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Abstract

Convexity and weak closeness of the set of <t>-superharmonic functions in a bounded Lipschitz domain
in K" is considered. By using the fact of that <t>-superharmonic functions are just the solutions to an
obstacle problem and establishing some special properties of the obstacle problem, it is shown that if <t>
satisfies A2-condition, then the set is not convex unless <t>(r) = Cr2 or n = 1. Nevertheless, it is found
that the set is still weakly closed in the corresponding Orlicz-Sobolev space.

2000 Mathematics subject classification: primary 31C45; secondary 35J85.
Keywords and phrases: convexity, weak closeness, superharmonic functions.

1. Introduction

Let <!>(•) be a Young's function satisfying:

(51) *(•) € C'[0, +oo) n C2(0, +oo);
(52) $(0) = *'(0) = 0;
(53) <&'(•) increases strictly in [0, +oo), and limr_,+00 <P'(r) = +oo.

Denote <p = <&'. Let \)r = <p~l be the inverse function of ijs and

(1.1) *(r) = / f(s)ds, V r e K+ = [0, +oo).

One can easily verify that * satisfies (S1)-(S3) too. We call (<t>, * ) a complementary
pair in Young's sense. The well-known Young's inequality shows that

(1.2) rs < 4>(r) + *(*), V r, s 6 K+,
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and the equality holds if and only if s = <p(r).
In this paper, we will consider the set of 4>-superharmonic functions Jt?*(Q) (see

(3.2) in Section 3 for the definition). We will prove that, if both <t> and * satisfy
the A2-condition (see Lemma 2.1 (iv) in Section 2 for details), then J^(a, b) is
convex. Consequently, it is weakly closed in WQ *(a, b) since the strong closeness
holds naturally. When n > 2, if 4> satisfies A2-condition and ft is a bounded Lipschitz
domain in Euclidean space R", then ^ * ( f t ) is convex if and only if <£>(r) = Cr2 for
some positive constant C. Nevertheless, Jf?f(Q) is still weakly closed in W0''*(S2).
The main idea to get the results is as follows: we use the fact that Jf^(Q) is the set
of solutions for obstacle problems. From this we get many important properties of a
<J>-superharmonic function.

2. Preliminary properties of Orlicz spaces

In this section, we present some basic properties of Orlicz spaces. For further
information about Orlicz spaces, see [1,4, 8].

First, let us recall the definition of Orlicz spaces L*(ft), Jt*<Sl). Let ft be a
bounded domain in R". We denote

L*(ft) = I v : ft -> R measurable | 3 t > 0, such that f <$>(t\v(x)\)dx < +oo 1,

equipped with the norm

and

^ * ( f t ) = I v : ft -*• R measurable / <t>(t\v(x)\)dx < +00, V t >

The following results can be found in [4].

LEMMA 2.1. Let <t> be Young's function satisfying (S1)-(S3), and 4* be defined by

(1.1). Then

(i) L*(ft),/j a Banach space and L°°(ft) C ^"*(ft) C L*(ft) c L'(ft).
(ii) ^" ' ( f t ) is a Banach subspace of L*(ft) W ^ * ( f t ) is separable.

(iii) (^#*(ft))* = L*(ft), where X* denotes the dual space of a normed linear
space X.

(iv) ^ * ( f t ) = L*(ft) if and only if<P satisfies A2-condition (that is, there exist
p, A. > 0 such that <t>(2r) < k<t>(r),for all r > p).
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(v) L*(£2) is reflexive if and only if both 4> and W satisfy A2-condition; if and
only if <£ satisfies Ax-condition, and 4> satisfies V2-condition {that is, there exist p,
I > 1 such that <P(r) < 4>(/r)/(2/),/or all r > p).

Now, we recall the definition of Orlicz-Sobolev spaces. Denote .

Wl-*(Sl) = {v : SI -+ R | v, Dav e L*(Sl), a = 1, 2 , . . . , « } ,

equipped with the norm

a=l

Let Wo
lt*(Sl) be the closure of C0°°(S2) in Wl-*(Sl). Denote

m, V v e WZA

Then, || • II w'*(n) ' s a n equivalent norm to || • || w"*(n) in WQ'*(Q,). Moreover, we can
get the following properties by straightforward generalization of the proof of the same
properties for ordinary Sobolev spaces.

LEMMA 2.2. Let Q be a bounded domain, <!> be Young's function satisfying ( S l ) -
(S3).

(i) Suppose that u e W^(Q). Then \u\ e W^iQ). Consequently, u+ =
max(«,0) 6 Wo*(SI), u~ = max(-«,O) e Wo

l-*(Si). Furthermore, if u,v e
Wo

u*(Si), then UAV = min(«, v) e Wo
l-*(Sl).

(ii) Suppose that Q is a Lipschitz domain. Then Wo
l'*(Sl) = Wo

u(Sl) D W^iQ).

It L*(f2) is reflexive, then both Wl-*(Sl) and WQ*(Q) are reflexive, since they
can be looked as closed subspaces of (L*(n))n + 1 . In general, Wh*(S2) (or W0

ll4>(£2))
needs not necessary to be reflexive. Moreover, we do not know if Wl''*(S2) (or
W^iSi)) is the dual space of a normed space, though L*(fi) = (JK*(Sl))* by
Lemma 2.1 (iii). Thus, in general, a bounded series in WX^(Q.) needs not necessary
to have a subsequence converging weakly in W1 '*(S2). In some cases, we do not know
if we can say weak* convergence. Nevertheless, we have:

LEMMA 2.3. Let Q be a bounded Lipschitz domain, <J> be Young'sfunction satisfying
(S1)-(S3), uk be bounded in Wl'*(Si). Then there exists a subsequence ukj, and a
function u e Wh<t>(Q), such that ukj -»• u, weakly in Wu(Si), and

(2.1) / 4>(|Vu|)rfx < liminf / *(|Viifc|)d!x.

Moreover, ifuk 6 W**'(Q) for k = 1, 2 then u e Wo
l-*(S1).
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PROOF. Since uk is bounded in Wh<t>(Q), then uk and |VM*| are bounded in L*(£2)
(see Lemma 2.1 (i)). By Lemma 2.1 (ii) and (iii), L*(£2) is the dual space of a
separable Banach space ^ * ( f i ) . Thus, we can choose a subsequence uk. such that

ukj —> u, weakly* in L*(£2),

Vuk. -> h, weakly* in L*(£2, R") = (L*(f i ) ) \

Since M"*(fi))* = JL*(ft) and (L\Q))* = L°°(Q) c ^ * ( £ 2 ) , we have

ukj -*• u, weakly in L'(fi) ,

Vukj -> A, weakly in L ' ^ . K " ) .

Then it follows that h = Vu and

(2.2) ukj ^ u, weakly in Wul(Q).

Combining with u, h e L*(f2), we get u 6 W1

To prove (2.1), without loss of generality, we can suppose that

(2.3) lim / *(|Viit.(jc)|)£/jc =M < +oo.

On the other hand, by (2.2) and Mazur's theorem (see [7, page 120]), there exist

ctm.i > 0, J2ti am.i = L s u c h t h a t

(2.4) ^orm,,Mt,+m -> M, strongly in

Thus, we can also suppose that

(2.5)

<t>()Vukl^x)\)dx.

By the convexity of <J>, we have

(2.6) f * ( V^ . /VM^JX) ) rfx < £«„., /"
J n \ /=i / /=i J a

Noting that 4> > 0 and 4> e C[0, +co) , by (2.3), (2.5)-(2.6) and Fatou's lemma, we
get

f <S>(\Vu(x)\)dx <M,
Jn

and therefore (2.1) follows.
Finally, if uk e W0'*(fi) for it = 1 ,2 , . . . , then w e W0

M(n) by (2.2). Since we
have obtained that u € Wu*(Sl), we get M € V^o

ll<l>(fi) by Lemma 2.2 (ii). •
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3. $-superharmonic functions and obstacle problem

In the following sections we suppose that <t> satisfies A2-condition. Thus, L*(£2) =
* by Lemma 2.1 (iv). Moreover,

f
Jo

<p{s)ds = 4>(r) > |<D(2r) = \ ( <p(s)ds, V r e (p, +oo),
Jo

where p, k > 0 are given in Lemma 2.1 (iv). Therefore

(3.1) r<p(r) > <D(r) > r<p(r)/k, r e (p, +oo),

since <p(-) is increasing in [0, +co). Then, for any v, w e WQ (Si), by (3.1) and
Young's inequality (1.2),

*(|V«|) — - V u ;

< max(p<p(p), (A -

Consequently, <p(\Vi;|)Vu • Viu/|Vu| is integrable in fi.
Now, we denote by

(3.2) Jf*(Q,) = {ve W^itt) \ -A*u > 0, in Q]

the set of all 4>-superharmonic functions, where

and we say that — A&v > 0 (in fi), if

/ ^>(|Vu|
Jtt

Vv
(3.3) / ^(|Vu|) Vwdx > 0, Vwe Wo'*(Si), w>0, a.e. fi.

An element of «^*(fi) is called a 4>-superharmonic function.
To study the set jt?*(Q,), we consider the following obstacle problem:

PROBLEM (O). Let y be a measurable function in Q, K(y) = {v e Wo
h<p(£2)\v >

y, a.e. Q}. Find a u =s ^ ( j ) 6 IK(};), such that

I <P(\Vu\)dx = inf I(3.4) I <P(\Vu\)dx = inf I <t>(\Vv\)dx.
J V€K(» J
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One can easily check that K(y) is convex and closed in W0
1*(J2). It may be empty.

When &0>) 5̂  0, the following lemma characterizes the solution of Problem (O).

LEMMA 3.1. Let £1 be a bounded Lipschitz domain, y be a measurable function,
K(y) ^ 0, <I> satisfy (S1)-(S3) and A2-condition. Then Problem (O) has a unique
solution u = T*(y). Moreover, u is characterized by the following variational
inequality:

f VM
(3.5) / <pi\Vu\)-—— • V(v-u)dx > 0 , V v e K ( y ) .

Jn |VM|

PROOF. By Lemma 2.1 (iv), L*(£2) = J(*(Sl). Thus,

0 < / 4>(|Vi)|) JJC < +oo, V v € K(y).
Jn

Let uk e K(y) satisfy

(3.6) lim £ <t>(\Vuk\)dx = inf f <t>(\Vv\)dx.

Then / n 4>(|Vi<t|)£/jc < C, for all k = 1, 2 , . . . , for some constant C > 0. Since
= 0 and <!> is convex,

Therefore, \\uk\\w>*m < C + 1, for all k = 1, 2, . . . . Thus, by Lemma 2.3, we can
suppose that u* —• u, weakly in Wli(S2), for some u e W0

1'*(fi), and

(3.7) f <D(|VU|)^A; < liminf f
Jn k^+°° Jn

On the other hand, it is easy to get u > v from uk > y. Consequently, M e K(y), and
it follows from (3.6) and (3.7) that

f f
I Q>(\vu\)dx = inf /

that is, we get the existence of a solution. Since K(y) is convex and G() is strictly
convex, such a solution must be unique.

Finally, to prove that u = 7i(y) is characterized by (3.5), we modify the proof of
Theorem 1.2 in [3, Chapter 1].
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Let u = T<t>(y) be a solution of Problem (O) corresponding to y. Then, for all
v e K(y), a e (0, 1), we have u + a{v — u) e K(y). Thus,

0 < - I / <t>(|VM + a ( V v - Vu)\)dx - I <i>(\Vu\)dx\ .
a [Jn Jn , J

Let a -> 0+, we get (3.5).
On the other hand, suppose that u e K(y) satisfies (3.5). Then, since G() is

convex, we have

a in
[*(|«Vw

n

( ) | | ) ( | | ) ] dx

<- I [a*(|Vu|) + (1 - a)c£>(|Vw|) - * ( | V I I | ) ] dx
a ./«

= / [*(|Vu|) - *(|V«|)] dx, V v 6 K(y).
Jn

Passing to the limit, we get

<t>{\Vv\)dx - f *(|V«|)rfjc > / ^ ( | V i i | ) - | ^ • V(w - II)d*
Jn Jn |Vw|

> 0, V w g K(y).

Therefore, u is a solution of Problem (O), and we get the proof. •

Now, let us state a simple lemma before we establish the basic properties of 7 ,̂.

LEMMA 3.2. Suppose </>(•) e C[0, +00), 0(0) = 0, and <p increases strictly in
[0, +00). Then

(3.8)

and rAe equality holds if and only if a — b.

PROOF. Without loss of generality, we suppose that a ^ 0, b ^ 0. We have

4>(\a\)\a\ + 4>(\b\)\b\ -
\a\ \b\

\a\)\a\ + 4>(\b\)\b\ - 0(|a|)|6| - 4>{\b\)\a\
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Moreover, in the second inequality, the equality holds if and only if a • b = \a\ \b\,
while in the last inequality, the equality holds if and only if \a\ = \b\. Thus, (3.8)
holds, and the equality holds if and only if a = b. •

Now, we give some basic properties of T*.

LEMMA 3.3. Let SI be a bounded Lipschitz domain, y be a measurable function,
K.(y) £ 0, $ satisfy (S1HS3) and ^-condition. Then

(i) r*(v) e .#?(«).
(ii) Tl = r*. that is, 7i(7i(y)) = T*(y).

(iii) T<>(y) = y if and only ify e J>f?(Q.).
(iv) Denote

K+00 s= {v e Wl-*(Q) \v>y, a.e. Q}, and

* = {ve Wl'*(Si) | - A v > 0, v > 0, cue. Q.}.

Then 7i(y) is the smallest element in K+(y) D y?(Si), that is, 7*(y) 6 K+(y) n
S**($l) and T#(y) < v, a.e. Si, for all v e K+(y) CiJ7'+(Sl). In particular, 7i(y) is
the smallest element in &+(y) n Jiff (SI) since Jf?f(Ci) c y+(Sl).

(v) Suppose u\ 6 Jf?f(Si), «2» M2t • • • ^ «5^(£2). 77jen i< = inf̂  Mjt 6 i^.*

(3.9)

PROOF. By Lemma 3.1, u = T<t,(y) exists and is unique.
(i) For any v € W0

1(I>(J2), v > 0, a.e. SI, we have « + v e K(y). Replacing v by
M + t> in (3.5), we get

C VM
/ 0(1 Vu|) V u ^ > 0, V v e Wo' (fi), u > 0.

Jn |Vn|
Therefore, M € ^

(ii) Obviously, u 6 K(M). Therefore, K(M) ?t 0. On the other hand, for v € K(u),
we have v e K(y). Thus, by the definition of « (see (3.4)),

f <P(\Vu\)dx < [ <P(\Vv\)dx,

Consequently, u — T*(u). That is, T* = T*.
(iii) Let T*(y) = y. Then y € J^*(J2) by (i).
Now, suppose that y € Jf*(Sl). Then y 6 K(y) and K(y) 7̂  0. Since - A,t,y > 0,

• V u ^ > 0 , V v e W~-*(Sl), v > 0.
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For any v e K(y), we have v — y > 0, a.e. ft, and v — y e W0
1(I>(ft). Thus,

f (p(\Vy\)-^--V(v-y)dx>0, V v e K(y).

Therefore, y = T<t,(y) by Lemma 3.1.
(iv) Suppose v e K+(y) n y?(£l). Then v Au € ^ ' ( f t ) since W'*(ft) c

Wu(ft). Moreover,

fVu(x), if v(x) < u(x);
(3.10) V(vAu)(x)=\ a.e. ft.

[ V ( ) , if U(JC) > «(JC),

It follows that v AM e W1*(ft) since v, u e W''*(fi). Consequently, u AM e Wj'*
by Lemma 2.2 (ii). Thus, u A u e K(y). By Lemma 3.1, we get

r VM

(3.11) / #>(|V«|)—— • (V(« A M ) - V«)rf* > 0.

On the other hand, since — A^v > 0, and u — (v A M) > 0, u — (v A M) 6
we get (see (3.3))

(3.12) / <p(\Vv\)—— • (VM - V(u A «))djc > 0.

Combining with (3.11), we have

L[ VM VU 1
<p(\Vu\)—- - <p(\Vv\)—- • (VM - V(u A «)) rfjc < 0.

|VM| | V U | J

Then, by (3.10),

/

f VM Vv 1

^ ( | V « | ) — - - <p(\Vv|)—- • (VM - Vv) rfx < 0.
.»>»i L lv"l lV vUTherefore, by Lemma 3.2, VM = Vu, a.e. {M > v], that is (see (3.10)), VM = V(I>AM),

a.e. J2. Consequently, there exists a constant C, such that M = v A M + C, a.e. £2.
Since «, v A u € Wg'*(Q), we have C = 0. Thus, M = v A M, a.e. fi, that is, u < v,
a.e. £2. On the other hand, it is easy to prove that any v G JffiCl) satisfies v > 0,
a.e. Q. Thus ^ * ( f t ) c <^(£2) . Therefore, T^>(y) is also the smallest member in
K+00 D J^*(f i ) since 7i(y) 6 K+(y) (~l JtT*(Sl).

(v) Since 0 < u < uu K(u) jt 0. Thus, TQ{U) uniquely exists. By (iv) and noting
that uk e K + ( M ) D ^+*(f2), we have 7 0 (M) < Mt, a.e. ft. Thus,

7i(i£) < u = inf M*, a.e. ft.

On the other hand, T<t>(u) > JM by the definition of 7*. Therefore, i£ = ^ ( M ) 6
) . Finally, since M, 6 K(M), we get (3.9) from (3.4). D
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4. Convexity of 3V\ (ft)

First, we establish the following lemma.

LEMMA 4.1. Let Qbe a bounded domain in R", <t> satisfy (S1)-(S3), ^-condition
and V2-condition. Let W'1*^) be the dual space of JV0''*(fi). Let v e W
and v > 0 in Q in the distribution sense. Then, there exists a sequence vk e
such that vk > 0 and

(4.1) vk-+v, strongly in W~h*(Q).

PROOF. By the assumptions and Lemma 2.1 (v), W j ' * ^ ) is reflexive. Conse-
quently, as the dual space of Wo

l>4>(£2), W~l*(Q) is reflexive.
Let v e W~1*(J2) and v > 0 in fi in the distribution sense. According to [5,

Chapter 1, Theorem V], v is a nonnegative measure in £2. For k = 1 ,2 , . . . , denote
fit = {x € S2\d(x, dQ) > l/k), where d{x, dQ.) = inf^an \x - y\. Let vk = v[£2k

be the restriction of v in Qk, that is, vk(A) = v(£lk f)A) for any A c fi. Then, vk

is a nonnegative measure in fi (see [6, Chapter 1], for example). Moreover, for any
w 6 C~(fi), we have

(4.2) \{vk, w)\ < (vt, |iu|) < (v, M ) < Hv|k-i.*(n)l|u'llBrW(n).

Consequently, for any w € Wr
0'*(J2), we can define (vk, w) by choosing Wj e

converging strongly in Wo
ll(t>(fi) and defining

{vk, w) = lim {vk, Wj).
j-y+oo

By (4.2),

(

that is, vk e Vy-'

(4.3)

On the other hand, we have {vk, w) -*• (v, w), for all w e C™(Q). Combining the
above with (4.3), we can easily get {vk, w) -*• (v, w), for all w € VV0

1*(fi), that is,
v* - • v, weakly in W'^iQ).

By Mazur's Theorem, there exist akJ > 0, Ylj'Li akj = 1. s u c n that vk =

5Zf=i akj vj -*• v . strongly in W~l*(£l). For any / > Nk, we have

|(v, - v, w)\ < (v- v,, M ) < (v - vk, \w\)
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Thus, ||V/ — v||w-'*(n) < \\Vk — v||w-i.*(n), if / > Nk- Consequently,

(4.4) vk -> v, strongly in W~h*(Q).

Let

j r e x p [ - l / ( l - W 2 ) ] . i f | * | < l ;
JO, if \x\> 1,

where T > 0 is chosen such that /„„ ?j(;c) </* = 1. Let ft € C~(R") satisfy ft(x) = 1,
in £2*, and &(*) = 0, in K" \ Q2k- Then 4"*^ can be looked as a distribution
and a nonnegative measure in K". In fact, &V* = vk, in £2. For j = 1, 2, . . . , set
rjj(x) =j r)(jx), and vkj = (fiV*)*'?; (for the definition of convolution of generalized
function, see [2]). Obviously, vkj (x) > 0. Wheny > 12£, we have 0^ (JC) = 0 , for all
x & Qik. Then, it is easy to prove that v*; G Cc°°(fi) (ify > 12k), and (as; -^ +oo)

Vkj -> vt, weakly in W"1-*^).

Consequently, by Mazur's Theorem, we have vkj e C°°(Q), such that vkj > 0, and
(as j —> +oo) vi^ —• Vi, strongly in W~1*(S2). Thus, combining with (4.4), we have
jk > 1, such that vt = v^t -> v, strongly in W~'*(S2). Thus, we get the proof. •

Now, we give a result in case n = 1.

THEOREM 4.2. Let a < b, <& satisfy (S1)-(S3), ^-condition and V2-condition.
Then u e Jtr*(a, b) if and only ifu 6 Htf'V, b), and -u" > 0, in (a, fe). Co/we-
quently, Jf?f(a, b) is convex.

PROOF. We give a sketch of the proof.
Let u 6 Jf*(a, b). Then v = - A*M e W 1 *(a , fe), and v > 0 in the distribution

sense. By Lemma 4.1, there exists Vj e C°°(Q), such that vj > 0, and

Vj —> v, strongly in W~1'>"(a, b).

Let Uj 6 W0'*(a, t ) be the unique solution of the following equation:

( 4 5 ) ( - b UVJ2 + \u'j\2) «; /JVP + WJFS = Vj, in (a, b);
\uj(a) = uj(b)=0.

Then «; e C°°(a, b), and M̂  is bounded in W^'*(a, Z>). Since W^'*(a, fe) is reflexive,
we can suppose that uj -*• u, weakly in W^ia, b). Similarly as in Lemma 3.1, it
follows from (4.5) that for all v e Wo'*(a, b),

/

b

dx - <t>(y/l/j2+\V\2)dx-(Vj,v).
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Passing to the limit (see the proof of (2.1)), we get

f <t>(\&'\)dx-(v,u) < f 4>{\i/\)dx-(v,v), WveW^(a,b),
J a Ja

that is,

I —A^M = v, in (a, b);

u(a) = u(b) = 0.
Therefore, u = u. Consequently, uj -*• u, weakly in Wo'*(a, b).

Since uj e C°°(a, b), by (4.5),

Thus, —«J > 0, in (a, b). Passing to the limit, we get —u" > 0, in (a, b). Similarly,

if u e W^* (a, b), and —u" > 0, in (a, b), then we can prove that u e Jf*(a, b). •

When 7i > 2, we have:

THEOREM 4.3. Let Q be a bounded Lipschitz domain. Suppose that n > 2, <J>
satisfies (S1)-(S3) anJ ^-condition. Then Jf^{Q) is convex if and only if$>(r) =
CV2 /?r some positive constant C.

PROOF. If <t>(r) = Cr2, then A* = 2CA. Consequently, «^*(fi) is convex.
On the other hand, suppose Jf*{Sl) is convex. We want to prove <t>(r) = Cr2, or

equivalently, h(r) = r<p'(r) — <p(r) = 0. Without loss of generality, we suppose that
0 € £2, and therefore there exists an a > 0, such that the ball Ba — Ba(0) C £2. We
will prove that h(r) = 0 in two steps.

Step I. First, we claim that h does not change its sigh in [0, +oo).
To prove this, suppose that r0 > 0 satisfies h(r0) > 0. Then, by the continuity of

h, there exists an e 6 (0, r0), such that

(4.6) h(r) > 0, V r 6 (r0 - e, rQ + e).

Let
x2 —x2

(4.7) MI(JC) =
 L

T - - + rojc,+ Ci, JC = (JC,,X2, . . . . J c j e f l ,

where L and Ci are two large positive numbers, such that

(4.8) |V« , ( j c ) | 6 ( ro -e , r o + e), V* 6 Q,

and MI (AT) > 1, for all x e Q.
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Since ux e C2(£2), | Vw, | ^ 0 (see (4.8)), we have

(4.9) - A # « I = - A ( | V H , | ) —

It is easy to verify that

(4.10) AMI = 0 , in Q,

(4.11) {D2ulDul,Du1)<0, in Q.

Thus, M, e ^
Let vM e Jf+iQ) be the solution of the following equation

I = M, in fi;

We can prove that, if we choose M sufficiently large, then vM > supieBo ui(x), in Ba.
By Lemma 3.3 (v), H , A V M 6 «^*(fi). Since 0 e ^ * ( f 2 ) and ^*(S2) is convex,

we have /(M, A VM) e Jf^(Q), for t e (0, 1). Noting that

t{u\ A uw) = tuu in Ba, V r e (0, 1),

we have

(4.13) 0 < -Ao(fui), in Ba, V / e (0, 1),

that is, (see (4.9) and (4.10)),

{ D 2 u \ ^ D U l ) , in H . . V / 6 ( 0 , 1 ) .

Therefore, from (4.8) and (4.11), we get h(r) > 0, for all r e (0, r0).
Similarly, if /z(r0) < 0 for some r0 > 0, then h(r) < 0, for all r e (0, r0).

Therefore, we must have

(4.14) h(r) > 0 , V r > 0 ,

or

(4.15) /i(r) < 0, V r > 0.

Step II. By what we established in the first step, we can suppose that (4.14) holds
without loss of generality. We claim that h s 0. Otherwise, there exists an r0 > 0,
such that h(r0) > 0.

Let HI be defined by (4.7). Since h > 0, we have (see (4.9)—(4.11))

> 0, in S2, V t > 0.
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Let u2(x) = —roxj + C2, such that u2 >: 1» in ^- Then

-Ao(tLu2) = 0, in Q, V t > 0.

Let M be large enough, and vM be defined by (4.12), such that

i, u2), in Ba.

[14]

Let 10, s (Lr0Uj/a) A vw, i = 1, 2. Then u;, = (Lro/a)Ui, in /?„, « = 1, 2, and by
Lemma 3.3 (v), wt e J??(£i), 1 = 1, 2. Therefore,

and

in

Since /i is continuous, there exists an e e (0, r0), such that

h(r) > 0, V r 6 ( r o - £ , r o + e)
Noting that

-x\+x\
in

and

> 0, in L e Bft(|Vu;|) = * -

we see that {x € Ba \ —A#w(x) < 0} has positive measure. That is, w £ Jf
contradicting the assumption. Therefore h = 0 and consequently, <!>(/•) = Cr2. D

5. Weak closeness

It is easy to prove that Jtrftfl) is strongly closed in W^iQ). If ^*(£2) is convex,
then it is also weakly closed in W0

1<t>(n) by Mazur's Theorem. Theorem 4.3 shows
that when n > 2 and 4>(r) ^ Cr2, J^*(S2) is not convex. But we will prove that
Jf?*(Q) is still weakly closed in VV0'*(fi). More precisely, we have the following
theorem.

THEOREM 5.1. LetQ.be a bounded Lipschitz domain, 4> satisfy (S1MS3) and A2-
condition. Suppose that uk e Jt?*(Q) is bounded in W^iQ), and uk -> u, weakly
in Wo1-1 (ft). Then u 6 ^
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PROOF. By the assumption of the theorem, we can suppose that uk -> u, strongly
in L'(£2). Thus, we can further suppose that

(5.1) uk —*• u, a.e. Q.

Therefore,

(5.2) u(x) = liminf uk(x) = lim inf «,(*), a.e. x e £2.

Denote yk(x) = infy>t Uj (x). Then

(5.3) yk S w, a.e. fi.

Moreover, by Lemma 3.3 (v), yk e J^*(S2) and

f *(|Vyt|)rf* < / Q(\Vuk\)dx < C.
Jn Jo.

Thus, by Lemma 2.3 and (5.3), we must have yk —>• u, weakly in Wg'\^i). Using
Lemma 2.3 again, we get

(5.4) / <f>(|VK|)rf;c < liminf / <t>(\Vyk\)dx.
Jn k^+°° Jn

Since yk € «^*(£2), T^(yk) = yk by Lemma 3.3 (iii). By (5.3), K(u) c K(yk). Thus,
we get, from (3.4), that

(5.5) [ $>(\Vyk\)dx < f Q(\Vv\)dx, V v € K(u).
Jo Jo

Combining (5.5) with (5.4), we have

/ 4>( |VM|)^ < / ®(\Vv\)dx, WveK(u),
Jo Jo

that is, u = T<t,{u). Consequently, u e J(?*(Q). D

When Q is only a bounded domain, if Wo
lf<1>(£2) is reflexive, then Theorem 5.1 still

holds. In general, we have:

THEOREM 5.2. Let SI be a bounded domain, <t> satisfy (S1)-(S3) and ^-condition.
Suppose that uk e y*(Q.) D Wo

u (Q) is bounded in W*(fi), and uk -^ u, weakly in
W^iSi). Then u e y?(Q) D W^iQ).
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Note that y*(Q) D WQA(Q) = J#?(Q) if ft is a Lipschitz domain, Theorem 5.1
is a special case of Theorem 5.2.

Theorem 5.1 implies that Jf?*(Q) is weakly closed in W0
1%*(Q). In fact, when

WQ"""(ft) is reflexive, a bounded sequence converging weakly in WQ'1(Q) must con-
verge weakly in WI'*(ft). Thus, at this time, Theorem 5.1 is equivalent to say that
JffiQ) is weakly closed in W0

I>*(fi). However, when WQ-*(Q) is not reflexive, a
bounded sequence in it need not have a subsequence converging weakly. In addition,
we do not know, in W0''*(ft), if we can always say weak* convergence, since we do
not know if W0

l'4>(fl) is the dual space of some normed linear space. Nevertheless, by
Lemma 2.3, a bounded sequence in WQ'*(Q) has a subsequence converging weakly in
WQ'' (£2). Thus, in application, for example, when we treat some variational problems,
we will find that Theorem 5.1 is more useful than the result of <^*(ft) being weakly
closed in «#•*(«).

A typical case we are interested in is when *(/•) = rp /p for some p 6 (1, +oo).
At this time, A* is the so-called p-Laplacian and Ji?*(£i) is denoted by Jf?+(£l).
It is easy to verify that <t> satisfies A2-condition and V2-condition. Thus, J£f(Q) is
convex if and only if p = 2 or n = 1. Moreover, it is weakly closed in WQ'P(Q).

Another interesting case is when <&(r) = r ln(l + r). Then, A* is called L In L-
Laplacian and J(?*(Q) is denoted by Jf?f'nL(Q). In this case, <t> satisfies A2-
condition. By Theorem 4.3, J^^Xnl{Q) is not convex when n > 2. By Theorem 5.1,
Jif+

UaL(Q) is weakly closed in Wo
l t l L

6. Generalization

In this section, we generalize the results obtained in Section 5. Let G : SI x K" —»• K
be a measurable function satisfying

(6.1) G ( x , . ) 6 C ' ( R ° ) n C 2 ( r \ ( 0 ) ) , V x e f i ,

(6.2) C,4>(M) < G(x, n) < C 2 *( | I J | ) , V* € fi, ij e R",

and

(6.3) G,,^ (JC, tft-.t-j > 0, Vx e « , »;, f e (R" \ {0}),

where C2 > C\ > 0 are two constants.
L e t / e H^'-*(fi). Suppose that b : Q x R -*• ER is measurable in x e ft and

continuous in ue IR. Consider the following inequality

f d i v ( C ( * , V11)) £»(x, «(*)), in ft;
(6.4) <

We have
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THEOREM 6.1. Let Q be a bounded Lipschitz domain, <t> satisfies (S1)-(S3) and
A2-condition. Suppose that G satisfies (6.1M6.3), / e Wl-*(Si), b : £2 x R - • K is
measurable inx € Q and continuous in u e R. Let uk(-) e W1*(S2) satisfy (6.4) in
the weak sense,

(6.5) « * - • « , weakly in WU(Q),

and Uk(-) be bounded in Wli<J>(£2). Moreover, suppose that b(-, «*(•)) e L*(£2),
an^ f/iere exists a bo(-) € L*(£2), such that b(x, uk(x)) > bo(x), a.e. Q, for all
k = 1,2, Then u 6 W1<S>(Q), and it satisfies (6.4) in the weak sense too.

PROOF. We give a sketch of the proof.
If b(x, M) is independent of u, then the result can be obtained by a modification of

the proof of Theorem 5.1.
In general, by (6.5), we can suppose that uk(x) converges to u(x) for almost all

x € £2. Thus, by Egorov's Theorem (see [7, Chapter 0], for example), for any e > 0,
there exists a subset Ec c £2, such that \Ee\ < e and uk{-) converges to M(-) uniformly
in d \ Ee, where \Ee\ is the Lebesgue measure of Ee. Let

- \b(x,u{x)), if xeQ\Ee;
bE{x) = {

\bo(x), if x e Ee.

Then for any <5 > 0, there exists a K > 0 such that b(x, uk(x)) > be(x) — S, a.e.
x e £2, for all k> K. Thus, for any k > K,

j-div(G,(;c, Vuk)) > be(x) - S, in Q;

\uk\a<i = / .

Consequently,

\-diw(Gri(x,Vu))>bE(x)-S, in £2;

Let 8 -> 0 + and £ -> 0+, we get

), m "; n

{"Ian =/•
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