ON THE ABSOLUTE NÖRLUND SUMMABILITY OF A FOURIER SERIES

FU CHENG HSIANG

(Received 28 January 1966)

1

Let $\sum_{n=0}^{\infty} a_{n}$ be a given infinite series and $\left\{s_{n}\right\}$ the sequence of its partial sums. Let $\left\{p_{n}\right\}$ be a sequence of constants, real or complex, and let us write

$$
P_{n}=p_{0}+p_{1}+p_{2}+\cdots+p_{n} .
$$

If

$$
\begin{equation*}
\sigma_{n}=\frac{1}{P_{n}} \sum_{\nu=0}^{n} p_{n-\nu} s_{\nu} \rightarrow \sigma \tag{n}
\end{equation*}
$$

as $n \rightarrow \infty$, then we say that the series is summable by the Nörlund method $\left(N, p_{n}\right)$ to σ. And the series $\sum a_{n}$ is said to be absolutely summable (N, p_{n}) or summable $\left|N, p_{n}\right|$ if $\left\{\sigma_{n}\right\}$ is of bounded variation, i.e.,

$$
\sum_{n=0}^{\infty}\left|\Delta \sigma_{n}\right|=\sum_{n=0}^{\infty}\left|\sigma_{n}-\sigma_{n+1}\right|<\infty .
$$

2

Suppose that $\varphi(t)$ is an even and integrable function, periodic with period 2π. Let

$$
\varphi(t) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n t .
$$

In this note, we prove a theorem for the absolute Nörlund summability ${ }^{1}$ of the series $a_{2} / 2+\sum_{n=1}^{\infty} a_{n}$.

Theorem. Let $\left\{p_{n}\right\}$ be a sequence of positive constants. If $\left\{\nabla p_{n}\right\}=$ $\left\{\left(p_{n}-p_{n-1}\right)\right\}$ is monotonic and bounded, and if
(i)

$$
\sum_{n=2}^{\infty} \frac{n}{P_{n}(\log n)^{4}}<\infty
$$

for some $\Lambda>0$, and

[^0](ii)
$$
\left(\log \frac{1}{t}\right)^{A}|\varphi(t)|=O(1)
$$
as $t \rightarrow 0+$, then the series $a_{0} / 2+\sum_{n=1}^{\infty} a_{n}$ is summable $\left|N, p_{n}\right|$.

3

In the proof of the theorem, the following lemmas are required.
Lemma 1. If $\left\{p_{n}\right\}$ is defined as in the theorem, and if the series

$$
\sum \frac{\left|t_{n}\right|}{P_{n}}<\infty
$$

where $t_{n}=\sum_{n=0}^{n} s_{\nu}$, then \sum_{n} is summable $\left|N, p_{n}\right|$.
This lemma is due to Bhatt [l] with improvement.
Proof. We have

$$
\begin{aligned}
\sigma_{n}-\sigma_{n+1} & =\frac{1}{P_{n}} \sum_{\nu=0}^{n} p_{n-\nu} s_{\nu}-\frac{1}{P_{n+1}} \sum_{\nu=0}^{n+1} p_{n+1-\nu} s_{\nu} \\
& =\Delta\left(\frac{1}{P_{n}}\right) \sum_{\nu=0}^{n} p_{n-\nu} s_{\nu}+\frac{1}{P_{n+1}} \sum_{\nu=0}^{n}\left(p_{n-\nu}-p_{n+1-\nu}\right) s_{\nu}-\frac{p_{0} s_{n+1}}{P_{n+1}} \\
& =I_{n}+I_{n}+K_{n}
\end{aligned}
$$

say. By Abel's transformation,

$$
\begin{aligned}
\sum_{n=1}^{m}\left|I_{n}\right| & \leqq\left|\sum_{n=1}^{m} \Delta\left(\frac{1}{P_{n}}\right) \sum_{\nu=0}^{n-1}\left(\nabla p_{n-\nu}\right) t_{\nu}\right|+\sum_{n=1}^{m} \Delta\left(\frac{1}{P_{n}}\right) p_{0}\left|t_{n}\right| \\
& \leqq A \sum_{n=1}^{m} \Delta\left(\frac{1}{P_{n}}\right)_{\nu=0}^{n-1}\left|t_{\nu}\right|+A \sum_{n=1}^{m} \frac{\left|t_{n}\right|}{P_{n}} \\
& \leqq A \sum_{\nu=0}^{m-1}\left|t_{\nu}\right| \sum_{n=v+1}^{m} \Delta\left(\frac{1}{P_{n}}\right)+A \\
& \leqq A \sum_{\nu=0}^{m-1} \frac{\left|\nu_{\nu}\right|}{P_{\nu}}+A \\
& \leqq A .
\end{aligned}
$$

By Abel's transformation once more,

$$
\begin{aligned}
\sum_{n=1}^{m}\left|J_{n}\right| & \leqq \sum_{n=1}^{m} \frac{1}{P_{n}} \sum_{\nu=0}^{n-1}\left|\nabla p_{n-\nu}-\nabla p_{n+1-\nu}\right|\left|t_{\nu}\right|+\sum_{n=1}^{m} \frac{1}{P_{n+1}}\left|p_{0}-p_{1}\right|\left|t_{n}\right| \\
& \leqq \sum_{\nu=0}^{m-1}\left|t_{\nu}\right| \sum_{n=\nu+1}^{m} \frac{\left|\nabla p_{n-\nu}-\nabla p_{n+1-\nu}\right|}{P_{n+1}}+A
\end{aligned}
$$

$$
\begin{aligned}
& \leqq \sum_{\nu=0}^{m-1} \frac{\left|t_{\nu}\right|}{P_{\nu}} \sum_{n=\nu+1}^{m}\left|\nabla p_{n-\nu}-\nabla p_{n+1-\nu}\right|+A \\
& \leqq A \sum_{\nu=0}^{m-1} \frac{\left|t_{\nu}\right|}{P_{\nu}}+A \\
& \leqq A
\end{aligned}
$$

since $\left\{\nabla p_{n}\right\}$ is monotonic and bounded. Finally,

$$
\begin{aligned}
\sum_{n=1}^{m}\left|K_{n}\right| & \leqq \sum_{n=1}^{m} \frac{P_{0}}{P_{n+1}}\left|t_{n+1}-t_{n}\right| \\
& \leqq A \sum_{n=1}^{m} \frac{\left|t_{n}\right|}{P_{n}} \\
& \leqq A
\end{aligned}
$$

Since the A 's are independent of m, the lemma follows.
Lemma 2. If (ii) is satisfied, then

$$
t_{n}=O\left\{n(\log n)^{-4}\right\}
$$

as $n \rightarrow \infty$.
Proof. Choose $0<r<\frac{1}{2}$ and write

$$
\begin{aligned}
\pi t_{n} & =\int_{0}^{\pi} \varphi(t)\left\{\frac{\sin (n+1)(t / 2)}{\sin (t / 2)}\right\}^{2} d t \\
& =\int_{0}^{n^{-r}}+\int_{n^{-r}}^{n} \\
& =I_{1}+I_{2}
\end{aligned}
$$

say. We have

$$
\begin{aligned}
\left|I_{1}\right| & \leqq \int_{0}^{n^{-r}}|\varphi(t)|\left\{\frac{\sin (n+1)(t / 2)}{\sin (t / 2)}\right\}^{2} d t \\
& \leqq \sup _{0 \leqq t \leqq n^{-r}}|\varphi(t)| \int_{0}^{\pi}\left\{\frac{\sin (n+1)(t / 2)}{\sin (t / 2)}\right\}^{2} d t \\
& =\pi(n+1) \sup _{0 \leqq n^{-r}}|\varphi(t)| \\
& =O\left\{\frac{n}{(\log n)^{4}}\right\}
\end{aligned}
$$

as $n \rightarrow \infty$ by (ii), since

$$
\frac{1}{\pi(n+1)} \int_{0}^{\pi}\left\{\frac{\sin (n+1)(t / 2)}{\sin (t / 2)}\right\}^{2} d t \equiv 1
$$

$$
\begin{aligned}
I_{2} & =2 \int_{n-r}^{\pi} \varphi(t)\left\{\frac{\sin (n+1)(t / 2)}{t}\right\}^{2} d t+o(1) \\
& =2 I_{3}+o(1),
\end{aligned}
$$

say. By integration by parts,

$$
\begin{aligned}
I_{3}= & \left\{\Phi(t) \frac{\sin ^{2}(n+1)(t / 2)}{t^{2}}\right\}_{n-r}^{\pi}-\frac{n+1}{2} \int_{n-r}^{\pi} \frac{\Phi(t)}{t} \cdot \frac{\sin (n+1) t}{t} d t \\
& +2 \int_{n-r}^{\pi} \frac{\Phi(t)}{t}\left\{\frac{\sin (n+1)(t / 2)}{t}\right\}^{2} d t \\
= & O(1)-\frac{n+1}{2} I_{4}+2 I_{5},
\end{aligned}
$$

say. In order to estimate I_{5}, let us construct a function:

$$
\psi(t)=\frac{1}{t^{\eta}(\log 1 / t)^{4}},
$$

where $0<\eta<1$. This function is monotonic decreasing in ($\delta, e^{-\lambda / \eta}$) for every $\delta>0$. If we write

$$
\Phi(t)=\frac{t}{(\log 1 / t)^{4}} h(t)
$$

then $h(t)=O(1)$ as $t \rightarrow+0$. We write

$$
\begin{aligned}
I_{5} & =\int_{n-\eta}^{0-\Delta / n}+\int_{0-\Lambda / n}^{\pi} \\
& =I_{6}+I_{7},
\end{aligned}
$$

say. We have

$$
\begin{aligned}
\left|I_{6}\right| & =\left|\int_{n-\infty}^{\sigma^{-A / n}} \frac{h(t)}{(\log 1 / t)^{4}}\left\{\frac{\sin (n+1)(t / 2)}{t}\right\}^{2} d t\right| \\
& \leqq \int_{n \rightarrow r}^{e^{-\Lambda / \eta}} \frac{|h(t)|}{t^{2}(\log 1 / t)^{4}} d t \\
& =\int_{n^{-r}}^{e^{-1 / n}} \frac{\psi(t)|h(t)|}{t^{2-\eta}} d t \\
& =\psi\left(n^{-r}\right) \int_{n^{-r}}^{\tau} \frac{|h(t)|}{t^{2-\eta}} d t r \\
& =O\left\{\psi\left(n^{-r}\right) \int_{n^{-r}}^{\tau} t^{\eta-2} d t\right\} \\
& =O\left\{\psi\left(n^{-r}\right) n^{r(1-\eta)}\right\} \\
& =O\left\{\frac{n}{(\log n)^{4}}\right\}
\end{aligned}
$$

as $n \rightarrow \infty . I_{7}=o(1)$ by Riemann-Lebesgue's theorem, Finally,

$$
\begin{aligned}
I_{4} & =\int_{n^{\rightarrow}}^{\pi} \frac{\Phi(t)}{t^{2}} \sin (n+1) t d t \\
& =n^{2 r} \int_{n^{-r}}^{\tau} \Phi(t) \sin (n+1) t d t \\
& =O\left(n^{-2 r-1}\right)
\end{aligned}
$$

since $\Phi(t)$ is an integral. Hence,

$$
(n+1) I_{4}=O\left(n^{2 r}\right)=O\left\{\frac{n}{(\log n)^{4}}\right\}
$$

as $n \rightarrow \infty$.

4

By Lemma 2, we have

$$
\sum_{\nu=n}^{\infty} \frac{\left|t_{\nu}\right|}{P_{\nu}}=O\left\{\sum_{\nu=n}^{\infty} \frac{\nu}{P_{\nu}(\log \nu)^{\Lambda}}\right\}=o(1)
$$

as $n \rightarrow \infty$ by (i).
The theorem follows from Lemma 1.

References

[1] S. N. Bhatt, 'An aspect of local property of $\left|N, p_{n}\right|$ summability of a Fourier series',
Indian Journ. Math., 5 (1963), $87-91$.
[2] L. McFadden, 'Absolute Nörlund summability', Duke Math. Journ., 9 (1942), 168-207.
National Taiwan University
Taipei, Formosa, China

[^0]: ${ }^{1}$ For further results concerning the absolute Nörlund summability of a Fourier series, cf. [2].

