CORRESPONDENCE.

ON LOGARITHMS CORRECT TO TEN PLACES OF DECIMALS.

To the Editor of the Journal of the Institute of Acfuaries.

Str,-Having had occasion to require the logarithms of certain numbers to 10 places of decimals, my aftention was directed to the Tables of Mr. S. Pineto of St. Petersburg, and I have found these so simple and convenient in working, that I feel sure the readers of the Journal will be interested in having their method and use explained.

The method referred to depends on the following simple proposition. If A be the number whose logarithm is sought, and M be any other number whatever, then

$$
A=A M \times \frac{1}{M} ; \text { and } \log A=\log A M+\log \frac{1}{M}
$$

The tables of Mr. Pineto consist of two parts;
1st. A subsidiary table of the logarithms to 10 places of the reciprocals of certain multipliers, M, which multipliers, when applied to any number whatever, suffice to bring the first seven figures of the product within the limits $1,000,000$, and $1,011,000$.

2nd. A table of the logarithms to 10 places of all numbers between the aforesaid limits, with tables of proportional parts, which enable the logarithms of any number of not more than 11 digits to be found with the greatest ease.

The tables are comprised in a small volume of 56 pages. The following is an example from the introductory chapter illustrating their use.

Let it be required to find to 10 places the logarithm of the number $\pi=3.1415926536$. From the auxiliary table we find that the requisite multiplier is 32 and that $\log \frac{3}{32}=\overline{2} \cdot 4948500216 \cdot 80$

Then

$\pi=\quad 3 \cdot 1415926536$	$\log _{\frac{1}{32}}$ Log 1005309		$\begin{aligned} & =\overline{2} \cdot 4948500216 \cdot 80 \\ & =2 \cdot 0022995705 \cdot 75 \end{aligned}$	
$\mathrm{M}_{\pi}=100 \cdot 5309649152$	Additions by proportional parts		-	2764:80
		91		$39 \cdot 31$
		52		$\cdot 22$
	$\log \pi$		$=0.49714 .98726 .88$	

It is hardly necessary to say that by a converse process the number can be found corresponding to any logarithm to 10 places.

Unfortunately, Mr. Pineto's tables are out of print; but another set of tables by Mons. A. Namur of Thuin-sur-Sambre, Belgium, based on the same principle, can be readily obtained.*

In the latter, the results are tabulated to 12 places of decimals. The numbers to which the logarithms are given lie between the limits 433,300 and 434,300, and Mons. Namur makes use of the features of the logarithmic differences at this part of the table, to find the logarithm of any number between $433,300,000,000$ and $434,300,000,000$ without the aid of the usual tables of proportional parts. Hence, the very small compass of 11 pages within which his tables are comprised. I must refer the reader for a furtber explanation to the introduction to the tables, written by Mons. P. Mansion, Professor at the University of Ghent.

It must be added, however, that, in respect of facility in use, Mr. Pineto's tables are superior to those of Mons. Namur. In the latter it is necessary to apply two consecutive multipliers in the great majority of cases to the number whose logarithm is sought to bring the first six figures of the product within the limits given by the tables, and the mode of finding the addition to the tabulated logarithm corresponding to the last six figures of the product requires the exercise of great care in fixing the place of the decimal point.

I send for pablication in the Journal the annexed short table, compiled by an acquaintance of mine on the principle of Pineto's tables, which will enable the logarithms of numbers to be found to eight places of decimals, by means of the extended portion lying between the numbers 100,000 and 108,000 in any good logarithmic tables, such as those of Hutton, Babbage, Callet, Schrön, \&e.

The logarithms of $\frac{1}{\mathrm{M}}$ have been obtained from the table of logarithms to 20 places given by Hutton.

> I am, Sir,
> \quad Your obedient servant,

JAS. CHISHOLM.

[^0]Table for computing to Eight Decimals the Logarithm of any Number by means of the Eight-figure Logarithms of the Numbers from 100,000 to 108,000, given in the Tables of Hutton, Babbage, Schrön and others.

N	M	$\log _{\frac{1}{\text { M }}}$	10 g
108	96	$\underline{\underline{2}} \mathbf{-} 01772,87670$	$\cdot 987$
112	9	1.04575,74906	$\cdot 955$
120	88	2.05551,73279	$\cdot 945$
121	84	-2.07572,07139	$\cdot 936$
125	8	1.09691,00130	-9044
134	77	$\overline{\mathbf{2}} \cdot 11350,92748$	-887
140	72	$\underline{\underline{\mathbf{2}}} 114266,75036$	$\cdot 877$
143	7	1.15490,19600	$\cdot 846$
153	66	2.18045,60645	$\cdot 820$
162	63	-20065,94505	. 817
164	61	2-21467,01650	- 810
167	6	1-22184,87496	$\cdot 779$
179	58	- $2 \cdot 23657,20064$. 772
182	55	2,25963,73105	$\cdot 741$
195	54	2-26760,62402	$\cdot 739$
197	51	$\underline{\underline{\mathbf{2}}} \cdot 29242,98239$	731
200	5	1.30102,99957	-699
216	48	$\overline{\mathbf{2}} \mathbf{3 1 8 7 5 , 8 7 6 2 6}$	-686
224	45	$\underline{\underline{2}} 3 \mathbf{3 4 6 7 8 , 7 4 8 6 2}$	$\cdot 676$
228	44	2. 35654,78235	-645
244	41	2.38721,61433	$\cdot 634$
250	4	1-39794,00087	-603
269	39	$\frac{1}{2} 40893,53930$	-592
276	38	2-42021,64034	-588
277	36	$\underline{\mathbf{2}} \mathbf{4} 44369,74992$. 557
300	34	- 4 -46852,10830	-550
303	33	2'48148,60601	-524
323	31	- $\cdot \mathbf{5 0 8 6 3 , 8 3 0 6 2 ~}$	-510
334	3	+152287,87453	$\cdot 478$
359	29	2'53760,20021	$\cdot 464$
371	27	$\underline{\underline{2}} 56868,62358$	$\cdot 431$
400	25	$\underline{2} \cdot 60205,99913$	$\cdot 413$
430	24	2.61978,87583	-376
455	22	$\underline{\underline{2}} \mathbf{- 6 5 7 5 7 , 7 8 1 9 2}$	-355
477	21	$\underline{2}$ 267778,07053	$\cdot 334$
500	2	169897,00043	$\cdot 302$
539	19	2-72124,63990	-288
556	18	$\underline{\underline{2}} 774472,74949$	$\cdot 256$
599	17	$2 \cdot 76955,10786$	-237
625	16	$\underline{\underline{2}} \mathbf{2} 79588,00173$	$\cdot 209$
667	15	$\underline{\underline{2}} \mathbf{- 8 2 3 9 0 , 8 7 4 0 9}$	$\cdot 179$
715	14	2.85387,19643	$\cdot 147$
771	13	$\underline{\underline{2}} \cdot 88605,66477$	$\cdot 114$
829	121	3.91721,46297	-112
834	12	2.92081,87540	-080
900	112	3 95078,19773	. 074
910	11	$\underline{2} \cdot 95860,73148$	$\cdot 042$
981	102	3.99139,98282	$\cdot 037$
991	101	$\overline{3} \cdot 90567,86262$	$\cdot 033$

DIRECTIONS FOR USE OF THE TABLE.

The column M contains multipliers, one of which, properly selected, will always bring the natural number to be dealt with within the limits $10,000,000$ and $10,800,000$. The column $\log \frac{1}{M}$ contains the log., to 10 places, of the reciprocals of those multipliers.

To find the log. to eight places of any number over $10,800,000$. Take the multiplier corresponding to the first three figures of the number in the column N., or to the next lower if those figures are not found there. Multiply by it the number to be dealt with. Find the log. of the result from one of the tables referred to. Add to that \log. the $\log \frac{1}{M}$ from this table. The sum, properly reduced to eight places, gives the log. required.

To find the natural number to eight places of any log. over -083 . . Add thereto the $\log \frac{1}{M}$ corresponding to the first three places of the log. in the above table, or, if not found there, to the next lower places there found. The resulting log. will be between $\cdot 00000000$ and 03300000 . Find its natural number, which is then to be multiplied by the corresponding M. The product is the natural number sought.

It will make the result in all cases rather more accurate if 25 in the ninth and tenth places be added to the tabular log. where the last figare has not been increased, and subtracted where it has been increased in those tables which give information on that point.

PREMIUMS FOR CONTINGENT ASSURANCES.

To the Bditor of the Jowrnal of the Institute of Actuaries.
Sir,-I have read with interest Mr. Chatham's letter which appears in the last number of the Journal (see J.I.A., xxv, 439). For some time I have thought it wonld be desirable to tabulate corrections, such as those which he gives on pp 441 and 442 , by means of which the premium for assuring x against y and for t years longer might be easily deduced from the premium for assuring x against y.

It appears to me, however, not unlikely that the H^{M} Table, which by some of the best authorities is held inapplicable to the calculation of premiums generally, may, on examination, prove specially inappropriate for quoting rates for contingent assurances.

[^0]: * The Tables were published in 1877 at Brussels and Paris by the Royal Academy of Belgium, and the price is $1 s$.

