. That N is fully invariant if 1/ is the maximum element of

its a-class follows immediately from Proposition U.8. For the converse,

suppose that N is fully invariant and let p{V) = PM • By Proposition

k.8, M is also fully invariant so that, by Theorem 3.3, we have

< F / N > = V n G = V r \ G = < F / M ) .

Thus, in the notation of 2.11,

N[F ) = N = M = M(F }1 V q q >• q>

from which it follows that N = M and 1/ = 1/ , as required.

COROLLARY 4.10. The varieties that are maximum (respectively,

minimum) in their a-classes form a sublattice of L(CS) .

Proof. The varieties that are minimum in their a-classes are simply

the group varieties and so constitute a sublattice. By Corollary U.9, the

maximum elements correspond to the fully invariant subgroups of F~ .

Since these form a sublattice of W , it follows that the maximum elements

form a sublattice of HCS) .

5. The projection of L(CS) onto [G, CS~\

We now turn to the study of the relationship of the lattice L(CS)

and its interval [G, CS] via the homomorphism V •* V v G . We then

characterize the maximal elements of the congruence on L(CS) induced by

this homomorphism in two different ways.

NOTATION 5.1. Let F denote the normal closure in F_ of F .
P z P

For any N € N , let N* = N n F and let

N* = {N* I N f N} .
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The following lemma supplies the necessary information for the main

result of this section.

LEMMA 5.2. (i) N * c l l ,

(ii) p(RG) = p- .

P

(Hi) Fz = FqFp .

(iv) F n F = {1} .
<? P

(v) For any N € N 3 we have N = N N* .

Proof. (i) Since any endomorphism in E[FZ)
 m a P s F

v
 i n t o Fn ' **

must also map F into itself. But then it must map N n F into itself,

for any N € N .

ftiy* For N = P , it is clear that V̂Piy is a rectangular group.

On the other hand, if N € N is such that ^"/PM i-s a rectangular group,

then F 5 ^ , and since W is normal, we have £ c ff .

(iii) This is a consequence of the fact that F^ = F * F .

(iv) Consider the projection IT : F^ •* F . Its kernel is F and

it maps F identically, whence the assertion.

(v) Let N € N and n € N . By part Ciii-), n = ai for some

a € f b £ F Hence

a = (afc)ir i N n F = Nq q q

so that

b = a"1^) Z N nF = N* .

Thus N c N N* , and the opposite inclusion is trivial.

We first deduce two interesting consequences.

COROLLARY 5.3. For V € [RB, CS] with p(l/) = Pj|) w
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p(l/ v G) = p t . Consequently, RG c V if and only if N c F .

P P

Proof. The hypothesis V z> RB y ie lds

1 / V G = 1 / V R B V G = 1 / V R G ,

whence, by Lemma 5-2 (ii), we get

p( l / v G) = p(l/ v RG) = p(l/) n p(RG)

= P« n pF = <W = V •
P P P

COROLLARY 5.4 . For U, 1/ € [RB, CS] with p((J) = p^ and

p(l/) = p^ , we 7zaue

(i v G = 1/ v G « « ' = J* .
P P

We are now ready for the principal result of this section.

THEOREM 5.5. The mapping

e : i/ + i/vG (i/ e Lies))

is a homomorphism of L(CS) onto [G, CS] .

Proof. We first consider 9 on the interval [RB, CS] . Recall that

this interval is anti-isomorphic to N . In the light of Corollary 5-3,

for any 1/ € [RB, CS] with p(l/) = pff , we have p(l/ v G) = pff;t . Hence

P
it suffices here to show that the mapping

y : « + IV* = if n ?

is a homomorphism of W onto N* .

Obviously y maps N into H* and preserves meets. The onto part

is a consequence of Lemma 5-2 (i). It remains to show that for any

M, N f N , we have

(M V ff)y = M]i V

that is, (MN)* = A M * .

Let a € (AflV)* , say a = rnn , where m £ M , n (. N . By Lemma

5.2 (v), we have m = mm- and n = n.n2 with m , ̂  € F ,
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m 2 ' *2 € Fp ' T h e n

(2) mn = m^

Note that in (2), m n € F , which is normal, and also mn = a (. (MN)* ,

which implies that m
1
n
1
 € ̂  • But then, by Lemma 5.2 (iv,*, we get

miWl € ̂ o n Fv = ^ '

0 = rm= [mim2ml \n2 € ~p-p

This proves that (MN)* c M*N* ; the opposite inclusion is obvious.

Therefore 9 is a homomorphism on the interval [RB, CS] .

To see that 9 is a homomorphism on the entire lattice L(CS) , we

consider U € L(RG) and 1/ € L(CS) . It is straightforward to verify that

the following is true:

(U n V) v G = {5 £ CS | S s G x i?, G e G, if € (U n I/) o RB}

= (U v G) n (1/ v G) .

Therefore 9 is indeed a homomorphism of L(CS) onto [G, CS] .

We have seen in Theorem U.I* that the congruence a induced by the

homomorphism V -*• V n G has the property that its classes are intervals of

L(CS) . We conjecture that the congruence 8 induced on i-(CS) by the

homomorphism V •*• V v G also has this property. We are unable to prove

the existence of the least element of the 8-class containing an arbitrary

variety V , but observe that the greatest element is obviously 1/ V G .

In Corollary 5-3, we have already characterized the corresponding element

of W . We now turn to the description of V V G in terms of the system

of identities it satisfies.

NOTATION 5.6. In any group G , denote by x the conjugate a~ xa

of x . For i. t 1 , j.tl, q, € F ,
v v K q

(3) v = v^li±, JXJ , ..., \vm, j j j (. Fp ,

let

https://doi.org/10.1017/S0004972700007231 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700007231


354 Mario Petrich and Norman R. ReiI Iy

(1*) v = v

where

4 V V 4 V
\'3'l \>3'm

(5) x = xx-\xx-X , zt . = [xy ){xy ^{y x)(y. x)-1

K K rt'3t Vt Vt 3t 3t

f o r v a r i a b l e s x, x , , y . , y . (k = 1 , 2 , . . . , n , t = 1 , 2 , . . . , m) .
K vt 3t

LEMMA 5.7 . Let V i [RB, CS] , p(l/) = pN ; then

N*
P

= Iv f F \ v2 = v is a law in V> .

Proof. Let v (. N* be given by (3). Consider any substitution of

the variables in u , see (it), into F :

x + a , x, -- ak , y +b , y - bg .

K K vt at 3t h

"•00 "
Let v , z . . and so on, denote the elements obtained from v, z.

%t'3t Vt>°t

and so on, see (5), by making these substitutions. Without loss of

generality, we may assume that b € H , bn £. H- , where
H , Ho need not all be distinct even for distinct a. or B, .
-at &t- t t

Let a € H and note that
rs

: (r, h, s) •+ [s, r]h [h

is an isomorphism of E onto ?„ . Then

where the latter part of (6) defines g, , and

"t t

= lr> La+> rJ

, [at, r ] "
1 ^ , B^t, B^"1, e)
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so that

(7) z\ . ? = [a. r][at, r ] " 1 ^ . ^

Taking into account (6) and (7)* ve obtain

Let to ? E(FZ) be defined by (l) and

qku = 9k , iti> = at , jt<p = &t , Hf = r , lcp = s ,

and let <l> and <p be defined arbitrarily elsewhere. Using (l), we obtain

Comparing this with (8), we conclude that D C = w , where vw f ̂ V* since

v Z N* and ff* ( N , by Lemma 5.2 Ci;. Since

[8, r]-1(UU)
2([s, r]-1^))-1 = [a, rr^twHs, r] € ff* ,

Lemma 2.6 yields

[r, [e, r]'1^)2, s)pNt[r, [s, r]'
1^), s) .

P

(AQ» O '*iO*
v J pv and thus

v2 = v is a law in V .

Conversely, suppose that v = v is a law in V . Consider the

substitution

a : x - (1, 1, 1) , x. - (l, q., l) ,
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Then

*°= (1, V 1) , z = (1, \ i t , d t \ . 1)

and thus v = (l, v, l) . Since V = V is a law in V , we get

(1, V, l)2pff(l, U, 1) and so Nv2 = ffv . But then V t N n F = N* , as

required.

PROPOSITION 5.8. Let 1/ € [R8, CS] , p(l/) = pff . Then

iv = v \ v £ N*> is a basis of laws for f v G .

Proof. This is immediate from Corollary 5.** and Lemma 5.7-

It is a simple consequence of Proposition 5-8 that

F/PN* = M(I, Fz/N* I; P/N*)
P ? r

is a relatively free object in V v G .

6. Embedding of L(CS) into a subdirect product

We combine here the homomorphism x of Theorem k.k with the

homomorphism 9 of Theorem 5-5 and prove that the resulting mapping

V •* (V n G, 1/ V G) is actually an isomorphism of L(CS) onto a subdirect

product of L{G) and [G, CS] .

THEOREM 6.1. The mapping

C : 1/ ->• (1/ n G, 1/ v G) (1/ (. L{CS))

is an isomorphism of L(CS) onto the subdirect product of L(G) and

[G, CS] consisting of the pairs (U, I/) such that V c (J v G . Moreover,

for W f L(CS) ,

Proof. Since x a n <i 9 are homomorphisms (Theorems h.h and 5-5) so

a l so i s £ . Let V, W € [R8, CS] and p(l/) = p^ , p(W) = p^ . Then, by

Corollary 5 . 3 ,

(9) p(l/ v G) = P t f , , p(W v G) = pffl l .
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On the other hand, by Theorem 3 . 3 ,

If VE, = DIE. , then from (9) and (10) , we have

and from Lemma 5.2 (v) i t follows t h a t

M = MqMp = V P = N '

Therefore V = W and E, i s one-to-one on [RB, CS] .

I f e i t h e r of V or Dl does not contain RB , then i t must be a

var ie ty of l e f t groups or a va r i e ty of r i gh t groups (or a va r i e ty of

groups) and a simple case-by-case argument w i l l again show t h a t VE, = DIE,

implies t h a t 1/ = W . Therefore E, i s an isomorphism.

For W v L(CS) , l e t U = Dl n G and 1/ = to v G . Then Dl cU and so

Conversely, l e t (U, V) € L(G) x [G, CS] with V c 0" v G , and l e t

W = H n 1/ . We have

Now consider W V G . Then

111 v G = (U n I/) v G c l /

since G e l / . For the opposite inclusion, first assume that RG c 1/ .

Then clearly RB c to . Let p(0") = p and p(V) = p^ ; also let m t. M ,

n € N be such that mn i F so that mn € (MAT)* . The hypothesis RG c V

implies that n € N c F , and 1/ c (7 v G implies that

PM* = Pŵ rr = p(U v G) c p so that M* c: N . Consequently

p p ^

m = (rm)rT1 i M nF = M* c N

and thus mn i N , which proves that (Afflf)* c N . But then

p(U/ v G) = p(W v RG) = p * = p. „ e p = p(l/)

P P

and hence V c W v G .
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If V does not contain RG , then we must have V equal to G , or

to the variety of left groups or the variety of right groups. Particular,

tut simpler, arguments will show that W v G = V in each of these cases.

We have thus established the converse part of the implication in the

statement of the theorem. This establishes that E, maps L(CS) onto the

sublattice {{U, V) | U € HG), 6 c 1/ c U v 6} .

The direct part of the implication follows from the fact that £ is

one-to-one.

COROLLARY 6.2. For any 1/ I L(CS) , we have

V = V n G n (1/ v G) .

REMARK 6.3. By Theorem 3.3 and Corollary 5.3, we have the following

associations for any V € L(CS) :

V * p(t/) =

N = n n F •* V n G
f q q

N* = N n F + l / v G ,
P P
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