VARIETIES OF GROUPS AND OF COMPLETELY SIMPLE SEMIGROUPS

Mario Petrich and Norman R. Reilly

Abstract

Completely simple semigroups form a variety if we consider them both with the multiplication and the operation of inversion. Denote the lattice of all varieties of completely simple semigroups by $L(C S)$ and that of varieties of groups by $L(G)$. We prove that the mappings $V \rightarrow V \cap G$ and $V \rightarrow V \vee G$ are homomorphisms of $L(C S)$ onto $L(G)$ and the interval $[G, C S]$, respectively. The homomorphism $V \rightarrow(V \cap G, V \vee G)$ is an isomorphism of $L(C S)$ onto a subdirect product. We explore different properties of the congruences on $L(C S)$ induced by these homomorphisms.

1. Introduction and summary

The class of completely simple semigroups is one of the most studied objects in semigroup theory. If considered as a class of universal algebras with the given binary operation and the unary operation of inversion it becomes a variety given by a simple set of identities:

$$
x=x x^{-1} x, \quad x=\left(x^{-1}\right)^{-1}, \quad x x^{-1}=x^{-1} x, \quad x x^{-1}=(x y x)(x y x)^{-1}
$$

The recent construction of the free completely simple semigroup due to Clifford [1] and Rasin [6] raised the hope that the varieties of completely simple semigroups can be determined via a description of fully invariant congruences on a free completely simple semigroup on a countably infinite set. Indeed, Rasin [6] characterized fully invariant congruences in terms

Received 25 November 1980.
of certain endomorphisms of the structure group of the free completely simple semigroup.

The present work represents a study of the lattice of varieties of completely simple semigroups by means of two homomorphisms of this lattice:

$$
V \rightarrow V \cap G, \quad V \rightarrow V \vee G
$$

where G stands for the variety of all groups. We prove that the combination of the two homomorphisms is an isomorphism of the lattice of varieties of completely simple semigroups onto a precisely described subdirect product. Various properties of the above homomorphisms, and the congruences they induce, are discussed in some detail.

Section 2 contains most of the preliminary material needed in the later sections. A characterization of the variety $V \cap G$ is described in Section 3. The homomorphism $V \rightarrow V \cap G$ is discussed in Section 4 , and the homomorphism $V \rightarrow V \vee G$ in Section 5. Finally, in Section 6, the homomorphism $U \rightarrow(V \cap G, V \vee G)$ is proved to be an isomorphism onto a subdirect product.

We note that Kleiman [3] has performed an analogous analysis for the lattice of varieties of inverse semigroups. There is a remarkable difference between the case of varieties of inverse semigroups and the varieties of completely simple semigroups: the mapping $U \rightarrow(U \cap G, V \vee G)$ for inverse semigroup varieties is not one-to-one.

2. Preliminaries

In general, we use the notation and terminology of Howie [2] or Petrich [5]. In particular, we adopt the notation in [5] for Rees matrix semigroups, and use the description of congruences on a Rees matrix semigroup presented in [2]. In order to minimize the typographical complexity we modify the standard notation for a sandwich matrix and denote the (j, k) th entry by $[j, k]$.

We will consistently use the following notation:
G - the variety of all groups,
$R B$ - the variety of all rectangular bands,
RG - the variety of all rectangular groups (orthodox completely simple),

CS - the variety of all completely simple semigroups,
$F(G)$ - the lattice of fully invariant subgroups of the group G ,
$[A, B]$ - the interval of a lattice with minimum A and maximum B ,
τ_{X} - the semigroup of all transformations on a set X,
$L(V)$ - the lattice of all subvarieties of a variety V of completely simple semigroups,

End S - the semigroup of all endomorphisms of a semigroup S.
The first result provides a form for endomorphisms of a Rees matrix semigroup expressed by means of three unique parameters.

LEMMA 2.1 ([6]). Let $S=M(I, G, \Lambda ; P)$, where P is normalized. Let $\varphi \in T_{I}, \omega \in$ End $G, \psi \in T_{\Lambda}$ be such that
(1) $[\lambda, i] \omega=[1 \psi, l \varphi][\lambda \psi, l \varphi]^{-1}[\lambda \psi, i \varphi][1 \psi, i \varphi]^{-1}(\lambda \in \Lambda, i \in I)$.

Then $\theta=\theta(\varphi, \omega, \psi)$ defined by

$$
(i, g, \lambda) \theta=\left(i \varphi,[1 \psi, i \varphi]^{-1}(g \omega)[1 \psi, 1 \varphi][\lambda \psi, l \varphi]^{-1}, \lambda \psi\right)
$$

is an endomorphism of S. Conversely, every endomorphism of S can be so written uniquely.

A construction of the Rees matrix representation of a free completely simple semigroup follows.

LEMMA 2.2 ([1], [6]). Let $X=\left\{x_{i} \mid i \in I\right\}$ be a nonempty set, fix $1 \in I$ and let $I^{\prime}=I \backslash\{1\}$. Let

$$
z=\left\{q_{i} \mid i \in I\right\} \cup\left\{[j, k] \mid j, k \in I^{\prime}\right\}
$$

F_{Z} be the free group on Z, and let $P=([j, k])$ with
$[1, k]=[j, 1]=1$, the identity of F_{Z}. Then

$$
F=M\left(I, F_{Z}, I ; p\right)
$$

is a free completely simple semigroup over X, with embedding $x_{i} \rightarrow\left(i, q_{i}, i\right)$.

NOTATION 2.3. We fix a countably infinite set X, and in addition to the above notation, introduce

$$
F_{q}=\left\langle q_{i} \mid i \in I\right\rangle, \quad F_{p}=\left\langle[j, k] \mid j, k \in I^{\prime}\right\rangle
$$

the free subgroups of F_{Z} generated by the sets $\left\{q_{i} \mid i \in I\right\}$ and $\left\{[j, k] \mid j, k \in I^{\prime}\right\}$, respectively. We will consistently use the notation $F=M\left(I, F_{Z}, I ; P\right)$ introduced above.

Note that $F_{Z}=F_{q} * F_{p}$, the free product of F_{q} and F_{p}. As a consequence of Lemma 2.1, we have

COROLLARY 2.4. If $\theta(\varphi, \omega, \psi)$ is an endomorphism of F, then $F_{p} \omega \subseteq F_{p}$.

LEMMA 2.5 ([6]). Any fully invariant congruence on F is either
(i) idempotent separating or
(ii) a left group congruence or
(iii) a right group congruence or
(iv) a group congruence.

We will need only fully invariant idempotent separating congruences, for they are precisely the ones which correspond to the varieties in the interval [RB, CS]. In this context, the following special case of ([2], Lemma 4.19) is of particular interest.

LEMMA 2.6. Let $S=M(I, G, \Lambda ; P)$. If N is a normal subgroup of G, then ρ_{N} defined on S by

$$
(i, g, \lambda) \rho_{N}(j, h, \mu) \Leftrightarrow i=j, \quad g h^{-1} \in N, \quad \lambda=\mu
$$

is an idempotent separating congruence on S, and every such congruence is obtained in this way. Writing P / N for the $\Lambda \times I$ matrix with the (j, k)th entry equal to the (j, k) th entry of P modulo $N, S / p$ is isomorphic to $M(I, G / N, I ; P / N)$.

NOTATION 2.7. We will consistently use the notation ρ_{N} introduced above. For a variety V of completely simple semigroups, we denote by $\rho(V)$ the fully invariant congruence on F corresponding to V. Also let

$$
\begin{aligned}
& E\left(F_{Z}\right)=\left\{\omega \in \text { End } F_{Z} \mid \text { there exist } \varphi, \psi \in T_{I} \text { such that (1) holds }\right\} \\
& E\left(F_{p}\right)=\left\{\omega \in \text { End } F_{p} \mid \text { there exist } \varphi, \psi \in T_{I} \text { such that (1) holds }\right\} \\
& \text { Hence } E\left(F_{Z}\right) \text { consists precisely of endomorphisms of } F_{Z} \text { that arise }
\end{aligned}
$$ in association with endomorphisms of F. The latter are uniquely determined by the functions $\left\{q_{i} \mid i \in I\right\} \rightarrow F_{Z}, \varphi, \psi \in T_{I}$ independently. Furthermore, $E\left(F_{p}\right)$ consists precisely of endomorphisms of F_{p} that extend to elements of $E\left(F_{Z}\right)$.

LEMMA 2.8 ([6]). Let N be a normal subgroup of F_{Z}. Then ρ_{N} is fully invariant if and only if $N \omega \subseteq N$ for all $\omega \in E\left(F_{Z}\right)$.

DEFINITION 2.9. A normal subgroup of F_{Z} (respectively, F_{p}) is E-invariant if it is invariant under all $\omega \in E\left(F_{2}\right)$ (respectively, $E\left(F_{p}\right)$). The set of all E-invariant subgroups of F_{Z} (respectively, F_{p}) will be denoted by N (respectively, N_{p}). For any $N \in N$, let

$$
N_{q}=N \cap F_{q}, \quad N_{p}=N \cap F_{p}
$$

It is clear that N (respectively, N_{p}) is a sublattice of the lattice of all normal subgroups of F_{Z} (respectively F_{p}), and that each element of N_{p} is the intersection with F_{p} of an element of N (for example, its normal closure in F_{Z}).

PROPOSITION 2.10 ([6]). The interval [RB, CS] is a complete modular lattice anti-isomorphic to the Zattice N.

We take advantage of the basic results on varieties of groups as found in [4]. In particular, we recall that the lattice of group varieties is anti-isomorphic to the lattice of fully invariant subgroups of the free group F_{X} on a countable number of generators X.

NOTATION 2.11. If U is a group variety corresponding to the fully invariant subgroup N of F_{X} and G is any group, then the smallest normal subgroup H of G for which $G / H \in U$ will be denoted by $N(G)$ or $u(G)$.

3. A characterization of $V \cap G$

We prove here some basic statements which will be used in later sections. In particular, we determine the fully invariant subgroup of F_{q} which corresponds to the variety $V \cap G$.

LEMMA 3.1. Let $N \in N$.
(i) N_{q} is a fully invariant subgroup of F_{q}.

Let U be the corresponding group variety, so that $U\left(F_{q}\right)=N_{q}$.
(ii) $U\left(F_{Z}\right) \subseteq N$.
(iii) $u\left(F_{p}\right) \subseteq N_{p}$.

Proof. (i) Any mapping of the free generators of F_{Z} into F_{Z} extends uniquely to an endomorphism of F_{Z}, and conversely, every endomorphism of F_{Z} is uniquely determined by its action on the free generators of F_{Z}. Condition (l) for membership in $E\left(F_{Z}\right)$ relates only to the free generators of F_{p} and is trivially satisfied if we choose φ and ψ to be the identity mappings.

It follows that any mapping of the free generators of F_{q} into F_{q} extends to an element of $E\left(F_{Z}\right)$. Consequently, any endomorphism of F_{q} extends to an element of $E\left(F_{Z}\right)$. Hence, N_{q} must be invariant under any endomorphism of F_{q} and is thus fully invariant in F_{q}.
($i=1$), ($i i_{i}$) In the same way, any mapping of the free generators of F_{q} into F_{Z} (or F_{p}) extends to an element of $E\left(F_{Z}\right)$. In particular, there exist $k, \omega \in E\left(F_{Z}\right)$ which restrict to bijections of the free generators of F_{q} onto those of F_{Z} and F_{p}, respectively.

The hypothesis $N \in N$ implies

$$
N_{q} \kappa \subseteq N, \quad N_{q} \omega \subseteq N \cap F_{p}=N_{p}
$$

The restrictions of K and ω to F_{q} are isomorphisms of F_{q} onto F_{Z}
and F_{p}, respectively, and thus

$$
\begin{aligned}
& U\left(F_{Z}\right)=U\left(F_{q}\right) \kappa=N_{q} \kappa \subseteq N \\
& U\left(F_{p}\right)=U\left(F_{q}\right) \omega=N_{q} \omega \subseteq N_{p}
\end{aligned}
$$

which completes the proof.
NOTATION 3.2. Let $V \in[R B, C S]$ and $\rho(V)=\rho_{N}$. Then $N_{q}=N \cap F_{q}$ is a fully invariant subgroup of F_{q} and so determines a variety of groups, which we denote by V_{G}.

We are now ready for the characterization theorem.
THEOREM 3.3. If $V \in[R B, C S]$ and $\rho(V)=\rho_{N}$, then $V_{G}=V \cap G$.
Proof. The free group on a countable number of generators in V_{G} is simply F_{q} / N_{q}. Clearly, $F_{q} / N_{q} \in V \cap G$ and so $V_{G} \subseteq V \cap G$.

For the converse containment, let H be any group in $V \cap G$. Let $\left\{h_{i} \mid i \in I\right\}$ be any countable subset of H. Now $\left\{N_{q} q_{i} \mid i \in I\right\}$ is a set of relatively free generators of the relatively free group E_{q} / N_{q}. If we can show that there exists a homomorphism φ of F_{q} / N_{q} into H such that $\left(N_{q} q_{i}\right) \varphi=h_{i}$, for all $i \in I$, then we shall have, by the arbitrariness of H and the h_{i}, that every countably generated subgroup of any element of $V \cap G$ is a homomorphic image of F_{q} / N_{q} and therefore must satisfy all the laws of V_{G}. Hence, $V \cap G$ satisfies the laws of V_{G} and so $V \cap G \subseteq V_{G}$, as required.

We will show that such a homomorphism φ exists.
We start with the homomorphism θ of F into H defined on the generators by: $\left(i, q_{i}, i\right) \theta=h_{i}$. Since (l, l, l) is an idempotent, we must have $(1,1,1) \theta=1$. Hence

$$
\begin{aligned}
\left(1, q_{i}, 1\right) \theta & =\left[(1,1,1)\left(i, q_{i}, i\right)(1,1,1)\right] \theta \\
& =\left(i, q_{i}, i\right) \theta=h_{i}
\end{aligned}
$$

For ease of reference, let

$$
F_{11}=\left\{(1, g, 1) \in F \mid g \in F_{Z}\right\}
$$

Since $H \in V$, we have $\theta \circ \theta^{-1} \supseteq \rho_{N}$, which implies that the homomorphism θ factors uniquely through F / ρ_{N}. Hence $\theta=\mu \psi$, where μ is the natural homomorphism of F onto F / ρ_{N} and ψ is a homomorphism of F / ρ_{N} into H. We illustrate this situation by the diagram

The homomorphism ψ is such that, for all $i \in I$,

$$
\left(1, q_{i}, 1\right) \rho_{N} \psi=\left(1, q_{i}, 1\right) \mu \psi=\left(1, q_{i}, 1\right) \theta=h_{i}
$$

However, the mapping

$$
\xi: N_{q}^{\alpha \rightarrow(1, a, 1) \rho_{N}}
$$

of F_{q} / N_{q} into $F_{11} / \rho_{N}=F_{11} \mu$ is a monomorphism. Let $\varphi=\xi \psi$. Then φ is a homomorphism of F_{q} / N_{q} into H such that

$$
\left(N_{q} q_{i}\right) \varphi=\left(1, q_{i}, 1\right) \rho_{N} \psi=h_{i}
$$

Thus φ is the required homomorphism.
4. The projection of $L(C S)$ onto $L(G)$

We explore here the relationship between varieties of completely simple semigroups and varieties of groups by considering the projection of $L(C S)$ onto $L(G)$ given by $V \rightarrow V \cap G$. First we introduce two mappings which will prove to be elements of $E\left(F_{Z}\right)$ and will play an important role in our discussion. Recall that $F_{Z}=F_{q} * F_{p}$.

NOTATION 4.1. Let π_{q} and π_{p} be the projections of F_{2} onto F_{q} and F_{p}, respectively.

The next result summarizes the most salient features of these projections.

LEMMA 4.2. (i) $\pi_{q}, \pi_{p} \in E\left(F_{Z}\right)$.
(ii) If $N \in N$, then $N \pi_{q}=N_{q}, N \pi_{p}=N_{p}$.
(iii) π_{q} induces a lattice homomorphism of N onto $F\left(F_{q}\right)$

Proof. (i) It suffices to produce mappings $\varphi, \psi: I \rightarrow I$ in each case so that condition (1) is satisfied. For π_{q} take $i \varphi=i \psi=1$ for all $i \in I$, and for π_{p} let $\varphi=\psi$ be the identity mapping on I. (In addition, one has $q_{i} \pi_{q}=q_{i}$ and $q_{i} \pi_{p}=1$, for all $i \in I$.)
(ii) Let $N \in N$. Then $N \pi_{q} \subseteq N$ since $\pi_{q} \in E\left(F_{Z}\right)$, and $N \pi_{q} \subseteq F_{q}$ by the definition of π_{q}, so that $N \pi_{q} \subseteq N \cap F_{q}$. On the other hand, since $\quad N_{q} \subseteq F_{q}$, we have $N_{q}=N_{q} \pi_{q} \subseteq N \pi_{q}$, and thus $N \pi_{q}=N_{q}$. The same type of argument can be used to prove that $N \pi_{p}=N_{p}$.
(iii) Let $M, N \in N$. By part (ii) and Lemma 3.1 (i), we have $N \pi_{q}=N_{q}$ which is a fully invariant subgroup of F_{q}; thus $\pi_{q}: N \rightarrow F\left(F_{q}\right) . \quad$ In addition,

$$
\begin{aligned}
(M \cap N) \pi_{q} & =(M \cap N)_{q}=M \cap N \cap F_{q}=\left(M \cap F_{q}\right) \cap\left(N \cap F_{q}\right) \\
& =M \pi_{q} \cap N \pi_{q}, \\
(M \vee N) \pi_{q} & =(M N) \pi_{q}=\left(M \pi_{q}\right)\left(N \pi_{q}\right)=M \pi_{q} \vee N \pi_{q},
\end{aligned}
$$

and thus π_{q} determines a lattice homomorphism of N into $F\left(F_{q}\right)$. Since F_{q} is a free group on a countable number of generators, any $N \in F\left(F_{q}\right)$ determines a variety of groups U, say. Then $M=U\left(F_{Z}\right) \in N$ and $M \pi_{q}=N$. Consequently, the homomorphism induced by $\pi_{q} \operatorname{maps} N$ onto $F\left(E_{q}\right)$.

NOTATION 4.3. For any $V \in L(C S)$, let

$$
\bar{V}=\{S \in \mathcal{C S} \mid \text { all subgroups of } S \text { are in } V\}
$$

It is readily verified that \bar{V} is a variety of completely simple semigroups. We are now ready for the principal result of this section.

THEOREM 4.4. The mapping

$$
x: V \rightarrow V \cap G \quad(V \in L(C S))
$$

is a homomorphism of $L(C S)$ onto $L(G)$. Denote by α the congruence induced by x. For any $V \in L(C S)$, we have

$$
v_{\alpha}=[V \cap G, \bar{v}] .
$$

Proof. Let $V \in[R B, C S]$ be determined by the fully invariant congruence ρ_{N} on F. By Theorem 3.3, the variety of groups determined by the fully invariant subgroup N_{q} of F_{q} is just $V \cap G$. Combining the mappings

$$
V \rightarrow \rho_{N} \rightarrow N \rightarrow N_{q} \rightarrow V \cap G
$$

we obtain, by Lemma 4.2 (i ii $)$, a homomorphism of [RB, CS] onto $L(G)$. It is then straightforward to verify that this homomorphism extends to a homomorphism of $L(C S)$ onto $L(G)$.

The statement concerning $V \alpha$ needs no formal argument.
The rest of the section is devoted to characterizations of the maxima of α-classes in terms of identities and subgroups of F_{Z}. In the context of completely simple semigroups, group identities are written in the form $u=v$ with $u \neq l \neq v$. In the interest of simplicity, we will frequently abbreviate expressions of the form $u\left(x_{1}, \ldots, x_{n}\right)$ for words in the variables x_{i} to $u\left(x_{i}\right)$. However, for an identity
$u\left(x_{1}, \ldots, x_{n}\right)=v\left(x_{1}, \ldots, x_{n}\right)$, it need not be the case that all variables appear on both sides of the identity.

LEMMA 4.5. Let $u\left(x_{1}, \ldots, x_{n}\right)=v\left(x_{1}, \ldots, x_{n}\right)$ be a group identity and S be a completely simple semigroup. Then all subgroups of S satisfy $u\left(x_{i}\right)=v\left(x_{i}\right)$ if and only if S satisfies $u\left(\bar{x}_{i}\right)=v\left(\bar{x}_{i}\right)$, where
$\bar{x}_{i}=\left(x_{1} x_{1}^{-1}\right) x_{i}\left(x_{1} x_{1}^{-1}\right), \quad 1 \leq i \leq n$.
Proof. Assume that all subgroups of S satisfy the identity $u\left(x_{i}\right)=v\left(x_{i}\right)$. If we assign any value to the variables $x_{1}, x_{2}, \ldots, x_{n}$, all the variables \bar{x}_{i} will be contained in the maximal subgroup of S containing x_{1}. Since $u\left(x_{i}\right)=v\left(x_{i}\right)$ is valid in that subgroup, $u\left(\bar{x}_{i}\right)=v\left(\bar{x}_{i}\right)$ is valid in S.

Conversely, assume that S satisfies the identity $u\left(\bar{x}_{i}\right)=v\left(\bar{x}_{i}\right)$. If all variables $x_{1}, x_{2}, \ldots, x_{n}$ assume values in the same subgroup G of S, then $\bar{x}_{i}=x_{i}$ for $1 \leq i \leq n$, and G satisfies the identity $u\left(x_{i}\right)=v\left(x_{i}\right)$.

COROLLARY 4.6. If U is a variety of groups given by the set of identities $\left\{u_{\alpha}\left(x_{i}\right)=v_{\alpha}\left(x_{i}\right)\right\}_{\alpha \in A}$, then \bar{u} is determined by the system of identities $\left\{u_{\alpha}\left(\bar{x}_{i}\right)=v_{\alpha}\left(\bar{x}_{i}\right)\right\}_{\alpha \in A}$, where $\bar{x}_{i}=\left(x x^{-1}\right) x_{i}\left(x x^{-1}\right)$ and x is a fixed variable.

NOTATION 4.7. For any $S \in C S$, let $\langle S\rangle$ denote the subvariety of CS generated by S.

PROPOSITION 4.8. For any $u \in L(G)$, we have $\bar{u}=\left\langle F / \rho_{M}\right\rangle$ where $M=U\left(F_{Z}\right)$.

Proof. First note that $M \in N$ and that $M_{q}=U\left(F_{q}\right)$ is the fully invariant subgroup of F_{q} corresponding to U. Theorem 3.3 then gives that $\left(F / \rho_{M}\right\rangle \cap G=U$. Let $V \in L(C S)$ be such that $V \cap G=U$. If V is a variety of groups, left or right groups, then clearly $V \subseteq\left(F / \rho_{M}\right)$. Otherwise, let V be determined by the fully invariant congruence ρ_{N} on F. Since $V_{X}=U$, we must have $M=U\left(F_{Z}\right) \subseteq N$. But then $\rho_{M} \subseteq \rho_{N}$ and thus $V \subseteq\left(F / \rho_{M}\right\rangle$. By the maximality of \bar{u}, the result follows.

Indeed, we see from Proposition 4.8 that

$$
F / \rho_{M} \cong M\left(I, F_{Z} / M, I ; P / M\right)
$$

is a relatively free object in \bar{U}.
COROLLARY 4.9. Let $V \in[R B, C S]$ and $\rho(V)=\rho_{N}$. Then V is the maximum element of its α-class if and only if N is a fully invariant subgroup of F_{Z}.

Proof. That N is fully invariant if V is the maximum element of its α-class follows immediately from Proposition 4.8. For the converse, suppose that N is fully invariant and let $\rho(\bar{V})=\rho_{M}$. By Proposition 4.8, M is also fully invariant so that, by Theorem 3.3, we have

$$
\left\langle F_{q} / N_{q}\right\rangle=V \cap G=\bar{V} \cap G=\left\langle F_{q} / M_{q}\right\rangle
$$

Thus, in the notation of 2.11,

$$
N\left(F_{q}\right)=N_{q}=M_{q}=M\left(F_{q}\right)
$$

from which it follows that $N=M$ and $V=\bar{V}$, as required.
COROLLARY 4.10. The varieties that are maximum (respectively, minimum) in their a-classes form a sublattice of $L(C S)$.

Proof. The varieties that are minimum in their α-classes are simply the group varieties and so constitute a sublattice. By Corollary 4.9, the maximum elements correspond to the fully invariant subgroups of F_{Z}. Since these form a sublattice of N, it follows that the maximum elements form a sublattice of $L(C S)$.
5. The projection of $L(C S)$ onto $[G, C S]$

We now turn to the study of the relationship of the lattice $L(C S)$ and its interval [G, CS] via the homomorphism $V \rightarrow V \vee G$. We then characterize the maximal elements of the congruence on $L(C S)$ induced by this homomorphism in two different ways.

NOTATION 5.1. Let \hat{F}_{p} denote the normal closure in F_{Z} of F_{p}. For any $N \in N$, let $N_{p}^{*}=N \cap \hat{F}_{p}$ and let

$$
N_{p}^{*}=\left\{N_{p}^{*} \mid N \in N\right\} .
$$

The following lemma supplies the necessary information for the main result of this section.

LEMMA 5.2. (i) $N_{p}^{*} \subseteq N$.
(ii) $\rho(R G)=\rho_{\hat{F}_{p}}$.
(iii) $F_{Z}=F_{q} \hat{F}_{p}$.
(iv) $F_{q} \cap \hat{F}_{p}=\{I\}$.
(v) For any $N \in N$, we have $N=N_{q} N_{p}^{*}$.

Proof. (i) Since any endomorphism in $E\left(F_{Z}\right)$ maps F_{p} into F_{p}, it must also map \hat{F}_{p} into itself. But then it must map $N \cap \hat{F}_{p}$ into itself, for any $N \in N$.
(ii) For $N=\hat{F}_{p}$, it is clear that F / ρ_{N} is a rectangular group. On the other hand, if $N \in N$ is such that F / ρ_{N} is a rectangular group, then $F_{p} \subseteq N$, and since N is normal, we have $\hat{F}_{p} \subseteq N$.
(iii) This is a consequence of the fact that $F_{Z}=F_{q} * F_{p}$.
(iv) Consider the projection $\pi_{q}: F_{Z} \rightarrow F_{q}$. Its kernel is \hat{F}_{p} and it maps F_{q} identically, whence the assertion.
(v) Let $N \in N$ and $n \in N$. By part (iii), $n=a b$ for some $a \in F_{q}, b \in \hat{F}_{p}$. Hence

$$
a=(a b) \pi_{q} \in N \cap F_{q}=N_{q}
$$

so that

$$
b=a^{-1}(a b) \in N \cap \hat{F}_{p}=N_{p}^{*}
$$

Thus $N \subset N_{q} N_{p}^{*}$, and the opposite inclusion is trivial.
We first deduce two interesting consequences.
COROLLARY 5.3. For $V \in[R B, C S]$ with $\rho(V)=\rho_{N}$, we have
$\rho(V \vee G)=\rho_{N_{p}^{*}}$. Consequently, $R G \subseteq V$ if and only if $N \subseteq \hat{F}_{p}$.
Proof. The hypothesis $U \supseteq R B$ yields

$$
V \vee G=V \vee R B \vee G=V \vee R G,
$$

whence, by Lemma 5.2 (ii), we get

$$
\begin{aligned}
\rho(V \vee G) & =\rho(V \vee R G)=\rho(V) \cap \rho(R G) \\
& =\rho_{N} \cap \rho_{\hat{F}_{p}}=\rho_{N \cap \hat{F}_{p}}=\rho_{N_{p}^{*}}
\end{aligned}
$$

COROLLARY 5.4. For $U, v \in[R B, C S]$ with $\rho(U)=\rho_{M}$ and $\rho(V)=\rho_{N}$, we have

$$
u \vee G=v \vee G \Leftrightarrow M_{p}^{*}=N_{p}^{*}
$$

We are now ready for the principal result of this section.
THEOREM 5.5. The mapping

$$
\theta: V \rightarrow V \vee G \quad(V \in L(C S))
$$

is a homomorphism of $L(C S)$ onto $[G, C S]$.
Proof. We first consider θ on the interval [RB, CS]. Recall that this interval is anti-isomorphic to N. In the light of Corollary 5.3, for any $V \in[R B, C S]$ with $\rho(V)=\rho_{N}$, we have $\rho(V \vee G)=\rho_{N_{p}^{*}}$. Hence it suffices here to show that the mapping

$$
\mu: N \rightarrow N_{p}^{*}=N \cap \hat{F}_{p}
$$

is a homomorphism of N onto $\underset{p}{N_{p}^{*}}$.
Obviously μ maps N into N_{p}^{*} and preserves meets. The onto part is a consequence of Lemma 5.2 (i). It remains to show that for any $M, N \in N$, we have

$$
(M \vee N)_{\mu}=M \mu \vee N \mu
$$

that is, $(M N)_{p}^{*}=M_{p}^{*} N_{p}^{*}$.
Let $a \in(M N)_{p}^{*}$, say $a=m n$, where $m \in M, n \in N$. By Lemma
$5.2(v)$, we have $m=m_{1} m_{2}$ and $n=n_{1} n_{2}$ with $m_{1}, n_{1} \in F_{q}$,
$m_{2}, n_{2} \in \hat{F}_{p}$. Then

$$
\begin{equation*}
m n=m_{1} m_{2} n_{1} n_{2}=\left(m_{1} m_{2} m_{1}^{-1}\right)\left[\left(m_{1} n_{1}\right) n_{2}\left(m_{1} n_{1}\right)^{-1}\right]_{1} n_{1} . \tag{2}
\end{equation*}
$$

Note that in (2), $m_{2}, n_{2} \in \hat{F}_{p}$, which is normal, and also $m n=a \in(M N)_{p}^{*}$, which implies that $m_{1} n_{1} \in \hat{F}_{p}$. But then, by Lemma $5.2(i v)$, we get $m_{1} n_{1} \in F_{q} \cap \hat{F}_{p}=\{1\}$. Consequently,

$$
a=m n=\left(m_{1} m_{2} m_{1}^{-1}\right) n_{2} \in M_{p}^{*} N_{p}^{*}
$$

This proves that $(M N)_{p}^{*} \subseteq M_{p}^{*} N_{p}^{*}$; the opposite inclusion is obvious. Therefore θ is a homomorphism on the interval [RB, CS].

To see that θ is a homomorphism on the entire lattice $L(C S)$, we consider $U \in L(R G)$ and $V \in L(C S)$. It is straightforward to verify that the following is true:

$$
\begin{aligned}
(u \cap v) \vee G & =\{S \in \mathbb{C S} \mid S \cong G \times R, G \in G, R \in(U \cap V) \cap R B\} \\
& =(U \vee G) \cap(U \vee G) .
\end{aligned}
$$

Therefore θ is indeed a homomorphism of $L(C S)$ onto [G, CS].
We have seen in Theorem 4.4 that the congruence α induced by the homomorphism $V \rightarrow V \cap G$ has the property that its classes are intervals of $L(C S)$. We conjecture that the congruence B induced on $L(C S)$ by the homomorphism $V \rightarrow V \vee G$ also has this property. We are unable to prove the existence of the least element of the β-class containing an arbitrary variety V, but observe that the greatest element is obviously $V \vee G$. In Corollary 5.3, we have already characterized the corresponding element of N. We now turn to the description of $V V G$ in terms of the system of identities it satisfies.

NOTATION 5.6. In any group G, denote by x^{α} the conjugate $a^{-1} x a$ of x. For $i_{t} \neq 1, j_{t} \neq 1, q_{k} \in F_{q}$,

$$
\begin{equation*}
v=v\left(\left[i_{1}, j_{1}\right]^{f_{1}\left(q_{1}, \ldots, q_{n}\right)}, \ldots,\left[i_{m}, j_{m}\right]^{f_{m}\left(q_{1}, \ldots, q_{n}\right)}\right) \in \hat{F}_{p} \tag{3}
\end{equation*}
$$

let
(4)

$$
\hat{v}=v\left(\begin{array}{l}
f_{1}\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right) \\
z_{i_{1}}, j_{1}
\end{array}, \ldots, z_{i_{m}}\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)\right)
$$

where.

$$
\begin{equation*}
\bar{x}_{k}=x x^{-1} x_{k} x x^{-1}, \quad z_{i_{t}, j_{t}}=\left(x y_{i_{t}}\right)\left(x y_{i_{t}}\right)^{-1}\left(y_{j_{t}} x\right)\left(y_{j_{t}} x\right)^{-1} \tag{5}
\end{equation*}
$$

for variables $x, x_{k}, y_{i_{t}}, y_{j_{t}}(k=1,2, \ldots, n, t=1,2, \ldots, m)$.
LEMMA 5.7. Let $V \in[R B, C S], \rho(V)=\rho_{N}$; then

$$
N_{p}^{*}=\left\{v \in \hat{F}_{p} \mid \hat{v}^{2}=\hat{v} \text { is a loaw in } v\right\}
$$

Proof. Let $v \in N_{p}^{*}$ be given by (3). Consider any substitution of the variables in \hat{v}, see (4), into F :

$$
x \rightarrow a, x_{k} \rightarrow a_{k}, y_{i_{t}} \rightarrow b_{\alpha_{t}}, y_{j_{t}} \rightarrow b_{\beta_{t}}
$$

Let $\hat{v}^{\sigma}, z_{i_{t}, j_{t}}^{\sigma}$ and so on, denote the elements obtained from $\hat{v}, z_{i_{t}}, j_{t}$ and so on, see (5), by making these substitutions. Without loss of generality, we may assume that $b_{\alpha_{t}} \in H_{-\alpha_{t}}, b_{\beta_{t}} \in H_{\beta_{t^{-}}}$, where $H_{-\alpha_{t}}, H_{\beta_{t}}$ need not all be distinct even for distinct α_{t} or β_{t}.

Let $a \in H_{r s}$ and note that

$$
\xi:(r, h, s) \rightarrow[s, r] h \quad\left(h \in F_{Z}\right)
$$

is an isomorphism of $H_{r S}$ onto F_{Z}. Then

$$
\begin{equation*}
\bar{x}_{k}^{\sigma} \in H_{r s}, \quad g_{k}=\bar{x}_{k}^{\sigma} \xi \in F_{Z} \tag{6}
\end{equation*}
$$

where the latter part of (6) defines g_{k}, and

$$
\begin{aligned}
z_{i_{t}, j}^{\sigma} & =\left(a b \alpha_{t}\right)\left(a b_{\alpha_{t}}\right)^{-1}\left(b_{\beta_{t}} a\right)\left(b_{\beta_{t}} a\right)^{-1} \\
& =\left(r,\left[\alpha_{t}, r\right]^{-1}, \alpha_{t}\right)\left(\beta_{t},\left[s, \beta_{t}\right]^{-1}, s\right) \\
& =\left(r,\left[\alpha_{t}, r\right]^{-1}\left[\alpha_{t}, \beta_{t}\right]\left[s, \beta_{t}\right]^{-1}, s\right)
\end{aligned}
$$

so that

$$
\begin{equation*}
z_{i_{t}, j_{t}}^{\sigma} \xi=[s, r]\left[\alpha_{t}, r\right]^{-1}\left[\alpha_{t}, \beta_{t}\right]\left[s, \beta_{t}\right]^{-1} \tag{7}
\end{equation*}
$$

Taking into account (6) and (7), we obtain
(8) $\quad \hat{v}^{\sigma} \xi=\left\{\left\{[s, r]\left[\alpha_{1}, r\right]^{-1}\left[\alpha_{1}, \beta_{1}\right]\left[s, \beta_{1}\right]\right\}^{f_{1}\left(g_{1}, \ldots, g_{n}\right)}\right.$

$$
\left.\ldots\left\{[s, r]\left[\alpha_{m}, r\right]^{-1}\left[\alpha_{m}, \beta_{m}\right]\left[s, \beta_{m}\right]\right\}^{f_{m}\left(g_{1}, \ldots, g_{n}\right)}\right)
$$

Let $\omega \in E\left(F_{Z}\right)$ be defined by (1) and

$$
q_{k} \omega=g_{k}, \quad i_{t} \psi=\alpha_{t}, \quad j_{t} \varphi=\beta_{t}, \quad l \psi=r, \quad l \varphi=s
$$

and let ψ and φ be defined arbitrarily elsewhere. Using (1), we obtain

$$
\begin{aligned}
{\left[i_{t}, j_{t}\right]_{t}^{f_{t}\left(q_{1}, \ldots, q_{n}\right)} } & =\left(\left[i_{t}, j_{t}\right] \omega\right) f_{t}\left(q_{1} \omega, \ldots, q_{n} \omega\right) \\
& =\left([s, r]\left[\alpha_{t}, r\right]^{-1}\left[\alpha_{t}, \beta_{t}\right]\left[\varepsilon, \beta_{t}\right]^{-1}\right)^{f_{t}\left(g_{1}, \ldots, g_{n}\right)}
\end{aligned}
$$

Comparing this with (8), we conclude that $\hat{v}^{\sigma} \xi_{\xi}=v \omega$, where $v \omega \in N_{p}^{*}$ since $v \in N_{p}^{*}$ and $N_{p}^{*} \in N$, by Lemma 5.2 (i). Since

$$
[s, r]^{-1}(v \omega)^{2}\left([s, r]^{-1}(v \omega)\right)^{-1}=[s, r]^{-1}(v \omega)[s, r] \in N_{p}^{*}
$$

Lemma 2.6 yields

$$
\left(r,[s, r]^{-1}(v \omega)^{2}, s\right) \rho_{N_{p}^{*}}\left(r,[s, r]^{-1}(v \omega), s\right)
$$

Using $N_{p}^{*} \subseteq N$ and the definition of ξ, we deduce $\left(\hat{v}^{\sigma}\right)^{2} \rho_{N} \hat{v}^{\sigma}$ and thus $\hat{v}^{2}=\hat{v}$ is a law in v.

Conversely, suppose that $\hat{v}^{2}=\hat{v}$ is a law in v. Consider the substitution

$$
\begin{aligned}
& \sigma: x \rightarrow(1,1,1), x_{i} \rightarrow\left(1, q_{i}, 1\right) \\
& y_{i_{t}} \rightarrow\left(i_{t}, 1, i_{t}\right), y_{j_{t}} \rightarrow\left(j_{t}, 1, j_{t}\right) .
\end{aligned}
$$

Then

$$
\bar{x}_{i}^{\sigma}=\left(1, q_{i}, 1\right), z_{i_{t}, j_{t}}=\left(1,\left|i_{t}, j_{t}\right|, 1\right)
$$

and thus $\hat{v}^{\sigma}=(1, v, 1)$. Since $\hat{v}^{2}=\hat{v}$ is a law in V, we get $(1, v, 1)^{2} \rho_{N}(1, v, 1)$ and so $N v^{2}=N v$. But then $v \in N \cap \hat{F}_{p}=N_{p}^{*}$, as required.

PROPOSITION 5.8. Let $V \in[R B, C S], \rho(V)=\rho_{N}$. Then $\left\{\hat{v}^{2}=\hat{v} \mid v \in N_{p}^{*}\right\}$ is a basis of laws for $V \vee G$.

Proof. This is immediate from Corollary 5.4 and Lemma 5.7.
It is a simple consequence of Proposition 5.8 that

$$
F / \rho_{N_{p}^{*}} \cong M\left(I, F_{Z} / N_{p}^{*}, I ; P / N_{p}^{*}\right)
$$

is a relatively free object in $V \vee G$.
6. Embedding of $L(C S)$ into a subdirect product

We combine here the homomorphism X of Theorem 4.4 with the homomorphism θ of Theorem 5.5 and prove that the resulting mapping $V \rightarrow(V \cap G, V \vee G)$ is actually an isomorphism of $L(C S)$ onto a subdirect product of $L(G)$ and $[G, C S]$.

THEOREM 6.1. The mapping

$$
\xi: V \rightarrow(V \cap G, V \vee G) \quad(V \in L(C S))
$$

is an isomorphism of $L(C S)$ onto the subdirect product of $L(G)$ and $[G, C S]$ consisting of the pairs (U, V) such that $V \subseteq \bar{U} \vee G$. Moreover, for $\omega \in L(C S)$,

$$
w \cap G=u, w v G=v \Leftrightarrow w=\bar{u} \cap v .
$$

Proof. Since X and θ are homomorphisms (Theorems 4.4 and 5.5) so also is ξ. Let $V, W \in[R B, C S]$ and $\rho(V)=\rho_{M}, \rho(W)=\rho_{N}$. Then, by Corollary 5.3,

$$
\begin{equation*}
\rho(U \vee G)=\rho_{M_{p}^{*}}, \quad \rho(W \vee G)=\rho_{N_{p}^{*}} \tag{9}
\end{equation*}
$$

On the other hand, by Theorem 3.3,

$$
\begin{equation*}
V \cap G=\left\langle F_{q} / M_{q}\right\rangle, W \cap G=\left\langle F_{q} / N_{q}\right\rangle . \tag{10}
\end{equation*}
$$

If $V \xi=W \xi$, then from (9) and (10), we have

$$
M_{q}=N_{q}, M_{p}^{*}=N_{p}^{*},
$$

and from Lemma $5.2(v)$ it follows that

$$
M=M_{q} M_{p}^{*}=N_{q} N_{p}^{*}=N .
$$

Therefore $V=W$ and ξ is one-to-one on [RB, CS].
If either of V or W does not contain $R B$, then it must be a variety of left groups or a variety of right groups (or a variety of groups) and a simple case-by-case argument will again show that $V \xi=W \xi$ implies that $V=W$. Therefore ξ is an isomorphism.

For $W \vee L(C S)$, let $U=W \cap G$ and $V=W \vee G$. Then $W \subseteq \bar{U}$ and so $v=\omega \vee G \subseteq \bar{u} \vee G$.

Conversely, let $(U, v) \in L(G) \times[G, C S]$ with $V \subseteq \bar{U} \vee G$, and let $\omega=\bar{u} \cap v$. We have

$$
W \cap G=\bar{U} \cap v \cap G=\bar{U} \cap G=U .
$$

Now consider $W \vee G$. Then

$$
w \vee G=(\bar{u} \cap v) \vee G \subseteq v
$$

since $G \subseteq V$. For the opposite inclusion, first assume that $R G \subseteq V$. Then clearly $R B \subseteq W$. Let $\rho(\bar{U})=\rho_{M}$ and $\rho(V)=\rho_{N}$; also let $m \in M$, $n \in N$ be such that $m n \in \hat{F}_{p}$ so that $m n \in(M N)_{p}^{*}$. The hypothesis $R G \subseteq V$ implies that $n \in N \subseteq \hat{F}_{p}$, and $V \subseteq \bar{U} \vee G$ implies that $\rho_{M_{p}^{*}}=\rho_{M \cap \hat{F}_{p}}=\rho(\bar{U} \vee G) \subseteq \rho_{N}$ so that $M_{p}^{*} \subseteq N$. Consequently $m=(m n) n^{-1} \in M \cap \hat{F}_{p}=M_{p}^{*} \subseteq N$
and thus $m n \in N$, which proves that $(M N)_{p}^{*} \subseteq N$. But then

$$
\rho(\omega \vee G)=\rho(\omega \vee R G)=\rho_{M N \cap \hat{F}_{p}}=\rho_{(M N)_{p}^{*} \subseteq \rho_{N}=\rho(v)}
$$

and hence $V \subseteq \mathbb{W}$ VG.

If V does not contain $R G$, then we must have V equal to G, or to the variety of left groups or the variety of right groups. Particular, but simpler, arguments will show that $W V G=V$ in each of these cases.

We have thus established the converse part of the implication in the statement of the theorem. This establishes that ξ maps $L(C S)$ onto the sublattice $\{(u, v) \mid u \in L(G), G \subseteq V \subseteq \bar{U} v G\}$.

The direct part of the implication follows from the fact that ξ is one-to-one.

COROLLARY 6.2. For any $V \in L(C S)$, we have

$$
V=\overline{V \cap G} \cap(U \vee G) .
$$

REMARK 6.3. By Theorem 3.3 and Corollary 5.3, we have the following associations for any $V \in L(C S)$:

References

[1] A.H. Clifford, "The free completely regular semigroup on a set", J. AZgebra 59 (1979), 434-451.
[2] J.M. Howie, An introduction to semigroup theory (London Mathematical Society Monographs, 7. Academic Press, London, New York, San Francisco, 1976).
[3] Е.И. Нлейман [E.I. KIe彳̆man], "Неноторые сзойства струнтуры многообразий ннверсных полугругп" [Some properties of the lattice of varieties of inverse semigroups], Ural. Gos Univ. Mat. Zap. 10 (1977), no. 3 Issled. po Sovremen. Algebre, 56-72, 216-217. "Замечание н статье Е.Н. Нлеймана 'Неноторые свойства струнтуры многообразий ннверсных полугрупп'" [Correction to Some properties of the lattice of varieties of inverse semigroups], Ural. Gos. Univ. Mat. Zap. 11 (1979), 207.
[4] Hanna Neumann, Varieties of groups (Ergebnisse der Mathematik und ihrer Grenzgebiete, 37. Springer-Verlag, Berlin, Heidelberg, New York, 1967).
[5] Mario Petrich, Introduction to semigroups (Charles E. Merrill, Columbus, Ohio, 1973).
[6] В.B. Раснн [V.V. Rasin], "Свободные вполне простые полугруппы" [Free completely simple semigroups], Ural. Gos. Univ. Mat. Zap. 11 (1979), no. 3, 140-151.

```
Department of Mathematics,
Simon Fraser University,
Burnaby,
British Columbia V5A IS6,
Canada.
```

