
Can. J. Math. Vol. 48 (4), 1996 pp. 710-736 

NECESSARY AND SUFFICIENT CONDITIONS FOR 
MEAN CONVERGENCE OF LAGRANGE INTERPOLATION 

FOR ERDOS WEIGHTS 

S. B. DAMELIN AND D. S. LUBINSKY 

ABSTRACT. We investigate mean convergence of Lagrange interpolation at the ze
ros of orthogonal polynomials p„(W2,x) for Erdos weights W1 = e~2@. The archetypal 
example is Wka — exp(—Qt,a)» where 

QKa(x) := exp*(|*H, 

a > 1, k > 1, and exp^ = expj exp(exp(...)] is the &-th iterated exponential. Fol

lowing is our main result: Let 1 < p < oo, A G R, K > 0. Let Ln[f] denote the Lagrange 

interpolation polynomial t o / at the zeros ofpn(W
2,x) = pn{e-2Q,x). Then for 

lim \\<f- LJifQWiX + e r A | | i p ( R) = 0 

to hold for every continuous function/: R —> R satisfying 

|im(/-»%f)0ogW)1+w = 0, 
\x\—KX) 

it is necessary and sufficient that 

A>m«{0,|(i-i)}. 

1. Introduction and results. In the past twenty years, there has begun to develop 
a general theory of orthogonal polynomials, and associated approximation theory, for 
weights on R [8], [18]. In several aspects of the investigations, it has been helpful to 
distinguish between Erdos weights and Freud weights. 

Freud weights have the form W2 = e~2Q
y where Q: R —> R is even and of polynomial 

growth at infinity. The archetypal example is 

(1.1) ^ W : = e x p ( - e ^ ) ) , Qp(?c):=±\x\f>9 (3 > 0. 

Erdos weights have the form W2 = e~2Q, where Q: R —* R is even and of faster than 
polynomial growth at infinity. The archetypal example is 

(1.2) Wkia(x):=exp(-Qk9a(xj)9 
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MEAN CONVERGENCE OF LAGRANGE INTERPOLATION 711 

where 

(1.3) C U * ) := exp*(|x|tt), * > 1 , <*>0. 

Here expk = expf exp(exp(...)) j denotes the £-th iterated exponential. 

Given a weight W: R —> R such as those above, we can define orthonormal polyno
mials 

Pnix) = pn(W\x) = I*** + • • • , 7„ = ln(W
2) > 0, 

satisfying 

l°° pn{W\x)pm(W\x)W2{x)dx = 6mn. 
J—oo 

To those unfamiliar with the theory of weights on R, writing W2, rather than say w, for 
a weight, might seem strange. However the square reflects the Li norm, and facilitates 
formulation of theorems. We denote the zeros oipn by 

—00 < Xnn < Xn-it„ < Xn-2,n < " <X2n<X\n<00. 

The Lagrange interpolation polynomial to a function/: R —> R at {xjn}j=l is denoted 
by Ln[f\. Thus if fPm denotes the class of polynomials of degree < m, and £jn £ 2n-u 
1 <j < «> are the fundamental polynomials of Lagrange interpolation at {xj„}j=l9 so 

tjn(Xkn) = fyk, 

then 

(1.4) Ln[n(x) = itf(xjn)£jn(x). 

For a large class of Freud weights, mean convergence of Lagrange interpolation was 
investigated by several authors [1], [4], [11], [17]. The possibility of obtaining identical 
necessary and sufficient conditions for mean convergence of Ln arises from bounds ob
tained for pn(W

2, •) by A. L. Levin and the second author [6]. For notational simplicity, 
we recall the result of Matjila and the second author [11] only for W%, j5 > 1. 

THEOREM 1.1. Let Wp{x) := exp(-£|jc|0), /? > 1. Givenf: R —• R, letLn[f] denote 
the Lagrange interpolation polynomial tof at the zeros ofpn{W2,x). Let 1 < p < oo, 
A G R, a > 0, and 

r : = min{l,a} + m a x | o , ^ l - - ) } • 

Then for 
lim \Hf-L„\f])(x)W(x)(l + \x\rA\\Lp{R) = 0, 

to hold for every continuous function f: R —» R satisfying 

\im(fW)(x)(\+\x\r = 0, 
M—oo 
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712 S. B. DAMELIN AND D. S. LUBINSKY 

it is necessary and sufficient that 

A>rif\ <p<4; 

A > r ifp > 4 and a = 1; 

A > r ifp > 4 and a ^ l . 

In describing analogous results for Erdos weights, we need a class of weights W2 

for which suitable bounds are available for pn(W
2, •). These were found in [7] and Lp 

analogues were found in [10]. For our purposes, the following subclass of the weights 
from [7] is suitable: 

DEFINITION 1.2. Let W := e~Q, where Q: R —» R is even, continuous, Q" exists in 
(0, oo), g ^ > 0 in (0, oo),7 = 0,1 , 2, and the function 

(1.5) T(x):=l+xQ"(x)/Q'(x) 

is increasing in (0, oo), with 

(1.6) lim T(x) = oo; T(0+) := lim T(x) > 1. 
JC—>oo x—>0+ 

Moreover, we assume that for some C\, C2, C3 > 0, 

0.7) c , < r W / ( ^ ) < c 2 , *>c3, 

and for every £ > 0, 

(1.8) T(x) = 0(Q(xY), * - ^ O O . 

Then we write W E £1. 
The new restrictions over those in [7] are (1.8) and Q > 0. The latter is easily achieved 

by replacing Q by Q+ | <2(0)|. The former is needed in simplifying the formulation of our 
theorems. The principal example of W = e~Q E £1 is W^a = exp(—£)*,«) given by (1.3) 
with a > 1. For this W, 

(1.9) r(*) = ?*,<,(*) = <* 

Here (1.7) holds in the stronger form 

x > 0 . 

(1.10) lim T(x) J [xQ'(x)/Q(x)] = 1, 

and (1.8) holds in the stronger form 

(1.11) lim T(x) 
JC—>oo nnew 

L/=i 

= a. 
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MEAN CONVERGENCE OF LAGRANGE INTERPOLATION 713 

Here, and in the sequel, log .̂ = log(log(...)) denotes the A>th iterated logarithm. For 
a < 1, the second part of (1.6) fails, but this can be circumvented by considering 
Wka/2(A + x2), with A large enough to guarantee 7X0+) > 1. 

Another (more slowly decaying) example of W = e~Q G £i is given by 

(1.12) Q(x) := exp[(log(^ +x 2 ) f ] , /3 > 1, A large enough, 

for which 

(1.13) T(x) 
2x2 r / 3 - 1 

A+x2 + p{log(A+x2)Y-
1A 

A+x2 llog(A+x2) 

Again (1.7) holds in the stronger form (1.10), while (1.8) holds in the stronger form 

(1.14) lim T(x) log*/ log Q(x) = 0. 
X—KX) 

The first results for mean convergence of Lagrange interpolation for a class of Erdos 
weights appeared in [13]. However in the sufficient conditions for convergence, the re
strictions there both on W and on the growth of/, are more severe, because the correct 
bounds on pn(W

2, •) were not available. Moreover, there could be no necessary conditions 
in [13]. 

Following is our main result: 

THEOREM 1.3. Let W := e~® £ *E\. Let Ln[-] denote the Lagrange interpolation 
polynomial tof at the zeros ofpn(W

2, •). Let 1 < p < oo, A G R, K > 0. Then for 

(1-15) lim W-L„\f}W(l + 0 - A | | M R ) - 0, 
n—KX> F 

to hold for every continuous function f: R —-> R satisfying 

(1.16) lim \fW\(x)(log\x\)l+K=0, 
|*|-+oo 

it is necessary and sufficient that 

(1.17) A > m a x { 0 > f ( I - I ) } . 

At first, the choice of the extra weighting factor ( l + 0 i n ( 1 . 1 5 ) may seem rather 
severe. After all, Q grows faster than any polynomial. However, even iff vanishes outside 
a fixed finite interval, we need such a factor ifp > 4: 

THEOREM 1.4. Let W, Ln be as above andp > 4. Suppose that measurable U: R —> R 
satisfies 

(1.18) liminf C/(jc)*-(H)g(jc)i(W> > 0. 
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714 S. B. DAMELIN AND D. S. LUBINSKY 

Then there exists continuous/: R —> R, vanishing outside [—2,2], such that 

(1.19) limsup\\Ln[f]WU\\LPm = ^-
n—KX> 

So for/? > 4, no growth restriction on/, however severe, allows us a weighting factor 
weaker than a power of 1 + Q. One can formulate versions of Theorem 1.3 for/? > 4 
that involve A = | ( | — ^), and then one has to introduce extra factors in (1.15), such 
as negative powers of 1 + |JC| and negative powers of T or log(2 + Q). Unfortunately one 
then needs extra hypotheses on T to avoid very complicated formulations. One of the 
complicating features here is that T may grow faster than any power of |JC| (as in (1.9) 
for k > 2), like a power of x (as in (1.9) for k = 1), or slower than any power of |JC| (as 
in (1.13)). Moreover, one has to compare T to log Q. We spare the reader the details. 

For/? < 4, the weighting factor 1 + Q is unnecessarily strong. Let us recall the Erdos-
Turan theorem, as extended by Shohat (see [3, Ch. 2, p. 97]). If/: R —* R is Riemann 
integrable in each finite interval, and there exists an even entire function G with all non-
negative Maclaurin series coefficients such that 

l im/(*)/£(*) = 0, 
|JC|—>oo 

and 

f°° G(x)W2{x)dx < o o , 
J—oo 

then 

(1.20) i^\\(f-Ln[f}W\\Lm = o. 

For the nice weights here, a result of Clunie and Kovari [2, Thm. 4, p. 19] allows us to 
choose G with 

G(x) - ^ 2 ( J C ) ( 1 + I*!)"1 (log(2 + \x\))~l~\ xeR, K > 0. 

Here and in the sequel, the notation involving ~ means that the ratio of the two sides is 
bounded above and below by positive constants independent of x. (Later on, the depen
dence will be on n and possibly other parameters). Thus we can ensure that (1.20) holds 
provided 

lim <fW)(x){\ + W)1/2(log(2 + M))1/2+K/2 = 0. 
|jt|—KX> V ' 

Thus our result does not extend the classical result for p = 2. 
Actually, the extension from continuous functions to Riemann integrable ones can 

be completed in the context of the present paper, but would substantially lengthen the 
proofs, so is omitted. Our main emphasis in any event, is the weighting factors required 
onZ„or/ . 
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MEAN CONVERGENCE OF LAGRANGE INTERPOLATION 715 

Using different methods, we can prove results of the form 

(1-21) l im | | / - - I» [ /WK(R) = 0, 

with/? < 4, extending the classical Erdos-Turan result. We shall present these in a sub
sequent paper. 

This paper is organized as follows: In Section 2, we gather technical estimates from 
other papers. In Section 3, we present some quadrature sum estimates. In Section 4, we 
prove the sufficiency part of Theorem 1.3, and in Section 5, we prove the necessity part 
of Theorem 1.3, and also prove Theorem 1.4. 

We close this section by introducing more notation. Given Q as above, the Mhaskar-
Rahmanov-Saff number au is the positive root of the equation 

(1.22) u = - fl autQ\aut)dt I Vl-t2, u > 0. 
7T JO I 

For example, for Wp, au = C(J3)ul/P9 u > 0. It is instructive to see how au, T(qu)9 Q(au) 
grow for the example Q = Q^a of (1.3). Here 

(1.23) au~(\ogku)l'a; 

(1.24) T(au)~{[logju; 
7=1 

(k rl/2 

(1.25) QLau)~u I l l og , " • 

To the unfamiliar, one of the uses of au is in the identity [14] 
( 1 . 2 6 ) \\Pm\Lx(R)=\\Pm\loo[-an,a„h PefPn. 

Here and in the sequel, fP„ denotes the polynomials of degree < n. There are also several 
Lp analogues [15], [6], [7], for example, there exists C > 0 such that for n > 1 and 
P 6 <P„, [6], [7] 

(1-27) WPWWL^^CWPWWL^U^. 

In the sequel, C, C\, C2,... denote constants independent of n, x and P £ (Pn. The 
same symbol does not necessarily denote the same constant in different occurrences. 

The fl-th Christoffel function for a weight W2 is 

Xn(x) = \n(W\x)= inf f0°(PW)2(t)dt/P1(x) 

(1.28) /„_! 

= 1 / £/>;«• 
/ j=0 

The Christoffel numbers are 

(1.29) Xjn := \n(W\xjn\ \<j<n. 
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716 S. B. DAMELIN AND D. S. LUBINSKY 

The fundamental polynomials ljn of (1.4) admit the representation 

(1 • 30) ljn{x) = Xjn ^-p^ixjn)1^-. 
in X Xjn 

The reproducing kernel for W2 is 

Kn(x,t) = Kn(W
2,x9t) = YJpj{x)pj{i) 

(1.31) y=0 

= 7W-1 Pn(x)pn-\(t) ~Pn(t)pn-l(x) 

In X-t 

(the Christoffel-Darboux formula). 
Given measurable/: R —> R W\ih fix^W2 e L\(R) Vy > 0, the n-th partial sum 

of its orthonormal expansion with respect to W2 is denoted by S„[f](x), and admits the 
representation 

(1.32) Sn[f\(x) = r Kn(x,tV(t)W2(t)dt. 
J—OQ 

If we introduce the Hilbert transform of g E L\(R) by 

(1.33) flfe](*):= lim [ . —dt, 
£->0+J\x-t\>6 X — t 

(this exists a.e. [20]), then we may use the Christoffel-Darboux formula for Kn(x, t) to 
rewrite (1.32) as 

(1.34) Sn\f\ = ^{pnHlfp^W^-p^HlfPnW2]}. 
in 

Finally, we define some auxiliary quantities: 

(1.35) Sn := (nT(an))~
2/\ n > 1. 

This quantity is useful in describing the behaviour ofpn(e~2Q, •) near x\n. For example, 

(1.36) \xin/an(Q)-l\<^6„. 

Here L is independent of n. We often use the fact that 6n is much smaller than any power 
of 1 / T(an), see Section 2. We also use the function 

(1.37) ¥„(*):= max< 
IJCI 1 

*» T(an)Jl-&+L6n\ 

and set 

(1.38) Vn(x):=Vn(an), \x\ > an. 

This function is used in describing spacing of zeros of pn, behaviour of Christoffel func
tions, and so on. 
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MEAN CONVERGENCE OF LAGRANGE INTERPOLATION 717 

2. Technical estimates. In this section, we gather technical estimates from various 
sources. We begin by recalling a number of estimates from [7]. Throughout, we assume 
thatW:=e-Q e %. 

LEMMA 2.1. (a) Uniformly for n > 1 and \x\ < an, 

(2.1) \n(W\x)~^W2(xf¥n(x). 

(b) Forn> 1, 

(2.2) \xin/an-l\<C6n. 

Uniformly for n>2 and 1 <j<n—l, 

an 
(2. 3) Xjn - Xj+ij ~ — ¥„(*,„). 

(c) Forn > 1, 

(2.4) sup \pnW\(x) 
an 

l'4 - 1 / 2 

(2.5) sup IfrflK*) - ^l,2(nT{aH))1'6. 

(d) Let 0 <p <oo andK > 0. There exists C > 0 aw</ «i > 0 swc/i that for n>n\ 
andPePn, 

(2. 6) I I ^ I M * ) ^ C\\PW\\LP[-an(l-K8n)Ml-K8n)y 

Moreover, given r > 1, f/*ere ex/ste C > 0 swc/i that for n>\ andP G P̂w, 

(2.7) I I ^ I I M * ! ^ ) ^ «-° , / 7 X* ) , / 2 I I^ IM-^* ] -

(e) Forn > 1, 

(2.8) ^ ~ a -

09 Uniformly for n>2 and 1 <y < « — 1, 

(2.9) 1 - |xyw|/aw + L5„ - 1 - \xj+hn\/an +L8n, 

and 

(2.10) ^ ) ~ % i , ) . 

//ere, L JS chosen so large that (1.36) is true. 
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(g) Uniformly for n>2 and 2 <j < n — 1, 

3/2 

(2.11) ^ T ^ ^ X 1 - M/a* +^«)1/2K^I(^) ~ fli/2|p-i 0ft*>) 
-(1-1^1/^+^y/4. 

PROOF, (a) This is part of Theorem 1.2 in [7, p. 204]. 
(b) (2.2) is part of Corollary 1.3 in [7, p. 205]. We note however that the proof there 

actually establishes 
1 -x\n/an <C8n 

which is the more difficult part of (2.2). The (easier) converse inequality 

1 -x\njan > C6n 

is not discussed in [7], but requires only a little extra effort. Next (2.3) is Corollary 1.3 
in [10]. (A weaker form of (2.3) appears in Corollary 1.3 in [7, p. 205]). 

(c) This is Corollary 1.4 (a) in [7, p. 205]. 
(d) This is Theorem 1.5 in [7, p. 206]. We note that there is a (minor) oversight in 

the proof of Theorem 1.5 in [7], for 0 < p < oo. The proof in [7, pp. 231-236] correctly 
shows that 

\\Pm\LP[-a,n,a4n] < q | / , » 1 | M - f l , ( l - « . W l - A 5 . ) ] . 

with C independent of n and P. To estimate ||iW||£ (R\[-a4„,a4„])> a n appeal is made to 
Lemma 2.5 in [7, p. 215], and unfortunately that lemma is incorrect. It should actually 
read as follows: For r > 0 and s > 1, n > 1 and P e fP„, 

IliWNIzrfWaw) < e-C"'r^,l2\\PW\\Lpl^aa]. 

This assertion is easily proved using the method of [7, pp. 231 ff.]. The case r = 0 gives 
(2.7). 

(e) This is (10.33) in [7, p. 285]. 
(f) (2.9) is (9.9) in [7, p. 265] and (2.10) follows immediately from (2.9). • 
(g) This is Corollary 1.4 (b) in [7, p. 205]. • 
Next, we recall some results from [9], [10], involving mostly the fundamental poly

nomials of Lagrange interpolation: 

LEMMA 2.2. (a) Let 0 < p < oo. Then for n>2, 

f l , i P<4, 
(2.12) \\pnW\\Lpm^athx JOogff)*, p = 4, 

[(nT(an)Y^ ~p\ p>4. 

(b) Uniformly for n> \, I <j <n, x eR, 

3/2 

(2.13) \£Jn(x)\ - ^ ( ^ ^ ( j ^ X l - \Xjn\/an + Z ^ ) 1 / 4 | 
n 

Pn(x) 
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(c) Uniformly for n> 1, 1 <j < n, x G R, 

(2.14) \^n{x)\W{x)W-\xjn)<C. 

(d) Forn > 2, 1 <j < n — 1, x E [*/«,*/+i,w], 

(2.15) ljn(x)W(x)fTl(pcjn) + lf+UxW(x)W-l(xM/l) > 1. 

PROOF, (a) This is Theorem 1.1 in [10]. 
(b), (c) These are Theorem 1.2 in [10]. 
(d) is a special case of the main result of [9]. • 
Next, some technical estimates on growth of au, Q(au), T(au\ etc.: 

LEMMA 2.3. (a) Given r > 0, there exists XQ such that for x > xo andj = 0, 1, 2, 
2^(x)/* r is increasing in [xo, oo). 

(b) Uniformly for u>C andj = 0, 1,2, 

(2.16) ^\au)^uT(auy-1'2. 

(c) Let 0 < a < (3. Then uniformly for u>C,j = 0, 1, 2, 

(2.17) T(aau) ~ T(apu); &\aau) ~ &\apu). 

(d) Given fixed r> 1, 

(2.18) arulau>\^^- wG(0,oo). 

Moreover, 

(2.19) am~au, wG(l,oo). 

(e) Uniformly for t € (C, oo), 

(2.20) *' l 
r**J 

a, tT(at) 

(J) Uniformly for u € (C, oo), and v € [5, 2M], we have 

( 2 . 2 1 ) | ^ — 1 | —̂ I— — 1 
Ou_ 

- 1 n</ 

av 

1 

?K) 

PROOF, (a) This is Lemma 2.1 (iii) in [7, p. 207]. 
(b)-(f) are part of Lemma 2.2 in [7, pp. 208-209]. • 
Our final lemma in this section concerns estimates that specifically follow from (1.8): 

Recall that 8n was defined by (1.35). 
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LEMMA 2.4. (a) Let s > 0. Then 

(2.22) an < Cn£; T(an) < Cn\ n>\. 

(b) Given A > 0, we have 

(2.23) $n<CT(an)-
A, n > 1. 

(c) LetO < rj < 1. Uniformly forn > 1, 0 < |JC| < ain, \x\ = as, we have 

(2.24) Q < T(x)(\ - M) < c2 log -. 
\ anJ s 

PROOF, (a) From (2.16) fory = 0, we have 

Q(an) ~ ^ r ^ ) - 1 / 2 < nT(air
l/2. 

Since (? grows faster than any power of x (Lemma 2.3 (a)), we deduce 

an < n\ 

for n large enough. Also (1.8) then shows that 

T(an) = 0(Q(an)
£) < Cne. 

(b) This follows as 
8„<n-2l'T{a{)-2l\ 

that is Sn decays faster than a power of n, while T(an) grows slower than any power of n. 
(c) Firstly if \x\/an < 1/2, then 

TW(I - M) > ^ i > \. 

If \x\jan > 1/2, write |JC| = as, so that as s < rjn, 

T(x)(l-M)>T(as)(l--^-)>Cu V anJ \ as/vJ 

by Lemma 2.3 (d). So we have the lower bound in (2.24). We proceed to the upper bound. 
We can assume that x = as,s > 1, and « > «o- Then using the inequality 

1 -u< |logw|, i*G (0,1), 

we obtain 

Ijcl i a* i rn a'* 
1 - — < l o g - = / %-dt 

a„ I a„\ Js at 

<crJ^<-^\og
n- = -^\og

n-. 
- h tT(at) ~ T(as)

 6 s T(x) B 5 
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3. Quadrature sum estimates. We present two quadrature sum estimates, the first 
of which is really part of a Lebesgue function type estimate. The second involves quadra
ture sums for polynomials. 

LEMMA 3.1. Let (3 e (0, \) and 

(3.1) £»(*):= £ \lkn(x)\frl(Xkn). 

We have for \x\ < ap„/2 and \x\ > ain, 

(3.2) (YnW)(x)<C. 

Moreover, for apn/2 < \x\ < a2n 

(3.3) PnWKx) < C{\ogn + aH
,2\pHW\(x)T(aHr1'4}. 

PROOF. Let E*(x) denote the sum I„(JC) omitting those terms JC ,̂ for which x G 
[xk+2,n->Xk-2,n] (if there are any such k). Here and in the sequel, we set for I > 1, 

(3.4) X\-l,n •— X\n + Wn\ Xn+l,n '•— *nn ~ ^ n . 

Of course the sum S„ — S* consists of at most 4 terms. Each of these 4 terms admits the 
bound in Lemma 2.2 (c). So 

(3.5) K ^ - Z ^ W ^ d . 

Next, by (2.13) and (2.3), 

(3.6) (KW)(x)~alJ2\pnW\(x) E* (X^~Xk+\n\l-l^^L6n)l,\ 
u. î „_ \x — Xkn\ \ an J \xkn\>ap, 

Here the * indicates that the sum omits those k for which x G [x*+2,/z,**-2,n]- Now (cf 
(2.9)), 

(3.7) 1 - M + LS„ ~ 1 - ^ i + ̂ „ , , e [xtt,^,jcfa], 

uniformly in A: and n. Next, if x g [xk+2,„,xk-2^], and t G [xt+î ,̂ *n], 

x— t - 1 
X Xfoj 

t — Xkn 

X — Xkn ~~ \Xk±2,n —Xkn\~ 

Similarly we may bound (JC — JC^)/(JC — t). So 

(3.8) \ x - t \ ~ \ x - Xknl t E [xk+x^Xkn\, X & [xk+2,n,Xk-2,nl 
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In view of the spacing of the zeros (Lemma 2.1 (b)), we deduce that 

(3.9) 

1/2 r ( 1 - J 4 + W T 
(TnWKx) ~ aJ2\pnW\{x) I ^< k | < a n -̂  f" . ' dt 

\t-x\>CfV„(x) " *l 

= a„> \PnfV\(x)J a/ln/a„<\s\<l 1 i ds. 

l*-il>S*.M 

\s— —\ 

Note that since 8n is much smaller than 1 / T(a„), 

l - s + L6„<C2(l-^)< C3/7XaB). 

(See Lemma 2.3 (f)). Then we obtain the bound 

(KW)(x) < CalJ2\pnW\(x)T(anr
1'4 f r-^-r. 

(The range of integration is the same as in (3.9)). Now if 0 < x < a^n/2 or x > ain, 
for « > «o, we can bound the integral above by 

ds 
I -. r < 1 — max< 1 

Ja0n/an L - 2L\ V Qn J U an 

I an I 

by Lemma 2.3 (f). In this case the bound (2.4) gives 

U$n a(3n/2 

an an 

- l 
} <C4 , 

(TnW){x)<C5{ 1 + 1 
-1/4 

T(a„rl/4)<Q 

So we have (3.2). Now let us turn to the more difficult case where a^nj2 < x < a2n 
bound the integral in (3.9) as follows: 

r (l-\s\+L8n)1/4 j 
J a0n/a„<\s\<\ ; — as 

\s--r\ 

f 0 - ^ ) 1 / 4 ^ + c l / 4 f 
J apn/an<\s\<\ \ x_\ dS + °» J a0n/an<\s\<\ < c 7 i f 

=:C7 [ / i+ /2 ] . 

ds 

\s~i;\>^n(x) \s— f-

Now since £*F„(je) is bounded below by a power of n, we see that 

/2<C 8 Sy 4 log« . 

If x > an, we estimate 

ds < C9T(any
ll\ 
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If x < a„, we make the substitution 1 — s — (1 — f-)v to get 

x \ i / 4 r v1/4 

dv 

dv 

h ~ V ~ T J^[O,(\-a0n/a„)/(\-x/a„)] T~~77 
Un' \v-l\>CV„(x)/[nO-x/an)] lV 'I 

/ x \ ' / 4 J r dv 
< Cio I 1 ) < / v€[0,2] -j 77 

V an/ [•>-l|>C4'„(;t)/[n(l-*/a,,)] l v ~ * I 

+ K\-a0Ja„)/(l-x/a„) ^_y4 ] 

Combining our estimates for I\, h and using the bound 

an
/2\p„W\(x)Sl/4 < C, 

which follows from (2.5), we deduce (3.3) from (3.9). • 
In our second quadrature sum estimate, we need the kernel function for the Chebyshev 

weight 

(3.10) v W ^ O - / 2 ) " 1 / 2 , r e ( - 1 , 1 ) . 

If Pj(y,x) = yJYpKTj(x) is they-th orthonormal polynomial for v (at least fory > 1), then 

n-\ 
(3.11) 

admits the following estimates [19, p. 36], [16, p. 108]: 

(3.12) Kn(v,x,x) ~ H, |JC| < 1 . 

Also 

(3.13) |A^„(v,x,0| < Cminln, 
\/l-x2 + \/l-t2\ 

\x-t\ x , / € [ - l , l ] . 

LEMMA 3.2. Let 0 < t] < 1. Let <j>:R—> (0, oo) be a continuous Junction with the 
following property: For n>\, there exist polynomials R„ of degree < n such that 

(3.14) C, < <i>{t)lRn{t) < C2, \t\ < a4„. 

Then for n>no andP € T„, 

(3.15) £ Xjn\PW-1 \(xj„)<Kxjn) < C f4" \PW\4>. 

PROOF. Essentially the proof is the same as in [13], and the ideas appeared much 
earlier [16], [17], but we include the details. 
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STEP 1: AN L\ CHRISTOFFEL FUNCTION TYPE ESTIMATE. We first note that for 

P\ € %n-\, 
(P, W)\x) < \^{W2,x)W2{x) r (P, Wf{t)dt 

J-OO 

< c—^^(JC)-1 r (Piwf(t)dt, 

by Lemma 2.1 (a), (d). We deduce that 

I I ^ ^ I I L H M . * . ] < CAP" | P , ^ / 2 | ( 0* l |P l ^ / 2 Hw^M.] 

and hence that for |x| < 04,,, 

| P i ^ / 2 l W < c , - P |p,»T-1/2|(o«a. 

Now we apply this, for fixed |JC| < a4n, to 

P 1 ( 0 : = P 2 ( 0 ^ ( v , — , — ) , 
V a4n a4nJ 

where P2 E Pm* We obtain, using (3.12) that 

\PiWVlJn
2\(x) < C 2 - L r \P2WV^2\W2„U —, — ) A. 

In particular, applying this to P2 := Pi?«, where P £ fPw, and using (3.14), we obtain 

(3.16) \PWV\i2<t>\(.x) < £L r- \PW4,%^2\(t)K2U - L , - M A. 
« a w J-a^n V # 4 W <24n / 

STEP 2: THE GENERAL QUADRATURE SUM BOUNDED IN TERMS OF A SPECIAL QUADRA-

TURESUM. We take (3.16) for* = JC7„, multiply by A/„^~2(x/w)xF~/2(x/w), and sum over 
all \xjn I <am. Using our estimate for the Christoffel function Aw( JF

2, •) in Lemma 2.1 (a), 
we obtain 

(3.17) £ A ^ I P ^ - 1 ! ^ ) ^ ^ ) < C4 T" \PW4\(tyLn(f)dt, 
Iv. I<r„ J _ a 4 « 

where 

(3.18) 2„ (0 :=T 2 E * » M ^ l / 2 ( * y - ) ^ 2 ( v . — , — ) ^ l / 2 ( 0 -

Clearly the result follows once we show that 

(3.19) 2,(0 < Cs, \t\ < a4„. 

STEP 3: ESTIMATION OF I„(f). First note that for \x\ < am, 

My/2 
Vn(x)~V4„(x)~(l-¥]-) 

V a4„/ 
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This follows easily from the fact that 1 — |jc|/a4„ > 1 — \x\/an > Ce/T(an) for this 
range. Moreover, 

/ kl \V2 
¥ 4 » ( 0 > ( l - — + £ M 

V a4n J 
for |/| < a4n. Let us set 

yjn '-= Xjn/a4n; T := t/a4n. 

Then we have, using also (3.13) and the spacing in Lemma 2.1 (b), that 
(3.20) 

/ kl \*/4 

zJI(o(i-J-L+^„) 
V a4n / 

C i E f e -^, ( , - te l ) -"^( v ,2L, i ) 
*w |v. |< f l

 V a An ' V #4/! 04w' 
< 

nUn \xjn\<a, 

r /i-.y? +>/i-r2]2 

< Qn"1 £ 0> -»i,„)(l - Mr^miJn, * f—— \ 
w<<w«*, [ \yjn-i\ j 

<c„-7_>-M)-^(^:^f» 
In bounding the sum in terms of the integral, we have used (2.9). Let us assume that 
1 — n~2 >T>0. Then we can continue the above as 

S„(0(1 - 7y/4 < Ci0n~l In2 f , (1 -y)~l/4 dy 

+ /" a-yrx^~y+l~Tdy\ 
/ve[o,i]:[y-r|>i(i-D'/^ y) \y-T\2 y\ 

= C,o«_1 [n\\ - r)3 / 4 f , , w"1/4 rfw 

V ' Jw:|l-H>i(l-7')-1/2 |1—Wp j 

(substitution 1 - y = (1 - 7)w) 

< Cii(l - Tfl\ 

Here we have used that fact that 

- ( i — r)-1 / 2 < l. 
n 

»-2 So in this case, we have (3.19). In the remaining case where 1 — « 2 < T < l , w e 
continue (3.20) as 

UW.)l'< < C2--1 («2 /6[01]:b _n<_4nJi -y)~^ dy 

+/o <|-^1/4nFir*'} 
< C13n-'/2. 
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Since S„' decays scarcely faster than n~l /6, we again have (3.19). • 

4. Proof of the sufficiency conditions. In proving the sufficiency conditions, we 
split our functions into pieces that vanish inside or outside [—an/9,an/9]. Throughout, 
we let xs denote the characteristic function of a set S. Also, we set for some fixed K > 0, 

(4.1) ^ ^ ( l o g C + x2)) - 1"". 

Throughout, we assume that W = e~Q G £ i , that 1 < p < oo, and 

(4.2) A > m a x { 0 ^ ( i - I ) } . 

LEMMA 4.1. Let { /n}^ be a sequence of measurable functions from R —-> R such 
that for n > 1, 

(4.3) fn(x) = 0, |x| < an/9; 

(4.4) \fnW\(x) < <Kx), xER. 

Then 

(4.5) lim \\Ln[fn]W(l + QrA\\Lp(R) = 0. 

PROOF. Firstly for |JC| < an/ls or |x| > a2n, Lemma 3.1 (with /3 = 1/9) and (4.4), 
(4.5) show that 

\Ln\fn]W\(pc)<<KaH/9) £ ItUxW-'iXknWix) 
M>a„/9 

< Ci<Kan/9). 

So 

WLnUnWQ+G)"Aiivw<^/..Mw>ata) ^ cuKaH/9)m
+erAllw 

< C2<j>(anj9). 

Here we have used the fact that Q grows faster than any power of x (Lemma 2.3 (a)). 
Next, for an/ls < \x\ < a2n, Lemma 3.1 gives 

\Ln[fnW\(x) < C^ia^ilogn^ai'^Wlixman)-1/4}. 

Also for this range of x, 

Q(x) ~ Q(an) ~ nT(an)-
1'2. 
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So 

| | i„^]^(l+0-AHMa„ / l 8<W<a 2„) 

< C4<t>(an/9)(nT(an)-
l/2yA{logn(a2„ - a„ /18)1/p 

+ all
/2T(a„)-V4\\pn W\\Lp(R)} 

<C^{anl,){nT{anr
xl1)~\\ogn){anlT{an)f

lp 

f l , p<4 

+ Cs<j>(an/9)(nT(a„ri/2yAT(anr
i/4aiJp (log " ) 1 / 4 , P = 4 

[ (wr(.n)) (2 /3X1/4- I / r t , „ > 4 
by Lemma 2.2 (a) and Lemma 2.3 (f). Since T(an) and a„ grow slower than any positive 
power of n (Lemma 2.4 (a)), we see that the last right-hand side is o{^>{ani9)\ = o{\\ 
because of (4.2). • 

Next, we deal with functions that vanish outside [—an/9,an/9]. We separately esti
mate the weighted Lp norms of their Lagrange interpolants over [—an/s,an/s] and IR \ 

LEMMA 4.2. Let {gn}^L\ be a sequence of measurable functions from R —> R such 
that for n > 1, 

(4.6) gn(x) = 0, |x| > an/9; 

(4.7) \gnW\(x)<<Kx), xeR. 

Then 

(4.8) lim ||Z,„[g„Ml + QT%(\A>aaji) = 0. 

PROOF. Forx>a„/g, 

l*J<a„/9 

1/2 (l-^+L6n)i/4 

<C\an' \pn{x)\ Y, (Xkn Xk+\,n ) T ^ i </>(***) 

hb.l^/9 \X-Xkn\ 
(by Lemma 2.2 (b) and (2.3)) 

J-a„/9 \X — t\ 

Here we have used the monotonicity of </> and (3.8). Next, for t E [0, a„/9], x > an/%, 

Q<aJL^l = l +
 a»/X-l<l+an/a»/«-1 <C3, 

x-t l-t/x 1 - a„/9/an/s 
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by Lemma 2.3 (f). Moreover, 

l-\t\/an>C4/T(a„)»8„. 

So 

\Ln\gn](x)\ < C5al,/4\pn(x)\ [*•" {an~t)X'\{t)dt 
•'" X t 

< C6al,/4\p„(x)\ f°n/\x - t)-3'A<Kt)dt. 

Here if/ = as, n/9 >s> 1, we have for x > a„/&, 

x-t = x(\- t/x) > a„i%{\ -as/a9s/$) > C7a„/T(as). 

So, 

Thus 

\L„[gn](x)\ < Csa-1/2\pn(x)\ £"* T(tfU(t)dt. 

\\Ln\gnW(l+Qr%M>an/g) 

< C9a„-1/2[£" /9 T(t?/4<Kt)dt\Q(a„/sr
A\\pnW\\iP<m-

It is easy to see that the integral involving (j> in the last right-hand side grows slower 
than any power of n. Then using (4.2) and the estimate on ll/Jn^Hz^R) provided by 
Lemma 2.2 (a), we obtain (4.8). • 

We now turn to the most difficult part of the sufficiency proof, namely the estima
tion of ||£/i[gw]^(l + Q)~A\\Lp(\x\<a„/s)' We present the most technical part of this as a 
separate lemma. Recall the notation (1.31)—(1.34) for partial sums S„[-] of orthonormal 
expansions with respect to W2. 

LEMMA 4.3. Let a:R-^Rbea bounded measurable function. Then 

(4.9) \\SB[a<t>i^]W(l +0rA | | i , ( W< a„ / 8 ) < C||a||too(R), 

for n > 1. Here C is independent of a and n. 

PROOF. We split this into several steps. Part of the difficulty lies in that we cannot 
simply estimate Hilbert transforms in Lp with the weight (1 + Q)~A, as it does not satisfy 
Muckenhoupt's^ condition [20]. We may assume that IHIz^R) = 1. 

STEP 1: SPLIT Sw [•](*) INTO SEVERAL TERMS DEPENDING ON THE LOCATION OFX. 

First note that by (1.34) and by our estimates for 2a=i andpn (see Lemma 2.1 (c), (e)), 

(4.10) iSn^J^^Wlix)^^^'2^-^)'1'4 JT \H[°4>PjW\\(x). 
v &n J j=n-\ 

Now let us choose £ := £(n) such that 

(4.11) 2l <n/S<2M. 
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Note that our choice of I = £(n) guarantees that 

(4.12) 2m < n. 

Define 

(4.13) % := [a2t,a2„,], k>l. 

The reason for this choice of intervals is that 

(4.14) Q(x)~Q(a2t)~2kT(a2tr
1/2, x€%, 

uniformly in k. For/ = n—l,n and x 6 %, we split 

\(a<j>PjfV)(t) 

729 

(4.15) H[o<t>Pj w\(x)=\f + r~'+P. v. r 2 + r 
:=/i(x) + /2(x) + /3(x)+/4(x). 

x - f 
A 

Here P. V. stands for principal value. 

STEP 2: ESTIMATION OF IX AND I2 FOR JC e %. We see that (recall x > a2) 

< CW1/2 [{a"M-dt + C2a-1 r \pjW\{i)dt 
JO f + «2 J2a» 

Here we have used the bound (2.4), the bound for ||/?„ ^||i,(R) in Lemma 2.2 (a), and also 
the form of </> (recall (4.1)), which guarantees that 

(4.16) 

Next the bound (2.4) gives 

r°° W) 
Jo \+t 

dt< oo. 

•*2*-i \pjW4>\(i) 
x-t 

V2 n _w. ^1/4 r*-1 JL 

Now 

Thus 

<C4a^'/z(l -x/a„)~ 

= C4a;1/2(1 -x /a„) - ' / 4 log( l -a^/xf1. 

1 - a2„-, /x>\- a2*-i /a2k > C5/T(a2k) > C6/T(x). 

\h(x)\ < Cia-
1/2(l -x/an)-'

/4log(CsT(x)). 
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STEP 3: ESTIMATION OF U FOR x e %. Now using our bound (2.4) again and 
considering separately 2a2k+i < or > \an gives 

Ja2k+2 t — X 

^ „ \ - 1 / 2 f2a2*+2 , 1 / 4 dt 

<C9\an ' / 1 -t an\
 l/* 

L J^k+2 t — X 

+ fl-l/2 rmax{2^+2,ia„} ^ ) ^ + ,00 \PjW\(t)_ ^ 

J2a>,k+2 t j\an t 

<Cl0a;l/2[l+J], 

where 

Ja^k+i 

dt 
J<*2k+2 t — X 

(We have used (4.16) and the bound on the L\ norm of pnW). Here if |1 — t/an\ < 

(l-£),then 

\t - x| = an\{\ - x/an) - (1 - t/an)\ > -an{\ - x/an). 

Thus 

J<CU {\-x/anr^^_t/aA>_ dt 
\{\-xlan) f _ x 

te[a2k+2,2a2k+2] 

<c 

+ an\\-x/an)
 X j\X-tian\<).(X-xian)\\-tlan\

 XIA dt 

t£[a2k+2,2a2k+2] 

Cl2k+1 ( ! - , /« „ ) - ' / • iog(i + - 2 £ i - ) 
V a-,k*i — x) 

>ds 

a.2k+2 — x) 

+ (l-x/a„rif Als\-V\ 
J\l-s\<j(\-x/an) 

<Q3(l-x/anr
l/4\og(CuT(x)). 

STEP 4: ESTIMATION OF ||5„ • • • ||J, (q-k). Combining our estimates for IjJ = 1, 2, 4 

gives 
|7, +/ 2 + /4|(x) < C14«;1/2(l -x/a„)-1/4 log(C15r(x)). 

Together with (4.10), (4.14) and (4.15), this gives 

\\Sn[^W-xW(\+QTh\\Lp(%) 

<Q(a2k)-\\-a2^la„rXlA 

x j ( l - a2M /a„)-^4log(Ci5na2M))(.a2M - a 2 * ) 1 / p 

+ alJ2 ± ||P.V. 
j=n-\ 

*"(°*^*IU> a2k-\ 
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We use M. Riesz' theorem on boundedness of the Hilbert transform from LP(R) to LP(R) 
[20] to deduce that 

Ja^x X — t M 2 * J Ja7k„i Ja2k-i X — t M A ) Jalk„ 

< Cl7a;p/\l-a2k+2/anr
p/\a2k,2-a2k-i). 

Next, note that, in view of (4.12), n > 2k+3 for k < I, so 

1 —a2k+i/an > 1 — a2k+i Jan > 1 — a2k+2Ja2k+i — C\s/T(a2k). 

Moreover, 
a2k+i — a2k < a2k+2 — a2k-\ < C\ga2k / T(a2k). 

Hence 

\\Sn[a^lW(l+Qr%{%) 
(4.17) ., 

< C2oe(«2*rAn^)1 /2log(C15r(a2 t t l))(a2»/r(a2 t)) • 

STEP 5: COMPLETION OF THE PROOF. The estimation of5„[](x) for* e -% = 
[—a2t*i, — a2t] is exactly the same as for x £ %. Since we have (4.14), and since a2t, 
T(a2k) grow much slower than Q(a2k) (Lemma 2.4 (a)), we obtain 

\\sn[a<t>^wd+0-X(«2<w<<vs) ^ £ II W ^ M 1 +QrTLpi%) 

< C 2 1 E 2 - W 2 < C 2 2 . 

The estimation of ^ [ o ^ f F - 1 ] ^ ! + 0~A | |^ (. ,<a } is similar but easier. For x G 
[—^2,̂ 2]? we split 

H[o4>PjW]{x) = r^+p.v.r+p-v.r+r 
J—00 J—2ai J—laj J2a2 

WPJWM dt 

x — t 

The first and third integrals may be estimated as we did I\ before, and the second is 
estimated as we did h • • 

Armed with this lemma, we can complete the estimation of L„[gn] over [—ap„, apn\. 

LEMMA 4.4. Let e £ (0,1). Let {g„} be as in Lemma 4.2, except that rather than 
(4.7), we assume that 

(4.18) \gnW\(x) < ect>(x\ xeR, n>\. 

Then 

(4.19) limsup \\Ln\gnW(\ + 0"A||MW<fl„/8) < Ce, 
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where C is independent of n, {gn} and e. 

PROOF. Let 

Xn • = X[-a„/s,an/s]l 

hn := sign(Ln\gn])\Ln\gn]rx
XnW>-\\ + QY*> 

and 
an := s i g n S ^ ] . 

We shall show that 

(4.20) \\Ln\gn\Wi\ + 0-A | | ip (W<a„ /8 ) < Ce\\S„[on<t>W-l]W(l + 0-A | | ip(W<a„ /8). 

Then Lemma 4.3 gives the result. Now using orthogonality off — Sn\f] to (Pn-\, and the 
Gauss quadrature formula, we see that 

\\Ln\gnWi\ + 0 - % W < f l „ / 8 ) = JRLnlgn]h„W2 

= JRL„[g„]Sn[h„]W2 

n 
= YJ Xjngn(Xjn)Sn[hn](Xjn) 

= J2 \ngn(Xjn)Sn[hn](Xjn) 
\Xkn\<an/9 

<£ £ ^jn\Sn[hn}{xjn)\^\xjn)(l>(xjn) 
M<an/9 

<C£JR\Sn[hn]\$W, 

by Lemma 3.2. Note that it is easy to verify the approximation property of Lemma 3.2 
for (/> (in fact Jackson's Theorem gives polynomials of degree o(n) satisfying (3.14)). We 
can continue this as 

= Ce [sn[hn](rn<t>W-lW2 

JH. 

= Ce (h„Sn[(jn4>^xW2 

= Ce p 8 h„Sn[an<j>}^lW2 

for (see the definition of h„), hn has support inside [—an/s, an/s]. Using Holder's inequal
ity with q—p/ip— 1), we continue this as 

< Ce(f_^\ \hnW(l + Q)A\A q{f^\ \S„[<JnW-lW(\ + 0 " A r ) " 

= ce\\Ln\gnw(\+QrX~M<aJ\sn\.^<i>w-{w{\+erAiiip(W<a„/8). 
Cancelling the/? — 1-st power of \\Ln • • • || gives (4.20). • 
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We can now turn to the 

PROOF OF THE SUFFICIENCY PART OF THEOREM 1.3. Let/: R —> R be continuous 
and satisfy (1.16). Let e G (0,1). We can choose a polynomial P such that 

\\tf-PW<t>-l\\Loom<e. 

(Compare [5]). Then for n large enough 

\W-Ln\f])W{\+Q)-*\\Lp(K) 

(4.21) < \W-P)W{\ + 0-A | |V R) + \\L„[P-f\W(\ + 0-A||ip(R) 

< 44*\ + Q)'%Pw + WL»lp ~f\w{\ + 0-Al|MR). 
The first norm in (4.21) is of course finite as A > 0, and Q grows faster than any power 
of x. Next, let 

Xn •— X[-an/9,aM/9]> 

and write 

P~f=(P ~f)Xn + (P ~ m - Xn) =: gn +fn-

By Lemma 4.1, 
l im | | i „ [^ ]^ ( l+0- A | | L p ( R ) = O. 

Also Lemmas 4.2 and 4.4 together give 

limsup \\Ln\gnW{\ + grA||i,(R) < Ce, 
n—KX> 

with C independent of e. Substituting the estimates for L„\fn], Ln\gn] into (4.21) and then 
using the arbitrariness of e, gives (1.15). • 

5. Proof of the necessary conditions. We begin with the 

PROOF OF THE NECESSITY PART OF THEOREM 1.3. Fix 1 < p < oo, A e R,« > 0, 

6 > 1 +«, and assume the conclusion of Theorem 1.3 is true, that is (1.15) holds for every 
continuous/ satisfying (1.16). Let X be the space of all continuous functions/: R —• R 
with 

\\f\\x := sup \f W\W(log(2 + |x|))* < oo. 

Moreover, let Y be the space of all measurable functions/: R —> R with 

| | / | | y : = | l / f f ( l + 0 - A | | w < o o . 

Each/ € X satisfies (1.16), so the conclusion of Theorem 1.3 ensures that 

l im|[/--L„[/] | | r = 0. 
n—>oo 

Since X is a Banach space, the uniform boundedness principle gives 

(5.1) \\f-L„m\\y<C\\f\\x, 
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with C independent of wand/. In particular as L\[f] = /(0) (recall that/? I(JC) = 1\x), we 
deduce that for/ <E X with/(0) = 0, 

rik<cii/iu. 

So for such/, 

(5.2) \\Ln\f\h <2C\\f\\x-

Choose gn continuous in R, with g„ = 0 in [0, oo) U (—oo, — \an\ with 

||g„IU = sup \g„W\(x)(\og{2 + |oc|))S = 1, 
JC€R 

andforxyw e(-\an,0\ 

fe^(^)(log(2+|xyw|))'sign(^(xyw)) = 1. 

For example, (g„W)(x)(\og(2 + |x|)) can be chosen to be piecewise linear. Then for 

x£ [l,a„], 

I V- W v x Pn(x) 

\xJmZ{-\aHJS) PnKXjnA* X
jn) 

=lp(x)l y (w+Mr 

^ C i a i ^ ^ W K l o g a B ^ c " 1 X) (*/» ~ */+M) 

(by Lemma 2.1 (g) and (b)) 

>C2ai/2|p-WlOogfl»)-*. 

l^felWl = 

Then by (5.2), 

2C=2C| |g„ |U>| |Lnfe„] | | r 

> cWJ2(\oga„r6\\p„w(i+QrAllMi,a„] 

> C4ay"(loga„)-*e(a„)-max{A'0} 

1, 
(logn)1/4, 

I (»2Xa»)) 3 M p) 

/ ? < 4 
p = 4 

, P>4 

Here we used the monotonicity of Q, Lemma 2.2 (a) and Lemma 2.1 (d). Note that [—1,1] 
does not give a big contribution to the Lp norm of p„W. We obtain a contradiction if 
A < 0, for all/?. Also, for/? > 4, assuming A > 0, we obtain from Lemma 2.3 (b), 

2C > C5ai / 'aoga»)^7Xfl») t + i ( i- ' )»-A + i ( i- '1 ) . 
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Since the terms involving an and T(a„) grow to oo with n, we see that necessarily 

A>3(4-o)-

PROOF OF THEOREM 1.4. This is similar to the previous proof. We let X be the 
Banach space of continuous functions/: R —• R vanishing outside [—2,2], with norm 

11/11*:= M k , ^ ] . 

We let Y be the space of all measurable/: R —• R with 

ll/1|r:=||/-»T/M)<oo. 

Assume that we cannot find/ satisfying (1.19). Then the uniform boundedness principle 
gives (5.1) for a l l / G X. Again, when/(0) = 0, we obtain (5.2). We now choose g„ G X, 
with||g„||^= l;with 

-•4 (gnWXjn)&igp(pn(xjn)) = h xjn € 

gn = 0 in (—oo, —2] U [0, oo) and 

(gn W)(xjn) s ign(^(^)) > 0, xjn G [-2,2]. 

Much as before, we deduce that for x > 1, 

\Ln\gn](x)\>CalJ2\pn(x)\/x. 

Also by hypothesis, there exist C\ and C2 such that 

u(x) > cxx^-lpQ{xyl^-xp\ x > c2. 

Hence by (5.2), 

2C = 2C||g„|U>||I„fe]| |r 

>ci\\i«,\gHmw<P<yxt-x>Q<?<rili-i)\\wc1«i 
>C2arpQ(anr^-^\\p„W\\iPW,n.^ 

much as before, by Lemma 2.2 (a) and (2.4). Of course this is impossible for large n, and 
we have a contradiction. • 
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