ON CONVEXITY AND WEAK CLOSENESS FOR THE SET OF ϕ -superharmonic functions

HONGWEI LOU

(Received 11 September 2001; revised 8 January 2003)

Communicated by A. H. Dooley

Abstract

Convexity and weak closeness of the set of Φ -superharmonic functions in a bounded Lipschitz domain in \mathbb{R}^n is considered. By using the fact of that Φ -superharmonic functions are just the solutions to an obstacle problem and establishing some special properties of the obstacle problem, it is shown that if Φ satisfies Δ_2 -condition, then the set is not convex unless $\Phi(r) = Cr^2$ or n = 1. Nevertheless, it is found that the set is still weakly closed in the corresponding Orlicz-Sobolev space.

2000 Mathematics subject classification: primary 31C45; secondary 35J85. Keywords and phrases: convexity, weak closeness, superharmonic functions.

1. Introduction

Let $\Phi(\cdot)$ be a Young's function satisfying:

- (S1) $\Phi(\cdot) \in C^1[0, +\infty) \cap C^2(0, +\infty);$
- (S2) $\Phi(0) = \Phi'(0) = 0;$
- (S3) $\Phi'(\cdot)$ increases strictly in $[0, +\infty)$, and $\lim_{r \to +\infty} \Phi'(r) = +\infty$.

Denote $\varphi = \Phi'$. Let $\psi = \varphi^{-1}$ be the inverse function of ψ and

(1.1)
$$\Psi(r) \triangleq \int_0^r \psi(s) \, ds, \quad \forall r \in \mathbb{R}^+ \equiv [0, +\infty).$$

One can easily verify that Ψ satisfies (S1)–(S3) too. We call (Φ, Ψ) a complementary pair in Young's sense. The well-known Young's inequality shows that

(1.2)
$$rs \leq \Phi(r) + \Psi(s), \quad \forall r, s \in \mathbb{R}^+,$$

© 2003 Australian Mathematical Society 1446-7887/03 \$A2.00 + 0.00

423

and the equality holds if and only if $s = \varphi(r)$.

In this paper, we will consider the set of Φ -superharmonic functions $\mathscr{H}^{\Phi}_{+}(\Omega)$ (see (3.2) in Section 3 for the definition). We will prove that, if both Φ and Ψ satisfy the Δ_2 -condition (see Lemma 2.1 (iv) in Section 2 for details), then $\mathscr{H}^{\Phi}_{+}(a, b)$ is convex. Consequently, it is weakly closed in $W_0^{1,\Phi}(a, b)$ since the strong closeness holds naturally. When $n \geq 2$, if Φ satisfies Δ_2 -condition and Ω is a bounded Lipschitz domain in Euclidean space \mathbb{R}^n , then $\mathscr{H}^{\Phi}_{+}(\Omega)$ is convex if and only if $\Phi(r) = Cr^2$ for some positive constant C. Nevertheless, $\mathscr{H}^{\Phi}_{+}(\Omega)$ is still weakly closed in $W_0^{1,\Phi}(\Omega)$. The main idea to get the results is as follows: we use the fact that $\mathscr{H}^{\Phi}_{+}(\Omega)$ is the set of solutions for obstacle problems. From this we get many important properties of a Φ -superharmonic function.

2. Preliminary properties of Orlicz spaces

In this section, we present some basic properties of Orlicz spaces. For further information about Orlicz spaces, see [1, 4, 8].

First, let us recall the definition of Orlicz spaces $L^{\Phi}(\Omega)$, $\mathcal{M}^{\Phi}(\Omega)$. Let Ω be a bounded domain in \mathbb{R}^n . We denote

$$L^{\Phi}(\Omega) \triangleq \left\{ v : \Omega \to \mathbb{R} \text{ measurable } | \exists t > 0, \text{ such that } \int_{\Omega} \Phi(t|v(x)|) dx < +\infty \right\},$$

equipped with the norm

$$\|v\|_{L^{\Phi}(\Omega)} \equiv \inf \left\{ t > 0 \left| \int_{\Omega} \Phi\left(\frac{|v(x)|}{t}\right) dx \leq 1 \right\},$$

and

$$\mathscr{M}^{\Phi}(\Omega) \triangleq \left\{ v : \Omega \to \mathbb{R} \text{ measurable } \left| \int_{\Omega} \Phi(t|v(x)|) \, dx < +\infty, \ \forall \ t > 0 \right\} \right\}.$$

The following results can be found in [4].

LEMMA 2.1. Let Φ be Young's function satisfying (S1)–(S3), and Ψ be defined by (1.1). Then

(i) $L^{\Phi}(\Omega)$ is a Banach space and $L^{\infty}(\Omega) \subset \mathcal{M}^{\Phi}(\Omega) \subseteq L^{\Phi}(\Omega) \subset L^{1}(\Omega)$.

(ii) $\mathscr{M}^{\Phi}(\Omega)$ is a Banach subspace of $L^{\Phi}(\Omega)$ and $\mathscr{M}^{\Phi}(\Omega)$ is separable.

(iii) $(\mathcal{M}^{\Psi}(\Omega))^* = L^{\Phi}(\Omega)$, where X^* denotes the dual space of a normed linear space X.

(iv) $\mathcal{M}^{\Phi}(\Omega) = L^{\Phi}(\Omega)$ if and only if Φ satisfies Δ_2 -condition (that is, there exist $\rho, \lambda > 0$ such that $\Phi(2r) \leq \lambda \Phi(r)$, for all $r \geq \rho$).

(v) $L^{\Phi}(\Omega)$ is reflexive if and only if both Φ and Ψ satisfy Δ_2 -condition; if and only if Φ satisfies Δ_2 -condition, and Φ satisfies ∇_2 -condition (that is, there exist ρ , l > 1 such that $\Phi(r) \leq \Phi(lr)/(2l)$, for all $r \geq \rho$).

Now, we recall the definition of Orlicz-Sobolev spaces. Denote

$$W^{1,\Phi}(\Omega) \triangleq \{v: \Omega \to \mathbb{R} \mid v, D_{\alpha}v \in L^{\Phi}(\Omega), \ \alpha = 1, 2, \ldots, n\},\$$

equipped with the norm

$$\|v\|_{W^{1,\Phi}(\Omega)} \equiv \sum_{\alpha=1}^n \|D_\alpha v\|_{L^{\Phi}(\Omega)} + \|v\|_{L^{\Phi}(\Omega)}.$$

Let $W_0^{1,\Phi}(\Omega)$ be the closure of $C_0^{\infty}(\Omega)$ in $W^{1,\Phi}(\Omega)$. Denote

$$\|v\|_{W_0^{1,\Phi}(\Omega)} \equiv \||\nabla v|\|_{L^{\Phi}(\Omega)}, \quad \forall v \in W_0^{1,\Phi}(\Omega).$$

Then, $\|\cdot\|_{W_0^{1,\Phi}(\Omega)}$ is an equivalent norm to $\|\cdot\|_{W^{1,\Phi}(\Omega)}$ in $W_0^{1,\Phi}(\Omega)$. Moreover, we can get the following properties by straightforward generalization of the proof of the same properties for ordinary Sobolev spaces.

LEMMA 2.2. Let Ω be a bounded domain, Φ be Young's function satisfying (S1)–(S3).

(i) Suppose that $u \in W_0^{1,\Phi}(\Omega)$. Then $|u| \in W_0^{1,\Phi}(\Omega)$. Consequently, $u^+ \equiv \max(u, 0) \in W_0^{1,\Phi}(\Omega)$, $u^- \equiv \max(-u, 0) \in W_0^{1,\Phi}(\Omega)$. Furthermore, if $u, v \in W_0^{1,\Phi}(\Omega)$, then $u \wedge v \equiv \min(u, v) \in W_0^{1,\Phi}(\Omega)$.

(ii) Suppose that Ω is a Lipschitz domain. Then $W_0^{1,\Phi}(\Omega) = W_0^{1,1}(\Omega) \cap W^{1,\Phi}(\Omega)$.

If $L^{\Phi}(\Omega)$ is reflexive, then both $W^{1,\Phi}(\Omega)$ and $W_0^{1,\Phi}(\Omega)$ are reflexive, since they can be looked as closed subspaces of $(L^{\Phi}(\Omega))^{n+1}$. In general, $W^{1,\Phi}(\Omega)$ (or $W_0^{1,\Phi}(\Omega)$) needs not necessary to be reflexive. Moreover, we do not know if $W^{1,\Phi}(\Omega)$ (or $W_0^{1,\Phi}(\Omega)$) is the dual space of a normed space, though $L^{\Phi}(\Omega) = (\mathscr{M}^{\Psi}(\Omega))^*$ by Lemma 2.1 (iii). Thus, in general, a bounded series in $W^{1,\Phi}(\Omega)$ needs not necessary to have a subsequence converging weakly in $W^{1,\Phi}(\Omega)$. In some cases, we do not know if we can say weak* convergence. Nevertheless, we have:

LEMMA 2.3. Let Ω be a bounded Lipschitz domain, Φ be Young's function satisfying (S1)–(S3), u_k be bounded in $W^{1,\Phi}(\Omega)$. Then there exists a subsequence u_{k_j} , and a function $u \in W^{1,\Phi}(\Omega)$, such that $u_{k_j} \to u$, weakly in $W^{1,1}(\Omega)$, and

(2.1)
$$\int_{\Omega} \Phi(|\nabla u|) \, dx \leq \liminf_{j \to +\infty} \int_{\Omega} \Phi(|\nabla u_{k_j}|) \, dx.$$

Moreover, if $u_k \in W_0^{1,\Phi}(\Omega)$ for $k = 1, 2, \ldots$, then $u \in W_0^{1,\Phi}(\Omega)$.

PROOF. Since u_k is bounded in $W^{1,\Phi}(\Omega)$, then u_k and $|\nabla u_k|$ are bounded in $L^{\Phi}(\Omega)$ (see Lemma 2.1 (i)). By Lemma 2.1 (ii) and (iii), $L^{\Phi}(\Omega)$ is the dual space of a separable Banach space $\mathscr{M}^{\Psi}(\Omega)$. Thus, we can choose a subsequence u_{k_i} such that

$$u_{k_j} \to u$$
, weakly* in $L^{\Phi}(\Omega)$,
 $\nabla u_{k_j} \to \vec{h}$, weakly* in $L^{\Phi}(\Omega, \mathbb{R}^n) \equiv (L^{\Phi}(\Omega))^n$

Since $(\mathscr{M}^{\Psi}(\Omega))^* = L^{\Phi}(\Omega)$ and $(L^1(\Omega))^* = L^{\infty}(\Omega) \subset \mathscr{M}^{\Psi}(\Omega)$, we have

$$u_{k_j} \to u$$
, weakly in $L^1(\Omega)$,
 $\nabla u_{k_i} \to \vec{h}$, weakly in $L^1(\Omega, \mathbb{R}^n)$

Then it follows that $\vec{h} = \nabla u$ and

(2.2)
$$u_{k_j} \to u$$
, weakly in $W^{1,1}(\Omega)$.

Combining with $u, \vec{h} \in L^{\Phi}(\Omega)$, we get $u \in W^{1,\Phi}(\Omega)$.

To prove (2.1), without loss of generality, we can suppose that

(2.3)
$$\lim_{j \to +\infty} \int_{\Omega} \Phi(|\nabla u_{k_j}(x)|) \, dx = M < +\infty.$$

On the other hand, by (2.2) and Mazur's theorem (see [7, page 120]), there exist $\alpha_{m,l} \ge 0$, $\sum_{l=1}^{k_m} \alpha_{m,l} = 1$, such that

(2.4)
$$\sum_{l=1}^{k_m} \alpha_{m,l} u_{k_{l+m}} \to u, \text{ strongly in } W^{1,1}(\Omega).$$

Thus, we can also suppose that

(2.5)
$$\sum_{l=1}^{k_m} \alpha_{m,l} \nabla u_{k_{l+m}} \to \nabla u, \quad \text{a.e. } \Omega$$

By the convexity of Φ , we have

(2.6)
$$\int_{\Omega} \Phi\left(\left|\sum_{l=1}^{k_m} \alpha_{m,l} \nabla u_{k_{l+m}}(x)\right|\right) dx \leq \sum_{l=1}^{k_m} \alpha_{m,l} \int_{\Omega} \Phi(|\nabla u_{k_{l+m}}(x)|) dx.$$

Noting that $\Phi \ge 0$ and $\Phi \in C[0, +\infty)$, by (2.3), (2.5)–(2.6) and Fatou's lemma, we get

$$\int_{\Omega} \Phi(|\nabla u(x)|) \, dx \leq M,$$

and therefore (2.1) follows.

Finally, if $u_k \in W_0^{1,\Phi}(\Omega)$ for k = 1, 2, ..., then $u \in W_0^{1,1}(\Omega)$ by (2.2). Since we have obtained that $u \in W^{1,\Phi}(\Omega)$, we get $u \in W_0^{1,\Phi}(\Omega)$ by Lemma 2.2 (ii).

3. Φ -superharmonic functions and obstacle problem

In the following sections we suppose that Φ satisfies Δ_2 -condition. Thus, $L^{\Phi}(\Omega) = \mathcal{M}^{\Phi}(\Omega)$ by Lemma 2.1 (iv). Moreover,

$$\int_0^r \varphi(s) \, ds = \Phi(r) \ge \frac{1}{\lambda} \Phi(2r) = \frac{1}{\lambda} \int_0^{2r} \varphi(s) \, ds, \quad \forall r \in (\rho, +\infty),$$

where ρ , $\lambda > 0$ are given in Lemma 2.1 (iv). Therefore

(3.1)
$$r\varphi(r) \ge \Phi(r) \ge r\varphi(r)/\lambda, \quad r \in (\rho, +\infty),$$

since $\varphi(\cdot)$ is increasing in $[0, +\infty)$. Then, for any $v, w \in W_0^{1,\Phi}(\Omega)$, by (3.1) and Young's inequality (1.2),

$$\begin{aligned} \left| \varphi\left(|\nabla v| \right) \frac{\nabla v}{|\nabla v|} \cdot \nabla w \right| &\leq \varphi(|\nabla v|) |\nabla w| \leq \Psi(\varphi(|\nabla v|)) + \Phi(|\nabla w|) \\ &= |\nabla v|\varphi(|\nabla v|) - \Phi(|\nabla v|) + \Phi(|\nabla w|) \\ &\leq \max(\rho\varphi(\rho), (\lambda - 1)\Phi(|\nabla v|)) + \Phi(|\nabla w|). \end{aligned}$$

Consequently, $\varphi(|\nabla v|) \nabla v \cdot \nabla w / |\nabla v|$ is integrable in Ω .

Now, we denote by

(3.2)
$$\mathscr{H}^{\Phi}_{+}(\Omega) \triangleq \{ v \in W^{1,\Phi}_{0}(\Omega) \mid -\Delta_{\Phi}v \ge 0, \text{ in } \Omega \}$$

the set of all Φ -superharmonic functions, where

$$\Delta_{\Phi} v \triangleq \operatorname{div}\left(\varphi(|\nabla v|) \frac{\nabla v}{|\nabla v|}\right),$$

and we say that $-\Delta_{\Phi} v \ge 0$ (in Ω), if

(3.3)
$$\int_{\Omega} \varphi(|\nabla v|) \frac{\nabla v}{|\nabla v|} \cdot \nabla w \, dx \ge 0, \quad \forall w \in W_0^{1,\Phi}(\Omega), w \ge 0, \text{ a.e. } \Omega.$$

An element of $\mathscr{H}^{\Phi}_{+}(\Omega)$ is called a Φ -superharmonic function.

To study the set $\mathscr{H}^{\Phi}_{+}(\Omega)$, we consider the following obstacle problem:

PROBLEM (O). Let y be a measurable function in Ω , $\mathbb{K}(y) \triangleq \{v \in W_0^{1,\Phi}(\Omega) | v \ge y$, a.e. Ω }. Find a $u \equiv T_{\Phi}(y) \in \mathbb{K}(y)$, such that

(3.4)
$$\int_{\Omega} \Phi(|\nabla u|) \, dx = \inf_{v \in \mathbb{K}(y)} \int_{\Omega} \Phi(|\nabla v|) \, dx.$$

One can easily check that $\mathbb{K}(y)$ is convex and closed in $W_0^{1,\Phi}(\Omega)$. It may be empty. When $\mathbb{K}(y) \neq \emptyset$, the following lemma characterizes the solution of Problem (O).

LEMMA 3.1. Let Ω be a bounded Lipschitz domain, y be a measurable function, $\mathbb{K}(y) \neq \emptyset$, Φ satisfy (S1)–(S3) and Δ_2 -condition. Then Problem (O) has a unique solution $u \equiv T_{\Phi}(y)$. Moreover, u is characterized by the following variational inequality:

(3.5)
$$\int_{\Omega} \varphi(|\nabla u|) \frac{\nabla u}{|\nabla u|} \cdot \nabla(v-u) \, dx \ge 0, \quad \forall v \in \mathbb{K}(y).$$

PROOF. By Lemma 2.1 (iv), $L^{\Phi}(\Omega) = \mathscr{M}^{\Phi}(\Omega)$. Thus,

$$0 \leq \int_{\Omega} \Phi(|\nabla v|) \, dx < +\infty, \quad \forall \, v \in \mathbb{K}(y).$$

Let $u_k \in \mathbb{K}(y)$ satisfy

(3.6)
$$\lim_{k \to +\infty} \int_{\Omega} \Phi(|\nabla u_k|) \, dx = \inf_{v \in \mathbb{K}(y)} \int_{\Omega} \Phi(|\nabla v|) \, dx.$$

Then $\int_{\Omega} \Phi(|\nabla u_k|) dx \leq C$, for all k = 1, 2, ..., for some constant C > 0. Since $\Phi(0) = 0$ and Φ is convex,

$$\int_{\Omega} \Phi\left(\frac{|\nabla u_k|}{C+1}\right) dx \leq \int_{\Omega} \frac{1}{C+1} \Phi(|\nabla u_k|) dx < 1.$$

Therefore, $||u_k||_{W_0^{1,\Phi}(\Omega)} \leq C+1$, for all $k = 1, 2, \ldots$ Thus, by Lemma 2.3, we can suppose that $u_k \to u$, weakly in $W^{1,1}(\Omega)$, for some $u \in W_0^{1,\Phi}(\Omega)$, and

(3.7)
$$\int_{\Omega} \Phi(|\nabla u|) \, dx \leq \liminf_{k \to +\infty} \int_{\Omega} \Phi(|\nabla u_k|) \, dx$$

On the other hand, it is easy to get $u \ge y$ from $u_k \ge y$. Consequently, $u \in \mathbb{K}(y)$, and it follows from (3.6) and (3.7) that

$$\int_{\Omega} \Phi(|\nabla u|) \, dx = \inf_{v \in K(y)} \int_{\Omega} \Phi(|\nabla v|) \, dx,$$

that is, we get the existence of a solution. Since $\mathbb{K}(y)$ is convex and $G(\cdot)$ is strictly convex, such a solution must be unique.

Finally, to prove that $u \equiv T_{\Phi}(y)$ is characterized by (3.5), we modify the proof of Theorem 1.2 in [3, Chapter 1].

Let $u \equiv T_{\Phi}(y)$ be a solution of Problem (O) corresponding to y. Then, for all $v \in \mathbb{K}(y), \alpha \in (0, 1)$, we have $u + \alpha(v - u) \in \mathbb{K}(y)$. Thus,

$$0 \leq \frac{1}{\alpha} \left\{ \int_{\Omega} \Phi(|\nabla u + \alpha(\nabla v - \nabla u)|) \, dx - \int_{\Omega} \Phi(|\nabla u|) \, dx \right\}.$$

Let $\alpha \rightarrow 0^+$, we get (3.5).

On the other hand, suppose that $u \in \mathbb{K}(y)$ satisfies (3.5). Then, since $G(\cdot)$ is convex, we have

$$\frac{1}{\alpha} \int_{\Omega} \left[\Phi(|\alpha \nabla v + (1 - \alpha) \nabla u)| \right) - \Phi(|\nabla u|) dx$$

$$\leq \frac{1}{\alpha} \int_{\Omega} \left[\Phi(\alpha |\nabla v| + (1 - \alpha) |\nabla u|) - \Phi(|\nabla u|) \right] dx$$

$$\leq \frac{1}{\alpha} \int_{\Omega} \left[\alpha \Phi(|\nabla v|) + (1 - \alpha) \Phi(|\nabla u|) - \Phi(|\nabla u|) \right] dx$$

$$= \int_{\Omega} \left[\Phi(|\nabla v|) - \Phi(|\nabla u|) \right] dx, \quad \forall v \in \mathbb{K}(y).$$

Passing to the limit, we get

$$\int_{\Omega} \Phi(|\nabla v|) \, dx - \int_{\Omega} \Phi(|\nabla u|) \, dx \ge \int_{\Omega} \varphi(|\nabla u|) \frac{\nabla u}{|\nabla u|} \cdot \nabla(v - u) \, dx$$
$$\ge 0, \quad \forall v \in \mathbb{K}(y).$$

Therefore, u is a solution of Problem (O), and we get the proof.

Now, let us state a simple lemma before we establish the basic properties of T_{Φ} .

LEMMA 3.2. Suppose $\phi(\cdot) \in C[0, +\infty)$, $\phi(0) = 0$, and ϕ increases strictly in $[0, +\infty)$. Then

(3.8)
$$\left[\phi(|a|)\frac{a}{|a|} - \phi(|b|)\frac{b}{|b|}\right] \cdot (a-b) \ge 0, \quad \forall a, b \in \mathbb{R}^m,$$

and the equality holds if and only if a = b.

PROOF. Without loss of generality, we suppose that $a \neq 0, b \neq 0$. We have

$$\begin{split} \left[\phi(|a|) \frac{a}{|a|} - \phi(|b|) \frac{b}{|b|} \right] \cdot (a - b) \\ &= \phi(|a|)|a| + \phi(|b|)|b| - \phi(|a|) \frac{a \cdot b}{|a|} - \phi(|b|) \frac{a \cdot b}{|b|} \\ &\geq \phi(|a|)|a| + \phi(|b|)|b| - \phi(|a|)|b| - \phi(|b|)|a| \\ &= [\phi(|a|) - \phi(|b|)](|a| - |b|) \ge 0. \end{split}$$

Moreover, in the second inequality, the equality holds if and only if $a \cdot b = |a| |b|$, while in the last inequality, the equality holds if and only if |a| = |b|. Thus, (3.8) holds, and the equality holds if and only if a = b.

Now, we give some basic properties of T_{Φ} .

LEMMA 3.3. Let Ω be a bounded Lipschitz domain, y be a measurable function, $\mathbb{K}(y) \neq \emptyset$, Φ satisfy (S1)–(S3) and Δ_2 -condition. Then

- (i) $T_{\Phi}(y) \in \mathscr{H}^{\Phi}_{+}(\Omega)$.
- (ii) $T_{\Phi}^2 = T_{\Phi}$, that is, $T_{\Phi}(T_{\Phi}(y)) = T_{\Phi}(y)$.
- (iii) $T_{\Phi}(y) = y$ if and only if $y \in \mathscr{H}^{\Phi}_{+}(\Omega)$.
- (iv) Denote

$$\mathbb{K}_{+}(y) \equiv \{ v \in W^{1,\Phi}(\Omega) \mid v \ge y, a.e. \ \Omega \}, and$$
$$\mathscr{P}^{\Phi}_{+}(\Omega) \equiv \{ v \in W^{1,\Phi}(\Omega) \mid -\Delta v \ge 0, v \ge 0, a.e. \ \Omega \}.$$

Then $T_{\Phi}(y)$ is the smallest element in $\mathbb{K}_{+}(y) \cap \mathscr{S}^{\Phi}_{+}(\Omega)$, that is, $T_{\Phi}(y) \in \mathbb{K}_{+}(y) \cap \mathscr{S}^{\Phi}_{+}(\Omega)$ and $T_{\Phi}(y) \leq v$, a.e. Ω , for all $v \in \mathbb{K}_{+}(y) \cap \mathscr{S}^{\Phi}_{+}(\Omega)$. In particular, $T_{\Phi}(y)$ is the smallest element in $\mathbb{K}_{+}(y) \cap \mathscr{H}^{\Phi}_{+}(\Omega)$ since $\mathscr{H}^{\Phi}_{+}(\Omega) \subset \mathscr{S}^{\Phi}_{+}(\Omega)$.

(v) Suppose $u_1 \in \mathscr{H}^{\Phi}_+(\Omega)$, $u_2, u_2, \ldots \in \mathscr{S}^{\Phi}_+(\Omega)$. Then $\underline{u} \equiv \inf_k u_k \in \mathscr{H}^{\Phi}_+(\Omega)$, and

(3.9)
$$\int_{\Omega} \Phi(|\nabla \underline{u}|) \, dx \leq \int_{\Omega} \Phi(|\nabla u_1|) \, dx.$$

PROOF. By Lemma 3.1, $u \equiv T_{\Phi}(y)$ exists and is unique.

(i) For any $v \in W_0^{1,\Phi}(\Omega)$, $v \ge 0$, a.e. Ω , we have $u + v \in \mathbb{K}(y)$. Replacing v by u + v in (3.5), we get

$$\int_{\Omega} \varphi(|\nabla u|) \frac{\nabla u}{|\nabla u|} \cdot \nabla v \, dx \ge 0, \quad \forall v \in W_0^{1,\Phi}(\Omega), v \ge 0.$$

Therefore, $u \in \mathscr{H}^{\Phi}_{+}(\Omega)$.

(ii) Obviously, $u \in \mathbb{K}(u)$. Therefore, $\mathbb{K}(u) \neq \emptyset$. On the other hand, for $v \in \mathbb{K}(u)$, we have $v \in \mathbb{K}(y)$. Thus, by the definition of u (see (3.4)),

$$\int_{\Omega} \Phi(|\nabla u|) \, dx \leq \int_{\Omega} \Phi(|\nabla v|) \, dx, \quad \forall \, v \in \mathbb{K}(u)$$

Consequently, $u = T_{\Phi}(u)$. That is, $T_{\Phi}^2 = T_{\Phi}$.

(iii) Let $T_{\Phi}(y) = y$. Then $y \in \mathscr{H}^{\Phi}_{+}(\Omega)$ by (i).

Now, suppose that $y \in \mathscr{H}^{\Phi}_{+}(\Omega)$. Then $y \in \mathbb{K}(y)$ and $\mathbb{K}(y) \neq \emptyset$. Since $-\Delta_{\Phi} y \ge 0$,

$$\int_{\Omega} \varphi(|\nabla y|) \frac{\nabla y}{|\nabla y|} \cdot \nabla v \, dx \ge 0, \quad \forall v \in W_0^{1,\Phi}(\Omega), v \ge 0.$$

For any $v \in \mathbb{K}(y)$, we have $v - y \ge 0$, a.e. Ω , and $v - y \in W_0^{1,\Phi}(\Omega)$. Thus,

$$\int_{\Omega} \varphi(|\nabla y|) \frac{\nabla y}{|\nabla y|} \cdot \nabla(v-y) \, dx \ge 0, \quad \forall v \in \mathbb{K}(y).$$

Therefore, $y = T_{\Phi}(y)$ by Lemma 3.1.

(iv) Suppose $v \in \mathbb{K}_+(y) \cap \mathscr{S}^{\Phi}_+(\Omega)$. Then $v \wedge u \in W^{1,1}_0(\Omega)$ since $W^{1,\Phi}(\Omega) \subset W^{1,1}(\Omega)$. Moreover,

(3.10)
$$\nabla(v \wedge u)(x) = \begin{cases} \nabla v(x), & \text{if } v(x) < u(x); \\ \nabla u(x), & \text{if } v(x) \ge u(x), \end{cases} \text{ a.e. } \Omega$$

It follows that $v \wedge u \in W^{1,\Phi}(\Omega)$ since $v, u \in W^{1,\Phi}(\Omega)$. Consequently, $v \wedge u \in W_0^{1,\Phi}(\Omega)$ by Lemma 2.2 (ii). Thus, $v \wedge u \in \mathbb{K}(y)$. By Lemma 3.1, we get

(3.11)
$$\int_{\Omega} \varphi(|\nabla u|) \frac{\nabla u}{|\nabla u|} \cdot (\nabla (v \wedge u) - \nabla u) \, dx \ge 0.$$

On the other hand, since $-\Delta_{\Phi}v \ge 0$, and $u - (v \land u) \ge 0$, $u - (v \land u) \in W_0^{1,\Phi}(\Omega)$, we get (see (3.3))

(3.12)
$$\int_{\Omega} \varphi(|\nabla v|) \frac{\nabla v}{|\nabla v|} \cdot (\nabla u - \nabla (v \wedge u)) \, dx \ge 0.$$

Combining with (3.11), we have

$$\int_{\Omega} \left[\varphi(|\nabla u|) \frac{\nabla u}{|\nabla u|} - \varphi(|\nabla v|) \frac{\nabla v}{|\nabla v|} \right] \cdot (\nabla u - \nabla (v \wedge u)) \, dx \leq 0$$

Then, by (3.10),

$$\int_{\{u>v\}} \left[\varphi(|\nabla u|) \frac{\nabla u}{|\nabla u|} - \varphi(|\nabla v|) \frac{\nabla v}{|\nabla v|} \right] \cdot (\nabla u - \nabla v) \, dx \leq 0$$

Therefore, by Lemma 3.2, $\nabla u = \nabla v$, a.e. $\{u > v\}$, that is (see (3.10)), $\nabla u = \nabla (v \wedge u)$, a.e. Ω . Consequently, there exists a constant *C*, such that $u = v \wedge u + C$, a.e. Ω . Since $u, v \wedge u \in W_0^{1,\Phi}(\Omega)$, we have C = 0. Thus, $u = v \wedge u$, a.e. Ω , that is, $u \leq v$, a.e. Ω . On the other hand, it is easy to prove that any $v \in \mathscr{H}^{\Phi}_{+}(\Omega)$ satisfies $v \geq 0$, a.e. Ω . Thus $\mathscr{H}^{\Phi}_{+}(\Omega) \subset \mathscr{S}^{\Phi}_{+}(\Omega)$. Therefore, $T_{\Phi}(y)$ is also the smallest member in $\mathbb{K}_{+}(y) \cap \mathscr{H}^{\Phi}_{+}(\Omega)$ since $T_{\Phi}(y) \in \mathbb{K}_{+}(y) \cap \mathscr{H}^{\Phi}_{+}(\Omega)$.

(v) Since $0 \le \underline{u} \le u_1$, $\mathbb{K}(\underline{u}) \ne \emptyset$. Thus, $T_{\Phi}(\underline{u})$ uniquely exists. By (iv) and noting that $u_k \in \mathbb{K}_+(\underline{u}) \cap \mathscr{S}^{\Phi}_+(\Omega)$, we have $T_{\Phi}(\underline{u}) \le u_k$, a.e. Ω . Thus,

$$T_{\Phi}(\underline{u}) \leq \underline{u} \equiv \inf_{k} u_{k}, \quad \text{a.e. } \Omega.$$

On the other hand, $T_{\Phi}(\underline{u}) \geq \underline{u}$ by the definition of T_{Φ} . Therefore, $\underline{u} = T_{\Phi}(\underline{u}) \in \mathscr{H}^{\Phi}_{+}(\Omega)$. Finally, since $u_1 \in \mathbb{K}(\underline{u})$, we get (3.9) from (3.4).

4. Convexity of $\mathscr{H}^{\Phi}_{+}(\Omega)$

First, we establish the following lemma.

LEMMA 4.1. Let Ω be a bounded domain in \mathbb{R}^n , Φ satisfy (S1)–(S3), Δ_2 -condition and ∇_2 -condition. Let $W^{-1,\Psi}(\Omega)$ be the dual space of $W_0^{1,\Phi}(\Omega)$. Let $\nu \in W^{-1,\Psi}(\Omega)$ and $\nu \geq 0$ in Ω in the distribution sense. Then, there exists a sequence $v_k \in C^{\infty}(\overline{\Omega})$, such that $v_k \geq 0$ and

(4.1)
$$v_k \to v$$
, strongly in $W^{-1,\Psi}(\Omega)$.

PROOF. By the assumptions and Lemma 2.1 (v), $W_0^{1,\Phi}(\Omega)$ is reflexive. Consequently, as the dual space of $W_0^{1,\Phi}(\Omega)$, $W^{-1,\Psi}(\Omega)$ is reflexive.

Let $v \in W^{-1,\Psi}(\Omega)$ and $v \ge 0$ in Ω in the distribution sense. According to [5, Chapter 1, Theorem V], v is a nonnegative measure in Ω . For k = 1, 2, ..., denote $\Omega_k \equiv \{x \in \Omega | d(x, \partial \Omega) \ge 1/k\}$, where $d(x, \partial \Omega) \equiv \inf_{y \in \partial \Omega} |x - y|$. Let $v_k \equiv v \lfloor \Omega_k$ be the restriction of v in Ω_k , that is, $v_k(A) \equiv v(\Omega_k \bigcap A)$ for any $A \subseteq \Omega$. Then, v_k is a nonnegative measure in Ω (see [6, Chapter 1], for example). Moreover, for any $w \in C_c^{\infty}(\Omega)$, we have

$$(4.2) |\langle v_k, w \rangle| \le \langle v_k, |w| \rangle \le \langle v, |w| \rangle \le ||v||_{W^{-1,\Psi}(\Omega)} ||w||_{W_0^{1,\Phi}(\Omega)}$$

Consequently, for any $w \in W_0^{1,\Phi}(\Omega)$, we can define $\langle v_k, w \rangle$ by choosing $w_j \in C_c^{\infty}(\Omega)$ converging strongly in $W_0^{1,\Phi}(\Omega)$ and defining

$$\langle v_k, w \rangle \triangleq \lim_{j \to +\infty} \langle v_k, w_j \rangle.$$

By (4.2),

 $\langle v_k, w \rangle \leq \|v\|_{W^{-1,\Psi}(\Omega)} \|w\|_{W^{1,\Phi}_0(\Omega)}, \quad \forall w \in W^{1,\Phi}_0(\Omega),$

that is, $\nu_k \in W^{-1,\Psi}(\Omega)$ and

$$\|v_k\|_{W^{-1,\Psi}(\Omega)} \leq \|v\|_{W^{-1,\Psi}(\Omega)}.$$

On the other hand, we have $\langle v_k, w \rangle \to \langle v, w \rangle$, for all $w \in C_c^{\infty}(\Omega)$. Combining the above with (4.3), we can easily get $\langle v_k, w \rangle \to \langle v, w \rangle$, for all $w \in W_0^{1,\Phi}(\Omega)$, that is, $v_k \to v$, weakly in $W^{-1,\Psi}(\Omega)$.

By Mazur's Theorem, there exist $\alpha_{k,j} \ge 0$, $\sum_{j=1}^{N_k} \alpha_{k,j} = 1$, such that $\tilde{\nu}_k \equiv \sum_{j=1}^{N_k} \alpha_{k,j} \nu_j \rightarrow \nu$, strongly in $W^{-1,\Psi}(\Omega)$. For any $l \ge N_k$, we have

$$\begin{aligned} |\langle v_l - v, w \rangle| &\leq \langle v - v_l, |w| \rangle \leq \langle v - \tilde{v}_k, |w| \rangle \\ &\leq \|v - \tilde{v}_k\|_{W^{-1, \Psi}(\Omega)} \|w\|_{W^{1, \Phi}_0(\Omega)}, \quad \forall w \in W^{1, \Phi}_0(\Omega). \end{aligned}$$

[10]

On the set of Φ -superharmonic functions

Thus, $\|\nu_l - \nu\|_{W^{-1,\Psi}(\Omega)} \le \|\tilde{\nu}_k - \nu\|_{W^{-1,\Psi}(\Omega)}$, if $l \ge N_k$. Consequently,

(4.4)
$$\nu_k \to \nu$$
, strongly in $W^{-1,\Psi}(\Omega)$.

Let

$$\eta(x) \equiv \begin{cases} \tau \exp[-1/(1-|x|^2)], & \text{if } |x| < 1; \\ 0, & \text{if } |x| \ge 1, \end{cases}$$

where $\tau > 0$ is chosen such that $\int_{\mathbb{R}^n} \eta(x) dx = 1$. Let $\zeta_k \in C_c^{\infty}(\mathbb{R}^n)$ satisfy $\zeta_k(x) = 1$, in Ω_k , and $\zeta_k(x) = 0$, in $\mathbb{R}^n \setminus \Omega_{2k}$. Then $\zeta_k \nu_k$ can be looked as a distribution and a nonnegative measure in \mathbb{R}^n . In fact, $\zeta_k \nu_k = \nu_k$, in Ω . For j = 1, 2, ..., set $\eta_j(x) = j \eta(jx)$, and $\hat{\nu}_{kj} \equiv (\zeta_k \nu_k) * \eta_j$ (for the definition of convolution of generalized function, see [2]). Obviously, $\hat{\nu}_{kj}(x) \ge 0$. When $j \ge 12k$, we have $\hat{\nu}_{kj}(x) = 0$, for all $x \notin \Omega_{3k}$. Then, it is easy to prove that $\hat{\nu}_{kj} \in C_c^{\infty}(\Omega)$ (if $j \ge 12k$), and (as $j \to +\infty$)

 $\hat{\nu}_{ki} \rightarrow \nu_k$, weakly in $W^{-1,\Psi}(\Omega)$.

Consequently, by Mazur's Theorem, we have $\tilde{v}_{kj} \in C^{\infty}(\bar{\Omega})$, such that $\tilde{v}_{kj} \geq 0$, and $(\text{as } j \to +\infty) \tilde{v}_{kj} \to v_k$, strongly in $W^{-1,\Psi}(\Omega)$. Thus, combining with (4.4), we have $j_k \geq 1$, such that $v_k \equiv \tilde{v}_{kj_k} \to v$, strongly in $W^{-1,\Psi}(\Omega)$. Thus, we get the proof. \Box

Now, we give a result in case n = 1.

THEOREM 4.2. Let a < b, Φ satisfy (S1)–(S3), Δ_2 -condition and ∇_2 -condition. Then $u \in \mathscr{H}^{\Phi}_+(a, b)$ if and only if $u \in W^{1,\Phi}_0(a, b)$, and $-u'' \ge 0$, in (a, b). Consequently, $\mathscr{H}^{\Phi}_+(a, b)$ is convex.

PROOF. We give a sketch of the proof.

Let $u \in \mathscr{H}^{\Phi}_{+}(a, b)$. Then $v \equiv -\Delta_{\Phi} u \in W^{-1,\Psi}(a, b)$, and $v \ge 0$ in the distribution sense. By Lemma 4.1, there exists $v_i \in C^{\infty}(\overline{\Omega})$, such that $v_j \ge 0$, and

 $v_i \rightarrow v$, strongly in $W^{-1,\Psi}(a, b)$.

Let $u_j \in W_0^{1,\Phi}(a, b)$ be the unique solution of the following equation:

(4.5)
$$\begin{cases} -\left[\varphi\left(\sqrt{1/j^2 + |u_j'|^2}\right)u_j'/\sqrt{1/j^2 + |u_j'|^2}\right]' = v_j, & \text{in } (a, b); \\ u_j(a) = u_j(b) = 0. \end{cases}$$

Then $u_j \in C^{\infty}(a, b)$, and u_j is bounded in $W_0^{1,\Phi}(a, b)$. Since $W_0^{1,\Phi}(a, b)$ is reflexive, we can suppose that $u_j \to \tilde{u}$, weakly in $W_0^{1,\Phi}(a, b)$. Similarly as in Lemma 3.1, it follows from (4.5) that for all $v \in W_0^{1,\Phi}(a, b)$,

$$\int_a^b \Phi\left(\sqrt{1/j^2 + |u_j'|^2}\right) dx - \langle v_j, u_j \rangle \leq \int_a^b \Phi\left(\sqrt{1/j^2 + |v'|^2}\right) dx - \langle v_j, v \rangle.$$

[11]

Passing to the limit (see the proof of (2.1)), we get

$$\int_a^b \Phi(|\tilde{u}'|) \, dx - \langle v, \tilde{u} \rangle \leq \int_a^b \Phi(|v'|) \, dx - \langle v, v \rangle, \quad \forall v \in W_0^{1,\Phi}(a,b),$$

that is,

$$\begin{cases} -\Delta_{\Phi}\tilde{u} = v, & \text{in } (a, b);\\ \tilde{u}(a) = \tilde{u}(b) = 0. \end{cases}$$

Therefore, $\tilde{u} = u$. Consequently, $u_j \to u$, weakly in $W_0^{1,\Phi}(a, b)$. Since $u_j \in C^{\infty}(a, b)$, by (4.5),

$$-\left\{\frac{\varphi'\left(\sqrt{1/j^2+|u'_j|^2}\right)|u'_j|^2}{\sqrt{1/j^2+|u'_j|^2}}+\frac{\varphi\left(\sqrt{1/j^2+|u'_j|^2}\right)}{j^{2}(1/j^2+|u'_j|^2)^{3/2}}\right\}u''_j=v_j\geq 0,\quad\text{in }(a,b).$$

Thus, $-u_{j}^{"} \ge 0$, in (a, b). Passing to the limit, we get $-u^{"} \ge 0$, in (a, b). Similarly, if $u \in W_{0}^{1,\Phi}(a, b)$, and $-u^{"} \ge 0$, in (a, b), then we can prove that $u \in \mathscr{H}_{+}^{\Phi}(a, b)$. \Box

When $n \ge 2$, we have:

THEOREM 4.3. Let Ω be a bounded Lipschitz domain. Suppose that $n \geq 2$, Φ satisfies (S1)–(S3) and Δ_2 -condition. Then $\mathscr{H}^{\Phi}_+(\Omega)$ is convex if and only if $\Phi(r) \equiv Cr^2$ for some positive constant C.

PROOF. If $\Phi(r) \equiv Cr^2$, then $\Delta_{\Phi} = 2C\Delta$. Consequently, $\mathscr{H}^{\Phi}_{\perp}(\Omega)$ is convex.

On the other hand, suppose $\mathscr{H}^{\Phi}_{+}(\Omega)$ is convex. We want to prove $\Phi(r) \equiv Cr^2$, or equivalently, $h(r) \equiv r\varphi'(r) - \varphi(r) \equiv 0$. Without loss of generality, we suppose that $0 \in \Omega$, and therefore there exists an a > 0, such that the ball $B_a = B_a(0) \subset \Omega$. We will prove that $h(r) \equiv 0$ in two steps.

Step I. First, we claim that h does not change its sigh in $[0, +\infty)$.

To prove this, suppose that $r_0 > 0$ satisfies $h(r_0) > 0$. Then, by the continuity of h, there exists an $\varepsilon \in (0, r_0)$, such that

(4.6)
$$h(r) > 0, \quad \forall r \in (r_0 - \varepsilon, r_0 + \varepsilon).$$

Let

(4.7)
$$u_1(x) = -\frac{x_1^2 - x_2^2}{L} + r_0 x_1 + C_1, \quad x = (x_1, x_2, \dots, x_n) \in \Omega,$$

where L and C_1 are two large positive numbers, such that

(4.8)
$$|\nabla u_1(x)| \in (r_0 - \varepsilon, r_0 + \varepsilon), \quad \forall x \in \Omega,$$

and $u_1(x) \ge 1$, for all $x \in \Omega$.

On the set of Φ -superharmonic functions

Since $u_1 \in C^2(\Omega)$, $|\nabla u_1| \neq 0$ (see (4.8)), we have

(4.9)
$$-\Delta_{\Phi}u_1 = -h(|\nabla u_1|)\frac{\langle D^2 u_1 D u_1, D u_1 \rangle}{|\nabla u_1|^3} - \varphi(|\nabla u_1|)\frac{\Delta u_1}{|\nabla u_1|}$$

It is easy to verify that

$$(4.10) \qquad \qquad \Delta u_1 = 0, \quad \text{in } \Omega,$$

$$(4.11) \qquad \langle D^2 u_1 D u_1, D u_1 \rangle < 0, \quad \text{in } \Omega.$$

Thus, $u_1 \in \mathscr{S}^{\Phi}_+(\Omega)$.

Let $v_M \in \mathscr{H}^{\Phi}_+(\Omega)$ be the solution of the following equation

(4.12)
$$\begin{cases} -\Delta_{\Phi} v_M = M, & \text{in } \Omega; \\ v_M|_{\partial\Omega} = 0. \end{cases}$$

We can prove that, if we choose M sufficiently large, then $v_M \ge \sup_{x \in B_a} u_1(x)$, in B_a .

By Lemma 3.3 (v), $u_1 \wedge v_M \in \mathscr{H}^{\Phi}_+(\Omega)$. Since $0 \in \mathscr{H}^{\Phi}_+(\Omega)$ and $\mathscr{H}^{\Phi}_+(\Omega)$ is convex, we have $t(u_1 \wedge v_M) \in \mathscr{H}^{\Phi}_+(\Omega)$, for $t \in (0, 1)$. Noting that

$$t(u_1 \wedge v_M) = tu_1, \quad \text{in } B_a, \ \forall \ t \in (0, 1),$$

we have

(4.13)
$$0 \leq -\Delta_{\Phi}(tu_1), \text{ in } B_a, \forall t \in (0, 1),$$

that is, (see (4.9) and (4.10)),

$$0 \leq -h(t|\nabla u_1|) \frac{\langle D^2 u_1 D u_1, D u_1 \rangle}{|\nabla u_1|^3}, \quad \text{in } B_a, \ \forall \ t \in (0, 1).$$

Therefore, from (4.8) and (4.11), we get $h(r) \ge 0$, for all $r \in (0, r_0)$.

Similarly, if $h(r_0) < 0$ for some $r_0 > 0$, then $h(r) \le 0$, for all $r \in (0, r_0)$. Therefore, we must have

$$(4.14) h(r) \ge 0, \quad \forall r \ge 0,$$

or

$$(4.15) h(r) \leq 0, \quad \forall r \geq 0.$$

Step II. By what we established in the first step, we can suppose that (4.14) holds without loss of generality. We claim that $h \equiv 0$. Otherwise, there exists an $r_0 > 0$, such that $h(r_0) > 0$.

Let u_1 be defined by (4.7). Since $h \ge 0$, we have (see (4.9)-(4.11))

$$-\Delta_{\Phi}(tLu_1) \geq 0$$
, in $\Omega, \forall t > 0$.

[13]

Let $u_2(x) = -r_0x_1 + C_2$, such that $u_2 \ge 1$, in Ω . Then

$$-\Delta_{\Phi}(tLu_2)=0, \text{ in } \Omega, \forall t>0.$$

Let M be large enough, and v_M be defined by (4.12), such that

$$v_M \ge (Lr_0/a) \max(u_1, u_2), \quad \text{in } B_a.$$

Let $w_i \equiv (Lr_0u_i/a) \wedge v_M$, i = 1, 2. Then $w_i = (Lr_0/a)u_i$, in B_a , i = 1, 2, and by Lemma 3.3 (v), $w_i \in \mathscr{H}^{\Phi}_+(\Omega)$, i = 1, 2. Therefore,

$$w \triangleq \frac{w_1 + w_2}{2} = \frac{r_0}{2a}(-x_1^2 + x_2^2), \text{ in } B_a$$

and

$$|\nabla w| = \frac{r_0}{a} \sqrt{x_1^2 + x_2^2}, \quad \text{in } B_a.$$

Since h is continuous, there exists an $\varepsilon \in (0, r_0)$, such that

$$h(r) > 0, \quad \forall r \in (r_0 - \varepsilon, r_0 + \varepsilon).$$

Noting that

$$-\Delta_{\Phi}w = -h(|\nabla w|) \frac{-x_1^2 + x_2^2}{(x_1^2 + x_2^2)^{3/2}}, \quad \text{in } B_a,$$

and

$$h(|\nabla w|) = h\left(\frac{r_0}{a}\sqrt{x_1^2 + x_2^2}\right) > 0, \quad \text{in } \left\{x \in B_a \mid \sqrt{x_1^2 + x_2^2} > \frac{r_0 - \varepsilon}{r_0} a\right\},$$

we see that $\{x \in B_a \mid -\Delta_{\Phi}w(x) < 0\}$ has positive measure. That is, $w \notin \mathscr{H}^{\Phi}_{+}(\Omega)$, contradicting the assumption. Therefore $h \equiv 0$ and consequently, $\Phi(r) \equiv Cr^2$. \Box

5. Weak closeness of $\mathscr{H}^{\Phi}_{+}(\Omega)$

It is easy to prove that $\mathscr{H}^{\Phi}_{+}(\Omega)$ is strongly closed in $W^{1,\Phi}_{0}(\Omega)$. If $\mathscr{H}^{\Phi}_{+}(\Omega)$ is convex, then it is also weakly closed in $W^{1,\Phi}_{0}(\Omega)$ by Mazur's Theorem. Theorem 4.3 shows that when $n \geq 2$ and $\Phi(r) \neq Cr^2$, $\mathscr{H}^{\Phi}_{+}(\Omega)$ is not convex. But we will prove that $\mathscr{H}^{\Phi}_{+}(\Omega)$ is still weakly closed in $W^{1,\Phi}_{0}(\Omega)$. More precisely, we have the following theorem.

THEOREM 5.1. Let Ω be a bounded Lipschitz domain, Φ satisfy (S1)–(S3) and Δ_2 condition. Suppose that $u_k \in \mathscr{H}^{\Phi}_+(\Omega)$ is bounded in $W^{1,\Phi}_0(\Omega)$, and $u_k \to u$, weakly
in $W^{1,1}_0(\Omega)$. Then $u \in \mathscr{H}^{\Phi}_+(\Omega)$.

PROOF. By the assumption of the theorem, we can suppose that $u_k \rightarrow u$, strongly in $L^1(\Omega)$. Thus, we can further suppose that

$$(5.1) u_k \to u, \quad \text{a.e. } \Omega.$$

Therefore,

(5.2)
$$u(x) = \liminf_{k \to +\infty} u_k(x) = \liminf_{k \to +\infty} \inf_{j \ge k} u_j(x), \quad \text{a.e. } x \in \Omega.$$

Denote $y_k(x) \equiv \inf_{j \ge k} u_j(x)$. Then

$$(5.3) y_k \nearrow u, \quad a.e. \ \Omega.$$

Moreover, by Lemma 3.3 (v), $y_k \in \mathscr{H}^{\Phi}_+(\Omega)$ and

$$\int_{\Omega} \Phi(|\nabla y_k|) \, dx \leq \int_{\Omega} \Phi(|\nabla u_k|) \, dx \leq C.$$

Thus, by Lemma 2.3 and (5.3), we must have $y_k \to u$, weakly in $W_0^{1,1}(\Omega)$. Using Lemma 2.3 again, we get

(5.4)
$$\int_{\Omega} \Phi(|\nabla u|) \, dx \leq \liminf_{k \to +\infty} \int_{\Omega} \Phi(|\nabla y_k|) \, dx.$$

Since $y_k \in \mathscr{H}^{\Phi}_+(\Omega)$, $T_{\Phi}(y_k) = y_k$ by Lemma 3.3 (iii). By (5.3), $\mathbb{K}(u) \subseteq \mathbb{K}(y_k)$. Thus, we get, from (3.4), that

(5.5)
$$\int_{\Omega} \Phi(|\nabla y_k|) \, dx \leq \int_{\Omega} \Phi(|\nabla v|) \, dx, \quad \forall v \in \mathbb{K}(u).$$

Combining (5.5) with (5.4), we have

$$\int_{\Omega} \Phi(|\nabla u|) \, dx \leq \int_{\Omega} \Phi(|\nabla v|) \, dx, \quad \forall v \in \mathbb{K}(u),$$

that is, $u = T_{\Phi}(u)$. Consequently, $u \in \mathscr{H}^{\Phi}_{+}(\Omega)$.

When Ω is only a bounded domain, if $W_0^{1,\Phi}(\Omega)$ is reflexive, then Theorem 5.1 still holds. In general, we have:

THEOREM 5.2. Let Ω be a bounded domain, Φ satisfy (S1)–(S3) and Δ_2 -condition. Suppose that $u_k \in \mathscr{S}^{\Phi}_+(\Omega) \cap W^{1,1}_0(\Omega)$ is bounded in $W^{1,\Phi}(\Omega)$, and $u_k \to u$, weakly in $W^{1,1}_0(\Omega)$. Then $u \in \mathscr{S}^{\Phi}_+(\Omega) \cap W^{1,1}_0(\Omega)$.

[15]

Note that $\mathscr{S}^{\Phi}_{+}(\Omega) \cap W^{1,1}_{0}(\Omega) = \mathscr{H}^{\Phi}_{+}(\Omega)$ if Ω is a Lipschitz domain, Theorem 5.1 is a special case of Theorem 5.2.

Theorem 5.1 implies that $\mathscr{H}^{\Phi}_{+}(\Omega)$ is weakly closed in $W_{0}^{1,\Phi}(\Omega)$. In fact, when $W_{0}^{1,\Phi}(\Omega)$ is reflexive, a bounded sequence converging weakly in $W_{0}^{1,1}(\Omega)$ must converge weakly in $W^{1,\Phi}(\Omega)$. Thus, at this time, Theorem 5.1 is equivalent to say that $\mathscr{H}^{\Phi}_{+}(\Omega)$ is weakly closed in $W_{0}^{1,\Phi}(\Omega)$. However, when $W_{0}^{1,\Phi}(\Omega)$ is not reflexive, a bounded sequence in it need not have a subsequence converging weakly. In addition, we do not know, in $W_{0}^{1,\Phi}(\Omega)$, if we can always say weak* convergence, since we do not know if $W_{0}^{1,\Phi}(\Omega)$ is the dual space of some normed linear space. Nevertheless, by Lemma 2.3, a bounded sequence in $W_{0}^{1,\Phi}(\Omega)$ has a subsequence converging weakly in $W_{0}^{1,1}(\Omega)$. Thus, in application, for example, when we treat some variational problems, we will find that Theorem 5.1 is more useful than the result of $\mathscr{H}^{\Phi}_{+}(\Omega)$ being weakly closed in $W_{0}^{1,\Phi}(\Omega)$.

A typical case we are interested in is when $\Phi(r) \equiv r^p/p$ for some $p \in (1, +\infty)$. At this time, Δ_{Φ} is the so-called *p*-Laplacian and $\mathscr{H}^{\Phi}_{+}(\Omega)$ is denoted by $\mathscr{H}^{p}_{+}(\Omega)$. It is easy to verify that Φ satisfies Δ_2 -condition and ∇_2 -condition. Thus, $\mathscr{H}^{p}_{+}(\Omega)$ is convex if and only if p = 2 or n = 1. Moreover, it is weakly closed in $W_0^{1,p}(\Omega)$.

Another interesting case is when $\Phi(r) \equiv r \ln(1+r)$. Then, Δ_{Φ} is called $L \ln L$ -Laplacian and $\mathscr{H}^{\Phi}_{+}(\Omega)$ is denoted by $\mathscr{H}^{L \ln L}_{+}(\Omega)$. In this case, Φ satisfies $\Delta_{2^{-}}$ condition. By Theorem 4.3, $\mathscr{H}^{L \ln L}_{+}(\Omega)$ is not convex when $n \geq 2$. By Theorem 5.1, $\mathscr{H}^{L \ln L}_{+}(\Omega)$ is weakly closed in $W_{0}^{1,L \ln L}(\Omega)$.

6. Generalization

In this section, we generalize the results obtained in Section 5. Let $G : \Omega \times \mathbb{R}^n \to \mathbb{R}$ be a measurable function satisfying

(6.1)
$$G(x, \cdot) \in C^{1}(\mathbb{R}^{n}) \cap C^{2}(\mathbb{R}^{n} \setminus \{0\}), \quad \forall x \in \Omega,$$

(6.2)
$$C_1 \Phi(|\eta|) \leq G(x, \eta) \leq C_2 \Phi(|\eta|), \quad \forall x \in \Omega, \ \eta \in \mathbb{R}^n,$$

and

(6.3)
$$G_{\eta_i\eta_j}(x,\eta)\xi_i\xi_j>0, \quad \forall x\in\Omega, \ \eta,\xi\in(\mathbb{R}^n\setminus\{0\}),$$

where $C_2 > C_1 > 0$ are two constants.

Let $f \in W^{1,\Phi}(\Omega)$. Suppose that $b : \Omega \times \mathbb{R} \to \mathbb{R}$ is measurable in $x \in \Omega$ and continuous in $u \in \mathbb{R}$. Consider the following inequality

(6.4)
$$\begin{cases} -\operatorname{div}(G_{\eta}(x, \nabla u)) \geq b(x, u(x)), & \text{in } \Omega; \\ u|_{\partial\Omega} = f. \end{cases}$$

We have

THEOREM 6.1. Let Ω be a bounded Lipschitz domain, Φ satisfies (S1)–(S3) and Δ_2 -condition. Suppose that G satisfies (6.1)–(6.3), $f \in W^{1,\Phi}(\Omega)$, $b : \Omega \times \mathbb{R} \to \mathbb{R}$ is measurable in $x \in \Omega$ and continuous in $u \in \mathbb{R}$. Let $u_k(\cdot) \in W^{1,\Phi}(\Omega)$ satisfy (6.4) in the weak sense,

(6.5)
$$u_k \to u, \quad weakly \text{ in } W^{1,1}(\Omega),$$

and $u_k(\cdot)$ be bounded in $W^{1,\Phi}(\Omega)$. Moreover, suppose that $b(\cdot, u_k(\cdot)) \in L^{\Psi}(\Omega)$, and there exists a $b_0(\cdot) \in L^{\Psi}(\Omega)$, such that $b(x, u_k(x)) \ge b_0(x)$, a.e. Ω , for all $k = 1, 2, \ldots$ Then $u \in W^{1,\Phi}(\Omega)$, and it satisfies (6.4) in the weak sense too.

PROOF. We give a sketch of the proof.

If b(x, u) is independent of u, then the result can be obtained by a modification of the proof of Theorem 5.1.

In general, by (6.5), we can suppose that $u_k(x)$ converges to u(x) for almost all $x \in \Omega$. Thus, by Egorov's Theorem (see [7, Chapter 0], for example), for any $\varepsilon > 0$, there exists a subset $E_{\varepsilon} \subset \Omega$, such that $|E_{\varepsilon}| < \varepsilon$ and $u_k(\cdot)$ converges to $u(\cdot)$ uniformly in $\Omega \setminus E_{\varepsilon}$, where $|E_{\varepsilon}|$ is the Lebesgue measure of E_{ε} . Let

$$\tilde{b}_{\varepsilon}(x) = \begin{cases} b(x, u(x)), & \text{if } x \in \Omega \setminus E_{\varepsilon}; \\ b_0(x), & \text{if } x \in E_{\varepsilon}. \end{cases}$$

Then for any $\delta > 0$, there exists a K > 0 such that $b(x, u_k(x)) \ge \tilde{b}_{\varepsilon}(x) - \delta$, a.e. $x \in \Omega$, for all $k \ge K$. Thus, for any k > K,

$$\begin{cases} -\operatorname{div}(G_{\eta}(x, \nabla u_{k})) \geq \tilde{b}_{\varepsilon}(x) - \delta, & \text{in } \Omega; \\ u_{k}|_{\partial\Omega} = f. \end{cases}$$

Consequently,

$$\begin{cases} -\operatorname{div}(G_{\eta}(x, \nabla u)) \geq \tilde{b}_{\varepsilon}(x) - \delta, & \text{in } \Omega; \\ u|_{\partial\Omega} = f. \end{cases}$$

Let $\delta \to 0^+$ and $\varepsilon \to 0^+$, we get

$$\begin{cases} -\operatorname{div}(G_{\eta}(x, \nabla u)) \ge b(x, u(x)), & \text{in } \Omega; \\ u|_{\partial\Omega} = f. \end{cases}$$

Acknowledgement

The author would like to thank Professor Jiayu Li for many helpful suggestions and constant encouragement.

References

- [1] R. A. Adams, Sobolev spaces (Academic Press, New York, 1975).
- [2] I. M. Gelfand and G. E. Shilov, Generalized functions, Vol. I (Academic Press, New York, 1964).
- [3] J. L. Lions, Optimal control of systems governed by partial differential equations (Springer, New York, 1971).
- [4] M. M. Rao and Z. D. Ren, Theory of Orlicz spaces (Marcel Dekker, New York, 1991).
- [5] L. Schwartz, Théorie des distributions (Hermann, Paris, 1966).
- [6] L. Simon, *Lectures on geometric measure theory*, Proceedings of the Centre for Mathematical Analysis ANU (Australian National University, Canberra, 1983).
- [7] K. Yosida, Functional analysis, 6th edition (Springer, Berlin, 1980).
- [8] A. Zygmund, Trigonometric series (Cambridge University Press, Cambridge, 1959).

Department of Mathematics Fudan University Shanghai 200433 China e-mail: hwlou@fudan.edu.cn