INCIDENCE RELATIONS IN MULTICOHERENT SPACES II

A. H. STONE

Introduction. One standard method of studying the incidences of a system of sets $A_{1}, A_{2}, \ldots, A_{n}$ is to consider the nerve $\mathfrak{\Re}$ of the system. However, this gives no direct information as to the numbers of components of the various intersections of the sets-information which would be desirable in several geometrical problems. The object of the present paper is to modify the definition of the nerve so that these numbers of components can be taken into account, and to study this modified nerve \mathfrak{M} for systems of sets in a connected, locally connected, normal T_{1} space S of a given degree of multicoherence ${ }^{1} r(S)$. The principal result (Theorem 6,6.4) is a refinement of a theorem of Eilenberg [4, p. 107], and asserts that, if $\cup A_{i}=S$, then under suitable hypotheses we have

$$
\begin{equation*}
r(\mathfrak{R}) \leqslant r(\mathfrak{M}) \leqslant r(S) . \tag{1}
\end{equation*}
$$

This theorem has several geometrical applications, but we shall have to leave these for subsequent treatment.

The proof proceeds as follows. After the necessary definitions (§1), we show ($\$ 2$) that the modified nerve \mathfrak{M} is conveniently related to the family of (continuous) mappings of S in the unit circle S^{1}. Next it is shown (§§3-5) that the analytic degree of multicoherence ${ }^{2} \rho(S)$ is equal to $r(S)$ even at the present generality; the proof, which makes frequent use of modified nerves, depends essentially on first obtaining (1) for the case in which \mathfrak{M} and \mathfrak{N} are 1-dimensional. The analytic technique of Borsuk and Eilenberg is then applied to deduce (1) in full generality, and to yield a few related results.

Though it will be clear that much of the work does not require the assumption of local connectedness, we shall use S throughout the paper to denote a non-empty, connected, locally connected, normal T_{1} space. For notations in general we refer to [9] and [10].

1. The modified nerve

1.1. Definitions, etc. Let $A_{1}, A_{2}, \ldots, A_{n}$ be n given subsets of S. For each non-empty subset $J=\left\{i_{1}, i_{2}, \ldots, i_{\nu}\right\}$ of the set I of all integers from 1

Received September 20, 1949.
${ }^{1}$ Here $r(S)=\sup b_{0}(A \cap B)$, where A and B are closed connected sets such that $A \cup B=S$; the definition of b_{0} is given below (footnote 4). For the fundamental properties of $r(S)$, see [$3,4,12$] in the bibliography at the end of the paper; for notations in general, see [9, 10]. In [10] the space S was assumed in addition to be completely normal; but as indicated in [10, 6.6(3)], this extra assumption is not needed for the results which will be quoted here.
${ }^{2}$ This notation follows [12, p. 229].
to n, we shall write A_{J} as an abbreviation for $A_{i_{1}} \cap A_{i_{2}} \cap \ldots \cap A_{i_{\nu}}$. By a decomposition system (abbreviated to d.s.) $\mathfrak{D}=\left\{A_{j}{ }^{2}\right\}$ of the system A_{1}, A_{2}, \ldots, A_{n}, we shall mean a decomposition of each A_{J} into a finite number ${ }^{3}$ (possibly zero) of pairwise separated sets $A_{J^{a}}$ with $a=1,2, \ldots, a(J)$ (so that, for each fixed J, we have $\cup A_{J^{a}}=A_{J}, A_{J^{a}} \cap A_{J}{ }^{\beta}=0$ if $a \neq \beta$, and $A_{J}{ }^{a}$ is both open and closed relative to A_{J}), in such a way that the following "consistency" criterion is satisfied:
(1) Given a, J and J^{\prime} such that $J^{\prime} \subset J$, there exists a^{\prime} such that $A_{J^{\prime}}{ }^{a^{\prime}} \supset A_{J^{a}}$. (It follows that a^{\prime} is unique, unless $A_{J^{a}}=0$.)

The sets $A_{1}, A_{2}, \ldots, A_{n}$ always have a trivial d.s. in which every $a(J)=1$ and $A_{J}{ }^{1}=A_{J}$. If further $A_{1}, A_{2}, \ldots, A_{n}$ satisfy ${ }^{4} b_{0}\left(A_{J}\right)<\infty$ for every J or, as we shall say, if they are of finite incidence-they have a natural d.s., defined by taking the sets $A_{J}{ }^{a}$ to be the components of A_{J}. We shall be mainly interested in natural d.s.'s, though more general ones will sometimes have to be taken into account.
1.2. Corresponding to every d.s. \mathfrak{D} of $A_{1}, A_{2}, \ldots, A_{n}$, we construct a complex $\mathfrak{M}(\mathfrak{D})$, the modified nerve of the decomposition, as follows. To each non-empty $A_{(j)}{ }^{a}$ we assign a vertex $a_{(j)}{ }^{a}$ of $\mathfrak{M}(\mathfrak{D})(1 \leqslant j \leqslant n)$, and generally to each non-empty $A_{J^{a}}$ we assign an open simplex $a_{J}{ }^{a}$ of $\mathfrak{M}(\mathfrak{D})$ having as vertices those points $a_{(j)^{a \prime}}$ for which $j \in J$ and $A_{J^{a}} \subset A_{(j)^{\prime}}$ (in accordance with (1) above). The faces of $a_{J}{ }^{a}$ are defined to be those simplexes $a_{J^{\prime}}{ }^{a^{\prime}}$ for which $J^{\prime} \subset J$ and $A_{J^{\prime} a^{\prime}} \supset A_{J^{a}}$; thus, for given a, J and J^{\prime}, there is exactly one face $a_{J}{ }^{a^{\prime}}$. With the obvious definition of incidence numbers, $\mathfrak{M}(\mathfrak{D})$ is a complex [6, p. 89] but not in general a simplicial complex [6, p. 92] (since several distinct simplexes may have identical vertices), though it becomes one on barycentric subdivision [8, p, 50]. We shall suppose $\mathfrak{M}(\mathfrak{D})$ to be realized geometrically , and shall use $\mathfrak{M}(\mathfrak{D})$ to denote also the resulting (curved) polytope.

For the trivial d.s., $\mathfrak{M}(\mathfrak{D})$ reduces to the usual nerve, \mathfrak{R} of $A_{1}, A_{2}, \ldots, A_{n}$. If the sets A_{j} have finite incidence and \mathfrak{D} is the natural d.s., we shall write $\mathfrak{M}(\mathfrak{D})$ simply as \mathfrak{M}, and refer to \mathfrak{M} as "the" modified nerve ${ }^{5}$ of $A_{1}, A_{2}, \ldots, A_{n}$.
1.3. Theorem 1. Let \mathfrak{M} be the nerve and \mathfrak{M} the modified nerve of a system of connected sets $A_{1}, A_{2}, \ldots, A_{n}$ of finite incidence, and suppose that $A_{j}-A_{k}$ and $A_{k}-A_{j}$ are always separated ${ }^{6}(1 \leqslant j, k \leqslant n) . \quad$ Then $b_{0}(\mathfrak{M})=b_{0}(\mathfrak{R})=b_{0}\left(\mathbb{U} A_{j}\right)$; and if $\cup A_{j}$, and therefore also \mathfrak{M} and \mathfrak{N}, are connected, we have $r(\mathfrak{M}) \geqslant r(\mathfrak{R})$.

Proof. We omit the easy argument showing that $b_{0}(\mathfrak{M})=b_{0}\left(\mathbf{U} A_{j}\right)=b_{0}(\mathfrak{R})$.

[^0]To prove $r(\mathfrak{M}) \geqslant r(\mathfrak{M})$, let the vertices of \mathfrak{M} (as in 1.2) be $a_{1}{ }^{1}, a_{2}{ }^{1}, \ldots, a_{n}{ }^{1}$, and let those of \mathfrak{N} be $a_{1}, a_{2}, \ldots, a_{n}, a_{j}{ }^{1}$ and a_{j} both corresponding to the connected set A_{j}. There exists an obvious simplicial mapping f of \mathfrak{M} onto \mathfrak{N} such that $f\left(a_{j}{ }^{1}\right)=a_{j}$, and it is easy to see that any closed edge-path in \mathfrak{R} is the image under f of at least one closed edge-path in \mathfrak{M}. Thus f induces a homomorphism of $\pi_{1}(\mathfrak{M})$ onto $\pi_{1}(\mathfrak{R}), \pi_{1}$ denoting the fundamental group. By a theorem of Eilenberg [4, p. 110] there is a homomorphism of $\pi_{1}(\mathfrak{N})$, and thus also of $\pi_{1}(\mathfrak{M})$, onto the free (non-abelian) group with $r(\mathfrak{\Re})$ generators; and hence [4, p. 110] $r(\mathfrak{M}) \geqslant r(\mathfrak{\Re})$.

2. Mappings in S^{1}

2.1. In what follows, f, g, etc. will denote (continuous) mappings of some normal space X (usually a subset of S) in the space S^{1} of complex numbers z with $|z|=1$; and ϕ, ψ, etc. will similarly denote continuous real-valued functions on X. To save notation, we shall usually not distinguish between a mapping $f: X \rightarrow S^{1}$ and the "partial mapping" $f \mid X^{\prime}\left(f\right.$ restricted to $\left.X^{\prime}\right)$ where $X^{\prime} \subset X$. For the convenience of the reader, we repeat the following definitions (cf. [2], [3], [12, ch. 11]).

The product $f g$ is defined by $f g(x)=f(x) g(x)$, the multiplication on the right being that of ordinary complex numbers; and the powers f^{q} ($q=$ $0, \pm 1, \pm 2, \ldots)$ are defined similarly. If there exists ϕ such that $f(x)=$ $g(x) \exp (i \phi(x))$ for all $x \in X$, we write $f \sim g$ on X; in particular, if $f(x)=$ $\exp (i \phi(x))$ we write $f \sim 1$ on X. Mappings $f_{1}, f_{2}, \ldots, f_{n}$ are said to be (linearly) dependent on X if integers $q_{1}, q_{2}, \ldots, q_{n}$ exist, positive or negative but not all zero, such that $f_{1}{ }^{q_{1}} f_{2}^{q_{2}} \ldots f_{n}{ }^{q_{n}} \sim 1$ on X; otherwise they are independent on X. If $X=S$, the qualifying phrases "on X " will generally be omitted.

Given n sets $A_{1}, A_{2}, \ldots, A_{n}$, the greatest number of mappings f of $X=\mathrm{U} A_{j}$ in S^{1} which satisfy

$$
\begin{equation*}
f \sim 1 \text { on } A_{j}, \quad 1 \leqslant j \leqslant n \tag{1}
\end{equation*}
$$

and which are independent on X (or ∞ if there is no such greatest number) is written $p\left(A_{1}, A_{2}, \ldots, A_{n}\right)$.

Finally, the supremum of $p\left(F_{1}, F_{2},\right)$ as F_{1}, F_{2} range over all pairs of closed sets (not necessarily connected) such that $F_{1} \cup F_{2}=S$, is denoted by $\rho(S)$. It is known ([3, p. 172], [4, p. 113]) that $\rho(S)=r(S)$, provided that S is a Peano space or infinite polytope; we shall later be able to remove this proviso.
2.2. Many of the arguments and results in [2], [3] (in which the space X is assumed to be metric) apply here also with, at most, trivial changes. In particular:
(1) If f maps $A \cup B$ in S^{1}, where the sets $A-B$ and $B-A$ are separated and $A \cap B$ is connected, and if $f \sim 1$ on A and $f \sim 1$ on B, then $f \sim 1$ on $A \cup B[2, \mathrm{p} .64,(5)]$.
(2) If f maps X in S^{1}, where X is normal, and if A is a (relatively) closed
subset of X on which $f \sim 1$, there exists a relatively open subset U of X such that $U \supset A$ and $f \sim 1$ on $U([2$, p. 65 (6)]; here the proof needs modification, and uses the fact that the real line is an $\operatorname{AR}[6, \mathrm{p} .28])$.
(3) If f, g both map X in S^{1} and $|f(x)-g(x)|<1$ for each $x \in X$, then $f \sim g$ on $X[3$, p. 156, (2)].
(4) If f maps a closed simplex E in S^{1}, then $f \sim 1$ on E.
2.3. There is a close connection between modified nerves and mappings in S^{1}, as is shown by:

Theorem 2. Let \mathfrak{M} be the modified nerve of a system of closed sets A_{1}, A_{2}, \ldots, A_{n} of finite incidence. Then $b_{1}(\mathfrak{M})=p\left(A_{1}, A_{2}, \ldots, A_{n}\right)$.

We prove (and shall need) a little more than this:
(1) If $A_{1}, A_{2}, \ldots, A_{n}$ are of finite incidence and such that $A_{j}-A_{k}$ and $A_{k}-A_{j}$ are always separated (but are not necessarily closed), then $b_{1}(\mathfrak{M}) \geqslant p\left(A_{1}, A_{2}, \ldots, A_{n}\right)$.
(2) If $A_{1}, A_{2}, \ldots, A_{n}$ are closed (but not necessarily of finite incidence), and if $\mathfrak{M}=\mathfrak{M}(\mathfrak{D})$ is the modified nerve corresponding to a d.s. \mathfrak{D} of A_{1}, A_{2}, \ldots, A_{n}, then $b_{1}(\mathfrak{M}) \leqslant p\left(A_{1}, A_{2}, \ldots, A_{n}\right)$.
2.4. Proof of (1). First, to each mapping f of $\mathbf{U} A_{j}$ in S^{1} such that $f \sim 1$ on each A_{j}, we can assign a 1-cocycle class on \mathfrak{M}, as follows: We have $f(x)=$ $\exp \left(i \phi_{j}(x)\right)$ (say) for $x \in A_{j}$. For each 1-cell $a_{j k}{ }^{a}$ of \mathfrak{M} (oriented from j to k), we pick $y \in A_{(j, k)}{ }^{a}$, and define $n_{j k}{ }^{a}=\left\{\phi_{j}(y)-\phi_{k}(y)\right\} / 2 \pi$; this number is an integer independent of the choice of y (because $A_{(j, k)}{ }^{a}$ is connected). It is easily verified that the 1 -chain $c(f)=\sum n_{j k}{ }^{a} a_{j k}{ }^{a}$ is a cocycle, and that different choices of functions ϕ_{j} give rise to cocycles $c(f)$ differing only by coboundaries.

Now let μ such mappings $f_{\lambda}(1 \leqslant \lambda \leqslant \mu)$ be given, and suppose $\mu>b_{1}(\mathfrak{M})$. There exist integers $p_{1}, p_{2}, \ldots, p_{\mu}$, not all zero, such that $\sum p_{\lambda} c\left(f_{\lambda}\right) \sim 0$. Define $F=f_{1}{ }^{p_{1}} f_{2}^{p_{2}} \ldots f_{n}{ }^{p_{n}}$; thus we have $F \sim 1$ on each A_{j}, say $F=\exp$ ($i \Phi_{j}$) on A_{j}. Again, it readily follows that

$$
c(F)=\sum N_{j k}{ }^{a} a_{j k}{ }^{a},
$$

say $\sim \sum p_{\lambda} c\left(f_{\lambda}\right) \sim 0$. Hence there exists a 0 -cochain $\sum q_{j}{ }^{\beta} a_{j}{ }^{\beta}$ such that $N_{j k}{ }^{a}=q_{j}{ }^{\beta}-q_{k}{ }^{\gamma}$, where $a_{j}{ }^{\beta}, a_{k}{ }^{\gamma}$ are the end-points of $a_{j k}{ }^{a}$. Define a realvalued function Ψ on $\bigcup A_{j}$ by: $\Psi(x)=\Phi_{j}(x)-2 \pi q_{j}{ }^{\beta}$ whenever $x \in A_{j}$. This definition is single-valued (and therefore continuous), since if $x \in A_{j}{ }^{\beta} \cap A_{k}{ }^{\gamma}$ we have $x \in A_{j k}{ }^{a}$ for some a, and then

$$
\left(\Phi_{j}(x)-2 \pi q_{j}^{\beta}\right)-\left(\Phi_{k}(x)-2 \pi q_{k}^{\gamma}\right)=2 \pi\left(N_{j k}{ }^{\alpha}-q_{j}^{\beta}+q_{k}{ }^{\gamma}\right)=0 .
$$

Since clearly $F=\exp (i \Psi)$ on $\mathbf{U} A_{j}$, the mappings f_{λ} are not independent on $\mathrm{U} A_{j}$ if $\mu>b_{1}(\mathfrak{M})$, and consequently $p\left(A_{1}, A_{2}, \ldots, A_{n}\right) \leqslant b_{1}(\mathfrak{M})$.

[^1]2.5. Proof of (2). Now let c be a given 1-cocycle on \mathfrak{M}, its multiplicity on the oriented 1-cell $a_{j k}{ }^{a}$ being the integer $m_{j k}{ }^{a}$ say $\left(=-m_{k j}{ }^{a}\right)$. We shall define, by recursion, real-valued continuous functions Ψ_{k} on $A_{k} \cap\left(A_{1} \cup \ldots\right.$ $\left.\cup A_{k-1}\right)$ and ϕ_{k} on A_{k}, where $k=1,2, \ldots, n$, setting $\phi_{1} \equiv 0$ on $A_{1}, \psi_{2}=$ $-2 \pi m_{12}{ }^{a}+\phi_{1}$ on $A_{12}{ }^{a}(a=1,2, \ldots, a(12)), \phi_{2}=$ an extension of ψ_{2} to A_{2}, and generally
$$
\psi_{k}=-2 \pi m_{j k}^{a}+\phi_{j} \text { on } A_{j k}^{a} \quad(1 \leqslant j<k, 1 \leqslant a \leqslant a(j k))
$$
and $\phi_{k}=$ an extension of ψ_{k} to A_{k}. To justify this definition, we must first show that the definition of ψ_{k} is consistent, i.e., that if $h<j<k$ and $x \in$ $A_{h} \cap A_{j} \cap A_{k}$, say $x \in A_{h j k^{\delta}}{ }^{\circ} \subset A_{j k}{ }^{a} \cap A_{h k}{ }^{\beta} \cap A_{j k}{ }^{\gamma}$, then
$$
-2 \pi m_{j k}{ }^{\alpha}+\phi_{j}(x)=-2 \pi m_{h k}^{\beta}+\phi_{h}(x) .
$$

This follows from the fact that $m_{j k}{ }^{a}+m_{k h^{\beta}}+m_{h j}{ }^{\gamma}=0, c$ being a cocycle. Since ψ_{k} is thus a well-defined continuous function on the closed subset $A_{k} \cap$ $\left(A_{1} \cup \ldots \cup A_{k-1}\right)$ of the normal space A_{k}, the extension ϕ_{k} exists [6, p. 28].

It follows that, whenever $x \in A_{j} \cap A_{k}$, we have $\exp \left(i \phi_{j}(x)\right)=\exp \left(i \phi_{k}(x)\right)$; consequently the mapping f defined by

$$
f=\exp \left(i \phi_{j}\right) \text { on } A_{j}, \quad 1 \leqslant j \leqslant n
$$

is single-valued and continuous on $\mathrm{U} A_{j}$. Further, even though the sets $A_{j k}{ }^{a}$ need not now be connected, we have $\phi_{j}(y)-\phi_{k}(y)=2 \pi m_{j k}{ }^{a}$ whenever $y \in A_{j k}{ }^{a}$, so that a cocycle $c(f)$ can still be associated with f as in 2.4 above, and is evidently simply c.

Now let $b_{1}(\mathfrak{M})=\mu$, and choose $\mu 1$-cocycles $c_{\lambda}, 1 \leqslant \lambda \leqslant \mu$, linearly independent modulo cohomology in \mathfrak{M}. Corresponding to each c_{λ}, the above construction gives a mapping f_{λ} of $\mathbf{U} A_{j}$ in S^{1} such that
(i) $f_{\lambda} \sim 1$ on each A_{j},
(ii) $c\left(f_{\lambda}\right)=c_{\lambda}$.

We have only to show that theses mappings f_{λ} are independent on $\mathbf{U} A_{j}$. But if say $F \equiv f_{1}{ }^{q_{1}} f_{2} q_{2} \ldots f_{\mu}{ }^{q_{\mu}}=\exp (i \Phi)$ on $\mathbf{U} A_{j}$, where the q_{j} 's are integers and Φ is a continuous real-valued function, we readily see that $c(F)$ exists and $\sum q_{\lambda} c_{\lambda} \sim c(F) \sim 0$; hence $q_{1}=q_{2}=\ldots=0$.
2.6. Corollary. If $A_{1}, A_{2}, \ldots, A_{n}$ are closed sets of finite incidence, no three of which have a common point, then ${ }^{8} p\left(A_{1}, A_{2}, \ldots, A_{n}\right)=b_{1}(\mathfrak{M})=$ $h\left(A_{1}, A_{2}, \ldots, A_{n}\right)$.

For the definition of $h\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ here reduces to

$$
b_{0}\left(\mathrm{U} A_{j}\right)+\sum_{j<k}\left(b_{0}\left(A_{j} \cap A_{k}\right)+1\right)-n+1-\sum b_{0}\left(A_{j}\right) .
$$

Now \mathfrak{M} is a linear graph having $b_{0}\left(\mathrm{U} A_{j}\right)+1$ components, $\sum\left(b_{0}\left(A_{j} \cap A_{k}\right)+1\right)$ edges, and $\sum b_{0}\left(A_{j}\right)+n$ vertices; hence $h\left(A_{1}, A_{2}, \ldots A_{n}\right)=b_{1}(\mathfrak{M})$, by the Euler-Poincaré formula.

[^2]Remark. For closed sets in general we have

$$
p\left(A_{1}, A_{2}, \ldots, A_{n}\right) \leqslant h\left(A_{1}, A_{2}, \ldots, A_{n}\right)
$$

This can be proved by induction over n, the case $n=2$ being furnished by the above corollary.

3. Lemmas on linear graphs

3.1. In the next section we shall study "one-dimensional" coverings of S, whose modified nerves will be linear graphs; in preparation for this, we here collect the necessary graph-theoretic lemmas. In view of the applications, a (linear) graph G will here mean a finite 1-complex which may be "improper", i.e., in which two vertices may be joined by several edges (open 1-cells); but each edge is to have two distinct vertices. We denote the numbers of vertices and edges of G by $a_{0}(G), a_{1}(G)$ respectively. The $\operatorname{order} \nu(p, G)$ of a vertex p of G is the number of edges of G which are incident with p (have p as a vertex). A vertex p of order 1 is an end-point of G, and the single edge incident with p is then an end-line. An acyclic connected non-empty graph is a tree.
3.2. From the Euler-Poincare formula, combined with the equality of b_{1} and r for 1 -dimensional Peano spaces [3, p. 162], we have:
(1) If G is a connected and non-empty graph, then

$$
a_{1}(G)-a_{0}(G)+1=b_{1}(G)=r(G)
$$

An elementary computation then gives:
(2) If G is a tree having exactly λ end-points and μ other vertices $q_{1}, q_{2}, \ldots, q_{\mu}$, then

$$
\sum_{1}^{\mu}\left\{\nu\left(q_{j}, G\right)-2\right\}=\lambda-2 .
$$

We note also the obvious property:
(3) If G is a connected graph having an end-point p with end-line C, then $G-C-(p)$ is connected.
3.3. Now let G be a graph having vertices $p_{1}, p_{2}, \ldots, p_{m}$ and edges C_{1}, C_{2}, \ldots, C_{n}, and suppose there exists a (continuous) monotone simplicial mapping ω of a graph H onto G. Thus $\omega^{-1}\left(p_{j}\right)$ is a (closed) connected subgraph of $H, \varpi^{-1}\left(C_{k}\right)$ is a single (open) edge of H, and these inverse sets are pairwise disjoint, non-empty, and cover H. Suppose further that whenever C_{j}, C_{k} are distinct edges of G, the edges $\varpi^{-1}\left(C_{j}\right), \varpi^{-1}\left(C_{k}\right)$ have disjoint closures (i.e., have no end-point in common). We shall then call ϖ^{-1} a dispersion of G, and shall also say that H is a dispersion of G. (Roughly speaking, the operation of "dispersing" G into H consists in replacing the vertices p_{j} of G by disjoint connected graphs $\varpi^{-1}\left(p_{j}\right)$, and reattaching the 1 -cells of G in such a way that no two of them have a common vertex.)
3.4. In what follows, we suppose that H is a dispersion of a connected graph G. Since $\boldsymbol{\omega}$ is monotone,

$$
\begin{equation*}
H \text { is connected; } \tag{1}
\end{equation*}
$$

and from $3.2(1)$ we readily obtain

$$
\begin{equation*}
b_{1}(H) \geqslant b_{1}(G) . \tag{2}
\end{equation*}
$$

A dispersion of G will be called minimal if it satisfies: (a) the sub-graphs $\varpi^{-1}\left(p_{j}\right)$ are all trees, (b) each end-point of each $\varpi^{-1}\left(p_{j}\right)$ is incident with at least one (and therefore exactly one) edge $\varpi^{-1}\left(C_{k}\right)$. From 3.2(1) we see that: (3) If H is a minimal dispersion of G, then

$$
b_{1}(H)=b_{1}(G)
$$

Further,
(4) Given a dispersion H of G, and a subgraph G^{*} of G, there exists a subgraph H^{*} of H which is a minimal dispersion of G^{*}.

In fact, $H_{1}=w^{-1}\left(G^{*}\right)$ is a subgraph of H which is a dispersion of G^{*}. Of those subgraphs of H_{1} which are dispersions of G^{*}, let H^{*} be one having as few edges as possible. It is easy to see that H^{*} will be a minimal dispersion of G^{*}.

Now assume that H is a minimal dispersion of a connected graph G, and let the vertices of the subgraph $\omega^{-1}(p)$ of H (p being a given vertex of G) be $q_{1}, q_{2}, \ldots, q_{h}$. An easy calculation, based on 3.2(2), gives $\sum_{1}^{h}\left\{\nu\left(q_{j}, H\right)-2\right\}$ $=\nu(p, G)-2$, whence, since (with trivial exceptions) each summand is nonnegative:

$$
\begin{equation*}
\nu\left(q_{j}, H\right) \leqslant \nu(p, G) \tag{5}
\end{equation*}
$$

$$
(1 \leqslant j \leqslant h)
$$

and if for some j we have $\nu\left(q_{j}, H\right)=\nu(p, G)$, then

$$
\nu\left(q_{k}, H\right)=2 \text { for all } k \neq j \quad(1 \leqslant k \leqslant h)
$$

We shall say that a minimal dispersion H of a connected graph G is nontrivial if there exists a vertex p of G for which the vertices q_{j} of $w^{-1}(p)$ all satisfy $\nu\left(q_{j}, H\right)<\nu(p, G)$, and that it is trivial otherwise. From (5) we have:
(6) If G_{1}, G_{2}, \ldots is an infinite sequence of connected graphs such that G_{n+1} is a minimal dispersion of $G_{n}(n=1,2, \ldots)$, then, for all large enough $n, G_{n+\mathbb{1}}$ is a trivial dispersion of G_{n}.

Further, (5) shows that a trivial minimal dispersion of G is essentially a "subdivision" of G. In fact, we have:
(7) Let $G_{1}, G_{2}, \ldots, G_{n}(n \geqslant 2)$ be connected graphs such that G_{j+1} is a trivial minimal dispersion of $G_{j}(1 \leqslant j \leqslant n-1)$. Then each non-zero 1-cycle of G_{n} contains (i.e., has non-zero multiplicity on) a sequence of edges $E_{1}, E_{2}, \ldots, E_{m}$, where $m=2^{n-2}+1$, such that
(i) E_{j} and E_{j+1} have exactly one common end-point, which is moreover of order 2 in $G_{n}(1 \leqslant j \leqslant m-1)$, and ${ }^{9}$

$$
\begin{equation*}
\mathrm{Cl}\left(E_{j}\right) \cap \mathrm{Cl}\left(E_{k}\right)=0 \text { if }|j-k| \geqslant 2 \quad(1 \leqslant j, k \leqslant m) . \tag{ii}
\end{equation*}
$$

The proof of (7) is straightforward by induction over n, using (5).

4. One-dimensional coverings

4.1. Theorem 3. Let $r(S)$ be finite, and let $A_{1}, A_{2}, \ldots, A_{n}$ be n non-empty closed connected sets covering S, no three of which have a common point. Then the sets A_{j} are of finite incidence; and if \mathfrak{M} is their modified nerve, we have $r(\mathfrak{M}) \leqslant r(S)$.

We have, if $j \neq k$,

$$
\begin{aligned}
\operatorname{Fr}\left(A_{j}\right) \cap \operatorname{Fr}\left(A_{k}\right) & \cap \operatorname{Fr}\left(A_{j} \cup A_{k}\right) \subset A_{j} \cap A_{k} \cap \mathrm{Cl}\left(\mathrm{Co}\left(A_{j} \cup A_{k}\right)\right) \\
& \subset A_{j} \cap A_{k} \cap \mathrm{U}\left\{A_{m} \mid m \neq j, k\right\}=0
\end{aligned}
$$

hence [10, 7.3] $b_{0}\left(A_{j} \cap A_{k}\right) \leqslant r(S)<\infty$. Thus the sets A_{j} are of finite incidence, and \mathfrak{M} is defined (and is evidently a graph). In accordance with the notation of 1.1 , we write $A_{j k}{ }^{a}(1 \leqslant a \leqslant a(j, k))$ for the components of $A_{j k}$ $=A_{j} \cap A_{k}$. Since

$$
\operatorname{Fr}\left(A_{j}\right) \subset A_{j} \cap \mathbf{U}\left\{A_{k} \mid k \neq j\right\}=\mathbf{U}_{k, a} A_{j k^{a}}
$$

a union of pairwise disjoint closed connected (non-empty) sets, there exist [10, 3.4], for each fixed j, closed connected sets $H_{j k}{ }^{a} \supset A_{j k}{ }^{a}$ such that $\mathbf{U}_{k, a} H_{j k}{ }^{a}=A_{j}$, no three of the sets $H_{j k}{ }^{a}$ have a common point, and the intersection of every two of them is contained in $A_{j}-\mathbf{U}\left\{A_{k} \mid k \neq j\right\}$. (Note that $H_{j k}{ }^{a} \neq H_{k j}{ }^{a}$, though of course $A_{j k}{ }^{a}=A_{k j}{ }^{a}$.)

It readily follows that no three of all the sets $H_{j k}{ }^{a}$ can have a common point, even if j varies. Thus if we renumber the sets $H_{j k}{ }^{a}$, say as $A_{1}(1), A_{2}(1), \ldots$, $A_{n_{1}}(1)$, the sets $A_{j}(1)$ have all the properties which were postulated for the sets A_{j}; hence they are also of finite incidence. Let the nerve and modified nerve of $\left\{A_{j}(1)\right\}$ be G_{1} and H_{1} respectively; both are graphs. We assert:
G_{1} is a dispersion of \mathfrak{M}.
In fact, we can map G_{1} on \mathfrak{M} as follows. Each vertex q of G_{1} corresponds to some set $H_{j k}{ }^{a}$; we define $\varpi(q)=a_{j}$, the vertex of \mathfrak{M} corresponding to A_{j}. Each edge of G_{1} corresponds to a non-empty intersection $H_{j k}{ }^{a} \cap H_{l m}{ }^{\beta}$. If $j=l$, we map the whole edge on a_{j}; if $j \neq l$, we must have $m=j, k=l$ and $a=\beta$, and map the edge "linearly" onto the edge $a_{j k}{ }^{a}$ of \mathfrak{M}. The resulting mapping ϖ is easily seen to be continuous. Further, it is monotone, since $\boldsymbol{\omega}^{-1}$ is clearly $1-1$ on $a_{j k}{ }^{a}$, while $\varpi^{-1}\left(a_{j}\right)$ is precisely the nerve of the sets $H_{j k}{ }^{a}$ with fixed j, and is connected since A_{j} is connected. And it is not hard to see that if $a_{j k}{ }^{a}$ and $a_{l m}{ }^{\beta}$ are distinct edges of \mathfrak{M}, their inverse images under $\boldsymbol{\omega}$ cannot have a common end-point. Thus (1) is established.

[^3]Clearly also, to within isomorphism,
G_{1} is a subgraph of H_{1}.
The whole process is now repeated, starting with the sets $A_{j}(1)$; and so on. We thus obtain, for each $\lambda(=1,2, \ldots)$, a covering of S by closed connected sets $A_{j}(\lambda)\left(1 \leqslant j \leqslant n_{\lambda}\right)$, no three of which have a common point, having nerve G_{λ} and modified nerve H_{λ}, such that $G_{\lambda+1}$ is both a dispersion of H_{λ} and a subgraph of $H_{\lambda+1}$.

From 3.4(4), we obtain recursively a sequence of graphs K_{λ} such that $K_{1}=G_{1}$ and K_{λ} is a subgraph of G_{λ} which is a minimal dispersion of $K_{\lambda-1}$ $(\lambda \geqslant 2)$. By 3.4(6), there exists an integer $N>3$ such that $K_{\lambda+1}$ is a trivial minimal dispersion of K_{λ} whenever $\lambda \geqslant N-2$. On applying 3.4(7) to K_{N-2}, K_{N-1}, K_{N}, we see that every non-zero 1-cycle of K_{N} contains a sequence C_{1}, C_{2}, C_{3} of three edges, such that:

$$
\begin{align*}
& \bar{C}_{1} \cap \bar{C}_{2}=\text { a single vertex } p_{1} \text { of } K_{N}, \tag{i}\\
& \bar{C}_{2} \cap \bar{C}_{3}=\text { a single vertex } p_{2} \text { of } K_{N}, \tag{ii}\\
& \nu\left(p_{1}, K_{N}\right)=2=\nu\left(p_{2}, K_{N}\right), \tag{iii}\\
& \bar{C}_{1} \cap \bar{C}_{3}=0 . \tag{iv}
\end{align*}
$$

For short we shall call such a sequence of three edges a "triad".
The graph K_{N} is connected (3.4(1) and Theorem 1, 1.3); hence if it is not already a tree it contains a cycle containing a triad ($C_{1}{ }^{1}, C_{2}{ }^{1}, C_{3}{ }^{1}$). The subgraph $K_{N}-C_{2}{ }^{1}$ is clearly connected, and has $C_{1}{ }^{1}$ and $C_{3}{ }^{1}$ among its end-lines. Hence if $K_{N}-C_{2}{ }^{1}$ is not a tree it contains a triad ($C_{1}{ }^{2}, C_{2}{ }^{2}, C_{3}{ }^{2}$) disjoint from the first. After a finite number of steps, say r, we obtain r mutually exclusive triads $\left(C_{1}{ }^{s}, C_{2}{ }^{s}, C_{3}{ }^{s}\right), 1 \leqslant s \leqslant r$, in K_{N}, such that $K_{N}-\mathrm{U} C_{2}{ }^{s}=T$, say, is a tree having all the edges $C_{1}{ }^{s}, C_{3}{ }^{s}$ among its end-lines.

From 3.2(1) we obtain

$$
\begin{equation*}
r=r\left(K_{N}\right) . \tag{3}
\end{equation*}
$$

Let U_{i} denote the subgraph of T formed by omitting from T all the edges $C_{i}{ }^{s}$ and the corresponding end-points $\mathrm{Cl}\left(C_{i}{ }^{s}\right) \cap \mathrm{Cl}\left(C_{2}{ }^{s}\right)$ ($i=1,3$). From 3.2(3), U_{1} and U_{3} are connected subgraphs of K_{N}, and thus a fortiori of G_{N}; further, $U_{1} \cap U_{3} \neq 0$, and we note that G_{N} also contains the r distinct edges $C_{2}{ }^{s}$, no two of which have a common end-point, and each of which joins a vertex in $U_{1}-U_{3}$ to a vertex in $U_{3}-U_{1}$.

For each vertex p of $G_{N}-\left(U_{1} \cup U_{3}\right)$, join p to a vertex of $U_{1} \cup U_{3}$ by a simple edge-path $W(p)$ in G_{N} (this is possible since G_{N} is connected, by 1.3), and further choose $W(p)$ to have as few edges as possible. Define $V_{i}=$ union of U_{i} with all those paths $W(p)$ whose ends (other than p) are in $U_{i}(i=1,3)$. Clearly $V_{1}-V_{3} \supset U_{1}-U_{3}$ and $V_{3}-V_{1} \supset U_{3}-U_{1}$; and moreover $V_{1} \cup V_{3}$ contains all the vertices of G_{N}. Now G_{N} is the nerve of the closed connected sets $A_{j}(N)$ covering S. Let $X_{i}=$ union of those sets $A_{j}(N)$ which correspond to vertices in $V_{i}(i=1,3)$. It readily follows that X_{1}, X_{3} are closed connected sets which cover S, and hence

$$
\begin{equation*}
b_{0}\left(X_{1} \cap X_{3}\right) \leqslant r(S) \tag{4}
\end{equation*}
$$

We may suppose the notation so chosen that A_{j} corresponds to a vertex in $V_{1} \cap V_{3}$ if $1 \leqslant j \leqslant \mu$, in $V_{1}-V_{3}$ if $\mu<j \leqslant \nu$, and in $V_{3}-V_{1}$ if $\nu<j \leqslant n_{N}$. Write $D=A_{1}(N) \cup A_{2}(N) \cup \ldots \cup A_{\mu}(N)$. Then clearly

$$
\begin{equation*}
X_{1} \cap X_{3}=D \cup \bigcup\left\{A_{j}(N) \cap A_{k}(N) \mid \mu<j \leqslant \nu<k \leqslant n_{N}\right\} . \tag{5}
\end{equation*}
$$

The sets $D, A_{j}(N) \cap A_{k}(N)$ appearing here are closed and pairwise disjoint (for no three of the sets $A_{j}(N)$ have a common point). Further, $D \neq 0$ (for $V_{1} \cap V_{3} \neq 0$), and at least r of the sets $A_{j}(N) \cap A_{k}(N)$ are non-empty -namely those corresponding to the edges $C_{2}{ }^{8}$ of G_{N}. Hence (5) shows that $b_{0}\left(X_{1} \cap X_{3}\right) \geqslant r$, and so, from (3) and (4), we have $r\left(K_{N}\right) \leqslant r(S)$. But 3.4(2) and 3.4(3) show that

$$
r(\mathfrak{M}) \leqslant r\left(G_{1}\right)=r\left(K_{1}\right)=r\left(K_{2}\right)=\ldots=r\left(K_{N}\right)
$$

and consequently $r(\mathfrak{M}) \leqslant r(S)$.
4.2. Corollary. If $r(S)<\infty$, there exists a covering of S by a finite number of closed connected sets A_{j}, no three of which have a common point, such that (i) their nerve \Re satisfies $r(\Re)=r(S)$, and (ii) every intersection $A_{j} \cap A_{k}$ is connected.
4.3. We next derive, for later use, a related property of open sets (which need not necessarily cover S).

Lemma. Let $A_{1}, A_{2}, \ldots, A_{n}$ be n non-empty closed connected sets such that $\operatorname{Fr}\left(A_{j}\right) \cap \operatorname{Fr}\left(A_{k}\right) \cap \operatorname{Fr}\left(A_{j} \cup A_{k}\right)=0$ whenever $j \neq k$, and no three of which have a common point. Then

$$
b_{0}\left(\mathbf{U} A_{j}\right)+b_{0}\left(\mathbf{U}\left\{A_{j} \cap A_{k} \mid j \neq k\right\}\right) \leqslant r(S)+n-2
$$

We may evidently assume $n>1$ and $r(S)<\infty$. Write $U=\operatorname{Co}\left(\mathbf{U} A_{j}\right)$ and $F_{j}=\operatorname{Fr}(U) \cap \operatorname{Fr}\left(A_{j}\right)$; thus $\mathrm{U} F_{j}=\operatorname{Fr}(U)$ and the sets F_{j} are pairwise disjoint. By $[10,3.4]$, there exist closed sets $H_{j}(1 \leqslant j \leqslant n)$ such that $H_{j} \supset F_{j}$, H_{j} is connected relative ${ }^{10}$ to $F_{j}, ~ \bigcup H_{j}=\bar{U}, H_{j} \cap F_{k}=0$ if $j \neq k, H_{j} \cap H_{k} \subset U$ if $j \neq k$, and no three of the sets H_{j} have a common point.

Write $A_{j} \cup H_{j}=B_{j}$; thus the n sets B_{j} are closed, connected, and cover S, and no three of them have a common point. Hence, from Theorem 3 (4.1) and 3.2(1), the modified nerve \mathfrak{M} of $B_{1}, B_{2}, \ldots, B_{n}$ exists and satisfies

$$
\begin{equation*}
r(\mathfrak{M})=a_{1}(\mathfrak{M})-a_{0}(\mathfrak{M})+1 \leqslant r(S), a_{0}(\mathfrak{M})=n . \tag{1}
\end{equation*}
$$

Now if $j \neq k$ we have $A_{j} \cap H_{k}=A_{j} \cap \bar{U} \cap H_{k} \subset F_{j} \cap H_{k}=0$, and similarly $A_{k} \cap H_{j}=0$. Thus

$$
\begin{equation*}
B_{j} \cap B_{k}=\left(A_{j} \cap A_{k}\right) \cup\left(H_{j} \cap H_{k}\right) ; \tag{2}
\end{equation*}
$$

and since $H_{j} \cap H_{k} \subset U$, the closed sets $A_{j} \cap A_{k}$ and $H_{j} \cap H_{k}$ are disjoint.

[^4]Thus the modified nerve \mathfrak{M}_{0} of $A_{1}, A_{2}, \ldots, A_{n}$ exists and can be obtained from \mathfrak{M} merely by deleting certain edges of \mathfrak{M} (corresponding to the components of the sets $\left.H_{j} \cap H_{k}\right)$. Since \mathfrak{M} is connected, while $b_{0}\left(M_{0}\right)=b_{0}\left(\mathrm{U} A_{j}\right)$ (Theorem 1, 1.3), the number of edges so deleted must be at least $b_{0}\left(\mathrm{U} A_{j}\right)$. Thus we have $b_{0}\left(\mathrm{U} A_{j}\right)+a_{1}\left(\mathfrak{M} \mathcal{M}_{0}\right) \leqslant a_{1}(\mathfrak{M})$; and since the sets $A_{j} \cap A_{k}(j<k)$ are pairwise disjoint, $a_{1}\left(\mathfrak{M}_{0}\right)=$ number of components of $\mathbf{U}\left(A_{j} \cap A_{k}\right)=$ $b_{0}\left(\mathbf{U}\left(A_{j} \cap A_{k}\right)\right)-1$. The lemma now follows from (1).
4.4. Theorem 4. Let U, V be open subsets of S which satisfy $\operatorname{Fr}(U) \cap$ $\operatorname{Fr}(V) \cap \operatorname{Fr}(U \cap V)=0$. Then $h(U, V) \leqslant r(S)$ (i.e., $b_{0}(U \cup V)+b_{0}(U \cap V)$ $\left.\leqslant b_{0}(U)+b_{0}(V)+r(S)\right)$.

Proof. We may assume that $r(S), b_{0}(U)$ and $b_{0}(V)$ are all finite. Let U, V have components $U_{1}, \ldots, U_{m}, V_{1}, \ldots, V_{n}$ respectively. From [10, 7.4], each of the sets $U_{j} \cap V_{k}$ has only a finite number of components, say $W_{j k}{ }^{a}$ $(1 \leqslant a \leqslant a(j k))$. Pick points $x_{j} \in U_{j}, y_{k} \in V_{k}, z_{j k}{ }^{a} \in W_{j k}{ }^{a}$. Since U_{j} is open and connected, there exists a closed connected set joining x_{j} and $z_{j k}{ }^{a}$ in U_{j}; let the union of these closed connected sets, as k and a vary, be denoted by A_{j}. Similarly we construct a closed connected set $B_{k} \subset V_{k}$ containing all the points $z_{j k}{ }^{\alpha}$ (for each fixed k). Write $\mathrm{U} A_{j}=A, \mathrm{U} B_{k}=B$. Then $\operatorname{Co}(A)$ and $\operatorname{Co}(B)$ are open sets containing $\mathrm{Co}(U)$ and $\operatorname{Co}(V)$ respectively; and [10, 6.3] gives the existence of open sets C, D such that $\operatorname{Co}(A) \supset C \supset \operatorname{Co}(U)$, $\operatorname{Co}(B) \supset D \supset \operatorname{Co}(V)$, and $\operatorname{Fr}(C) \cap \operatorname{Fr}(D)=0$. Thus $A \subset \operatorname{Co}(C) \subset U$, which shows that each component A_{j} of A is contained in a component C_{j} (say) of $\mathrm{Co}(C)$, and that $C_{j} \subset U_{j}$. Similarly we obtain n distinct components D_{k} of $\operatorname{Co}(D)$ such that $B_{k} \subset D_{k} \subset V_{k}$. We have $\operatorname{Fr}\left(C_{j}\right) \cap \operatorname{Fr}\left(D_{k}\right) \subset \operatorname{Fr}(C) \cap \operatorname{Fr}(D)$ $=0$, so that the sets $C_{1}, \ldots, C_{m}, D_{1}, \ldots, D_{n}$ satisfy the hypotheses of the lemma (4.3), and therefore

$$
\begin{equation*}
b_{0}\left(\mathbf{U} C_{j} \cup \mathbf{U} D_{k}\right)+b_{0}\left(\mathbf{U}\left(C_{j} \cap D_{k}\right)\right) \leqslant r(S)+m+n-2 . \tag{1}
\end{equation*}
$$

Now the different sets $C_{j} \cap D_{k}$ are pairwise disjoint, and, since $z_{j k}{ }^{a} \in$ $C_{j} \cap D_{k} \subset U_{j} \cap V_{k}$, each set $C_{j} \cap D_{k}$ has at least as many components as $U_{j} \cap V_{k}$. Thus

$$
b_{0}\left(\mathbf{U}\left(C_{j} \cap D_{k}\right)\right) \geqslant b_{0}(U \cap V) .
$$

Similarly $b_{0}\left(\mathbf{U} C_{j} \cup \mathbf{U} D_{k}\right) \geqslant b_{0}(U \cup V)$; and the theorem now follows from (1).
4.5. Remark. A similar argument will apply to any finite number of open sets, no three of which have a common point, and every two of which satisfy the frontier relation of Theorem 4. Further, if S is completely normal, the "approximation" method [10, 6.5] can be carried a step farther [10, 7.5] to yield the following theorem:

Theorem 4a. If S is completely normal, and $E_{1}, E_{2}, \ldots, E_{n}$ are n sets, no three of which have a common point, and every two of which satisfy (i) $E_{j}-E_{k}$ and $E_{k}-E_{j}$ are separated, (ii) $E_{j} \cap E_{k}$ and $\operatorname{Co}\left(E_{j} \cup E_{k}\right)$ are separated $(j \neq k)$, then

$$
\begin{aligned}
\sum b_{0}\left(E_{j}\right)+n-2 & \leqslant b_{0}\left(\mathbf{U} E_{j}\right)+b_{0}\left(\mathbf{U}\left\{E_{j} \cap E_{k} \mid j \neq k\right\}\right) \\
& \leqslant \sum b_{0}\left(E_{j}\right)+r(S)+n-2 .
\end{aligned}
$$

5. The analytic definition of $r(S)$

5.1. The number $\rho(S)$, defined (2.1) in terms of mappings of S in S^{1}, is known to equal $r(S)$ for e.g. Peano spaces. We shall now show that this equality holds for all connected, locally connected, normal T_{1} spaces, without any requirements of compactness or completeness.

Theorem 5. $\quad \rho(S)=r(S)$.
5.2. Proof. It is easy to see that

$$
\begin{equation*}
r(S) \leqslant \rho(S) . \tag{1}
\end{equation*}
$$

In fact, let A_{1}, A_{2} be closed connected sets which cover S, and suppose $b_{0}\left(A_{1} \cap A_{2}\right) \geqslant n$. We can write $A_{1} \cap A_{2}$ as a union of $n+1$ disjoint closed non-empty sets $A_{12}{ }^{\alpha}$; and this defines a d.s. of A_{1}, A_{2} for which the corresponding modified nerve \mathfrak{M} has 2 vertices and $n+1$ edges, so that $n=b_{1}(\mathfrak{M})$. But (2.3 (2)) $b_{1}(\mathfrak{M}) \leqslant p\left(A_{1}, A_{2}\right) \leqslant \rho(S)$; thus $n \leqslant \rho(S)$, and (1) follows.
5.3. Now suppose

$$
\begin{equation*}
r(S)<\rho(S) \tag{2}
\end{equation*}
$$

we shall derive a contradiction. From (2), $r(S)=n$ say $<\infty$, and there exist closed (but not necessarily connected) sets F_{1}, F_{2} and $n+1$ independent (continuous) mappings f_{j} of S in $S^{1}(1 \leqslant j \leqslant n+1)$ such that $f_{j} \sim 1$ on each of F_{1}, F_{2}. There exist (2.2(2)) open sets $A \supset F_{1}, B \supset F_{2}$, and continuous real-valued functions ϕ_{j}, ψ_{j}, such that

$$
\begin{equation*}
f_{j}=\exp \left(i \phi_{j}\right) \text { on } A, \text { and } f_{j}=\exp \left(i \psi_{j}\right) \text { on } B \quad(1 \leqslant j \leqslant n+1) \tag{3}
\end{equation*}
$$

Let A, B have components $\left\{A_{\lambda}\right\},\left\{B_{\mu}\right\}$, repectively. Each of these components is open; further, we have

$$
\operatorname{Fr}\left(A_{\lambda}\right) \cap \operatorname{Fr}\left(B_{\mu}\right) \subset \operatorname{Fr}(A) \cap \operatorname{Fr}(B) \subset \operatorname{Co}(A) \cap \operatorname{Co}(B)=0
$$

Hence for any finite unions $\mathfrak{A}=A_{\lambda_{1}} \cup A_{\lambda_{2}} \cup \ldots \cup A_{\lambda_{h}}$ and $\mathfrak{B}=B_{\mu_{1}} \cup B_{\mu_{2}}$ $\cup \ldots \cup B_{\mu_{k}}$ we have $\operatorname{Fr}(\mathfrak{A}) \cap \operatorname{Fr}(\mathfrak{B})=0$ and therefore (Theorem 4, 4.4)

$$
\begin{equation*}
h(\mathfrak{H}, \mathfrak{B}) \leqslant n . \tag{4}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
b_{0}\left(A_{\lambda} \cap B_{\mu}\right) \leqslant n . \tag{5}
\end{equation*}
$$

Now form a "graph" \mathfrak{M} (which however will be infinite, in general) by taking vertices a_{λ}, b_{μ} corresponding to the sets A_{λ}, B_{μ}, and joining a_{λ} to b_{μ} by as many edges as $A_{\lambda} \cap B_{\mu}$ has components. (Thus \mathfrak{M} is the "modified nerve" of A and B except that it is formed with respect to an infinite decompo-
sition, in general.) From (4) and 3.2 (1) we have $b_{1}(G) \leqslant n$ whenever G is a subgraph of \mathfrak{M} generated by a finite number of vertices of \mathfrak{M}, and hence also whenever G is any finite subgraph of \mathfrak{M}. Thus there is a finite subgraph G_{1} of \mathfrak{M} for which $b_{1}\left(G_{1}\right)$ is as large as possible; say $b_{1}\left(G_{1}\right)=N$, where $N \leqslant n$. Next, since \mathfrak{M} is connected (for S is), there exists a connected finite subgraph G_{2} of \mathfrak{M} containing G_{1} (obtained by adding to G_{1} a finite number of edge-paths connecting the vertices of G_{1} in $\left.\mathfrak{M}\right)$. Let $a_{\lambda_{1}}, \ldots, a_{\lambda_{h}}, b_{\mu_{1}}, \ldots, b_{\mu_{k}}$ be the vertices of G_{2}, and let G_{3} be the subgraph of \mathfrak{M} which they generate. Thus G_{3} is a connected finite graph, and since $G_{3} \supset G_{2} \supset G_{1}$ we have $b_{1}\left(G_{3}\right) \geqslant b_{1}\left(G_{1}\right) \geqslant N$, and therefore $b_{1}\left(G_{3}\right)=N$. Write $\mathfrak{Q}=A_{\lambda_{1}} \cup \ldots \cup A_{\lambda_{h}}, \mathfrak{B}=B_{\mu_{1}} \cup \ldots \cup$ $B_{\mu_{k}}$; then clearly \mathfrak{A} and \mathfrak{B} are of finite incidence, and their modified nerve is G_{3}.

We shall next assign a "rank" to each vertex of \mathfrak{M}, as follows. Let $p\left(=a_{\lambda}\right.$ or b_{μ}) be a given vertex of \mathfrak{M}. If $p \in G_{3}$, its rank is zero. If p non $\in G_{3}$, join p to G_{3} by a finite edge-path $W(p)$ in \mathfrak{M} such that $W(p)$ contains no edge in G_{3} (e.g., take $W(p)$ to be as short as possible). We assert that $W(p)$ is now unique. In fact, if $W^{\prime}(p)$ were a different edge-path satisfying these requirements, the subgraph $G_{3} \cup W(p) \cup W^{\prime}(p)$ would (as is easy to see) contain a closed path not lying entirely in G_{3}, so that $b_{1}\left(G_{3} \cup W(p) \cup W^{\prime}(p)\right)>$ $b_{1}\left(G_{3}\right)=N$, contradicting the definition of N. The rank of p is now defined to be the number of edges in $W(p)$.

The "rank" of a component A_{λ} or B_{μ} of A or B is defined to be the rank of the corresponding vertex of \mathfrak{M}, and we write $C_{\nu}=$ union of all sets (A_{λ} or $\left.B_{\mu}\right)$ of rank $\leqslant \nu(\nu=0,1,2, \ldots)$. Thus C_{ν} is open, $\mathfrak{A} \cup \mathfrak{B}=C_{0} \subset C_{1} \subset C_{2}$ $\subset \ldots$, and $\cup C_{\nu}=S$. Further, the construction shows that the sets of fixed rank $\nu>0$ are pairwise disjoint, while each set of rank $\nu>0$ intersects one and only one set of rank $\nu-1$, and this intersection is always connected.

We have $n+1>N=b_{1}\left(G_{3}\right) \geqslant p(\mathfrak{H}, \mathfrak{B})$, from 2.3 (1); hence, in view of (3) above, there must exist integers $q_{1}, q_{2}, \ldots, q_{n+1}$, not all zero, and a continuous real-valued function θ on $\mathfrak{N} \cup \mathfrak{B}$, such that

$$
\begin{equation*}
F \equiv f_{1}^{q_{1}} f_{2}^{q_{2}} \ldots f_{n+1}{ }^{q_{n+1}}=\exp (i \theta) \text { on } \mathfrak{A} \cup \mathfrak{B} . \tag{6}
\end{equation*}
$$

Using (3), we define

$$
\Phi=\sum q_{j} \phi_{j} \text { on } A, \Psi=\sum q_{j} \psi_{j} \text { on } B ;
$$

thus $F=\exp (i \Phi)$ on A, and $F=\exp (i \Psi)$ on B.
We now extend θ to a continuous function θ, defined for all $x \in S$, and such that $F=\exp (i \theta)$, as follows. On C_{0}, define $\theta=\theta$. Now suppose θ has been defined with the desired properties on C_{ν}. If A_{λ} is a set of rank $\nu+1$, it intersects a unique set of rank ν, necessarily of the form B_{μ}, and $A_{\lambda} \cap C_{\nu}$ $=A_{\lambda} \cap B_{\mu}$ which is connected. Hence on $A_{\lambda} \cap C_{\nu}$ we have $\theta=\Phi-2 \pi m_{\lambda}$ where m_{λ} is a (constant) integer; and we define $\theta=\Phi-2 \pi m_{\lambda}$ on A_{λ}. Similarly θ is defined on each B_{μ} of rank $\nu+1$ (using the function Ψ). Since the sets of rank $\nu+1$ are pairwise disjoint open sets, θ is single valued and con-
tinuous on $C_{\nu+1}$, and clearly $\exp (i \theta)=F$ on $C_{\nu+1}$. This process defines θ with the above properties on all of S; but this contradicts the independence of the mappings f_{j}, and the proof is complete.

6. Finite coverings in general

6.1. Lemma 1. Given a d.s. $\left\{A_{J}{ }^{a}\right\}$ of n closed sets $A_{1}, A_{2}, \ldots, A_{n}$, and given open sets $U(J, a) \supset A_{J^{a}}$, there exist open F_{σ} sets $B_{1}, B_{2}, \ldots, B_{n}$ and a d.s. $\left\{B_{J^{a}}\right\}$ of $B_{1}, B_{2}, \ldots, B_{n}$, such that (i) $A_{J^{a}} \subset B_{J^{a}} \subset \mathrm{Cl}\left(B_{J^{a}}\right) \subset U(J, a)$, (ii) $B_{J}{ }^{a}$ is connected ${ }^{10}$ relative to $A_{J^{a}}$, (iii) $\mathrm{Cl}\left(B_{J^{a}}\right) \cap \mathrm{Cl}\left(B_{J^{\prime}}{ }^{\prime \prime}\right)=0$ whenever $A_{J^{a}} \cap A_{J^{\prime} a^{\prime}}=0$, (iv) $B_{J^{a}} \subset B_{J^{\prime} a^{\prime}}$ whenever $A_{J^{a}} \subset A_{J^{\prime}}{ }^{a^{\prime}}$, and (v) $\mathrm{Cl}\left(B_{J}\right)=$ $\cap\left\{\mathrm{Cl}\left(B_{j}\right) \mid j \in J\right\}$.

Remark. It follows that $\left\{\mathrm{Cl}\left(B_{J}{ }^{a}\right)\right\}$ will be a d.s. of the sets $\overline{B_{j}}$, and that if the sets A_{j} have finite incidences then so do the sets B_{j} and the sets $\overline{B_{j}}$, and all three systems of sets have then the same modified nerve.

Proof. Let k be the greatest number of different suffixes $j, 1 \leqslant j \leqslant n$, for which the intersection of the corresponding sets A_{j} is not empty. The proof will go by induction over k (n remaining fixed). If $k=1$, the result follows easily from the following two well-known properties:
(1) Given $F \subset U$, where F is closed and U open, there exists an open F_{σ} set V such that $F \subset V \subset \bar{V} \subset U$.
(2) If E is an open F_{σ} set, so is every union of components of E.

Now assume the lemma holds whenever every intersection of k of the sets A_{j} is empty $(k>1)$. In what follows, K and K^{\prime} will always denote sets of k suffixes $j(1 \leqslant j \leqslant n)$ for which the corresponding intersections $A_{K}, A_{K^{\prime}}$, are not empty; J, J^{\prime}, etc. denote (as hitherto) arbitrary non-null sets of suffixes; and, except where the contrary is stated, all suffixes and superscripts run over all their admissible values.

From the definition of k and the properties of a d.s., we have

$$
\begin{equation*}
A_{K}^{\beta} \cap A_{J^{a}}=0 \quad \text { unless } J \subset K \text { and } A_{J^{a}} \supset A_{K} . \tag{3}
\end{equation*}
$$

In particular, the sets $A_{K}{ }^{\beta}$ are all pairwise disjoint. Hence there exist open sets $V(K, \beta)$ such that

$$
\begin{align*}
& A_{K^{\beta}} \subset V(K, \beta), \tag{4}\\
& V(K, \beta)=0 \text { whenever } A_{K}{ }^{\beta}=0, \\
& \mathrm{Cl}(V(K, \beta)) \subset U(J, a) \text { whenever } A_{K^{\beta}} \subset A_{J^{a}}, \\
& \mathrm{Cl}(V(K, \beta)) \cap A_{J^{a}}=0 \text { whenever } A_{K^{\beta}} \cap A_{J^{a}}=0, \text { and } \\
& \mathrm{Cl}(V(K, \beta)) \cap \mathrm{Cl}\left(V\left(K^{\prime}, \beta^{\prime}\right)\right)=0 \text { unless } K=K^{\prime} \text { and } \beta=\beta^{\prime} .
\end{align*}
$$

From (1) and (2), we may further suppose that each $V(K, \beta)$ is an open F_{σ} and is connected relative to $A_{K}{ }^{\beta}$.

Now write

$$
\begin{equation*}
W=\mathbf{U} V(K, \beta), A_{j}^{\prime}=A_{j}-W, A_{J^{a}}^{\prime}=A_{J^{a}}-W \tag{5}
\end{equation*}
$$

Clearly the sets $A^{\prime}{ }_{j}$ are closed, $\left\{A^{\prime}{ }_{J}{ }^{a}\right\}$ is a d.s. of $\left\{A^{\prime}{ }_{j}\right\}$, and no k of the sets $A^{\prime}{ }_{j}$ have a common point. Again, in view of (3), there exist open sets $U^{\prime}(J, a)$ such that

$$
\begin{gather*}
A^{\prime}{ }_{J^{a}} \subset U^{\prime}(J, a) \subset U(J, a), \tag{6}\\
\mathrm{Cl}\left(U^{\prime}(J, a)\right) \cap \operatorname{Cl}(V(K, \beta))=0 \text { whenever } A_{K^{\beta}} \cap A_{J^{a}}=0, \text { and } \\
\operatorname{Cl}\left(U^{\prime}(J, a)\right) \cap A_{J^{\prime} a^{\prime}}=0 \text { whenever } A_{J^{a}} \cap A_{J^{a^{\prime}}}=0 .
\end{gather*}
$$

Applying the hypothesis of induction to the system $\left\{A^{\prime}{ }_{J}\right\}$ and open sets $U^{\prime}(J, a)$, we obtain open F_{σ} sets $B^{\prime}{ }_{1}, \ldots, B^{\prime}{ }_{n}$, with a d.s. $\left\{B^{\prime}{ }_{J}{ }^{a}\right\}$, having the properties corresponding to (i)-(v) of the lemma. Define

$$
\begin{align*}
B_{j} & =B^{\prime}{ }_{j} \cup \cup\{V(K, \beta) \mid j \in K\}, \text { and } \tag{7}\\
B_{J^{a}} & =B^{\prime}{ }^{a} \cup \cup\left\{V(K, \beta) \mid A_{K}{ }^{\beta} \cap A_{J^{a}} \neq 0\right\} \\
& =B^{\prime}{ }_{J^{a}} \cup \bigcup\left\{V(K, \beta) \mid K \supset J \text { and } A_{K}{ }^{\beta} \subset A_{J^{a}}\right\}
\end{align*}
$$

(as follows from (3) and (4)). Clearly B_{j} is an open F_{σ}, and $B_{J}{ }^{a}$ is connected relative to A_{J} (for $B^{\prime}{ }_{J}{ }^{a}$ is connected relative to $A^{\prime}{ }_{J}{ }^{a} \subset A_{J^{a}}$, and each $V(K, \beta)$ occurring is connected relative to $A_{K^{\beta}} \subset A_{J}{ }^{a}$). It follows easily from (4), (6), and the hypothesis of induction that $\mathrm{Cl}\left(B_{J^{a}}\right) \subset U(J, a)$. To prove $A_{J^{a}} \subset B_{J^{a}}$, suppose $x \in A_{J^{a}}-B_{J^{a}}$; then x non $\in A^{\prime} J^{a}$ (else $x \in B_{J^{\prime}}{ }^{a} \subset B_{J^{a}}$), and so, from (5), $x \in W$, say $x \in V(K, \beta)$. From (4), $A_{K^{\beta}} \cap A_{J^{a}} \neq 0$; hence, from (7), $V(K, \beta) \subset B_{J}{ }^{a}$, contradicting x non $\in B_{J}$. Thus properties (i) and (ii) are established.

Property (iii) is proved as follows. Suppose $A_{J^{\alpha}} \cap A_{J^{\prime} \alpha^{\prime}}=0$ and

$$
x \in \operatorname{Cl}\left(B_{J^{\prime}}{ }^{a} \cup V(K, \beta)\right) \cap \mathrm{Cl}\left(B_{J^{\prime} a^{\prime}}^{\prime} \cup V\left(K^{\prime}, \beta^{\prime}\right)\right)
$$

where (from (7)) $K \supset J, K^{\prime} \supset J^{\prime}, A_{K^{\beta}} \subset A_{J^{a}}$ and $A_{K^{\prime}}{ }^{\prime \prime} \subset A_{J^{\prime}}{ }^{\prime \prime}$; we must derive a contradiction. The hypothesis of induction gives $\mathrm{Cl}\left(B^{\prime}{ }_{J^{a}}\right) \cap \mathrm{Cl}\left(B_{J^{\prime}{ }^{a}}\right)$ $=0$, while from (4) we obtain $\mathrm{Cl}(V(K, \beta)) \cap \mathrm{Cl}\left(V\left(K^{\prime}, \beta^{\prime}\right)\right)=0$. Hence we may assume

$$
\left.x \in \mathrm{Cl}(V(K, \beta)) \cap \mathrm{Cl}\left(B_{J^{\prime} \alpha^{\prime}}\right)\right) \subset \mathrm{Cl}(V(K, \beta)) \cap \mathrm{Cl}\left(U^{\prime}\left(J^{\prime}, a^{\prime}\right)\right)
$$

From (6) we must have $A_{K^{\beta}} \cap A_{J^{\prime}{ }^{\prime}} \neq 0$, and therefore (from (3)) $A_{K^{\beta}} \subset A_{J^{\prime}}{ }^{\alpha^{\prime}}$. But this contradicts the assumption $A_{J^{a}} \cap A_{J^{\prime}{ }^{\prime \prime}}=0$.

Property (iv) is immediate from (7), (5) and the hypothesis of induction. Thus all that remains to be proved, apart from (v), is that $\left\{B_{J^{a}}\right\}$ is in fact a d.s. of $\left\{B_{j}\right\}$; and in virtue of (iii) and (iv) it will suffice to verify that

$$
\begin{equation*}
\mathbf{U}_{a} B_{J^{a}}=B_{J}, \text { where } B_{J}=\bigcap\left\{B_{j} \mid j \in J\right\} \tag{8}
\end{equation*}
$$

First suppose $x \in B_{J^{a}}$. If $x \in B^{\prime}{ }_{J^{a}}$, then $x \in \bigcap\left\{B^{\prime}{ }_{j} \mid j \in J\right\} \subset B_{j}$; hence we may suppose $x \in V(K, \beta)$ where (from (7)) $A_{K^{\beta}} \subset A_{J^{a}}$ and $K \supset J$. Thus (7) gives $V(K, \beta) \subset B_{j}$ whenever $j \in J$, so again $x \in B_{J}$. This proves $\mathrm{U}_{a} B_{J^{a}} \subset B_{J}$.

Conversely, suppose $x \in B_{J}$. If for every $j \in J$ we have $x \in B^{\prime}{ }_{j}$, then
$x \in B^{\prime}{ }_{J}=\mathrm{U}_{a} B^{\prime}{ }_{J}{ }^{a} \subset \mathrm{U}_{a} B_{J}{ }^{a}$, as desired. Thus we may assume (from (7)) that $x \in V(K, \beta)$, where $j \in K$, for at least one $j \in J$. We assert $J \subset K$. For if say $j^{\prime} \in J-K$, then $x \in B^{\prime}{ }_{j^{\prime}}$, since otherwise $x \in V\left(K^{\prime}, \beta^{\prime}\right)$ with $j^{\prime} \in K^{\prime}$, and then $V\left(K^{\prime}, \beta^{\prime}\right) \cap V(K, \beta) \neq 0$ though $K \neq K^{\prime}$, contradicting (4). Thus $x \in \mathbf{U}_{\gamma} B^{\prime}{ }_{j}{ }^{\prime}, \gamma \subset U U^{\prime}\left(j^{\prime}, \gamma\right)$, and so for some γ we have $x \in U^{\prime}\left(j^{\prime}, \gamma\right) \cap V(K, \beta)$, which from (6) implies $A_{K^{\beta}} \cap A_{J^{\prime}} \neq 0$, whence (by (3)) $j^{\prime} \in K$, a contradiction. Thus $J \subset K$; and the definition of a d.s. now gives the existence of an a^{\prime} such that $A_{K^{\beta}} \subset A_{J^{\alpha^{\prime}}}$. From (7), we have $V(K, \beta) \subset B_{J^{a^{\prime}}}$, and so $x \in \mathbf{U}_{a} B_{J^{a}}$, completing the proof of (8).

Finally, the verification of (v) is along similar lines, and is left to the reader.
6.2. Strictly canonical mappings. Let $U_{1}, U_{2}, \ldots, U_{n}$ be a given covering of S, with a given d.s. $\mathfrak{D}=\left\{U_{J^{a}}\right\}$. For each $x \in S$, let $J(x)$ be the set of all suffixes j for which $x \in U_{j}$; thus $x \in U_{J(x)}$, and so $x \in U_{J(x)}{ }^{a}$ for one and only one value of a, say for $a=a(x)$. The corresponding (open) simplex $u_{J(x)}{ }^{a(x)}$ of $\mathfrak{M}(\mathfrak{D})$ will be denoted by $\sigma(x)$.

A continuous mapping h of S in $\mathfrak{M}(\mathfrak{D})$ will be called strictly canonical ${ }^{11}$ if it satisfies

$$
\begin{equation*}
h(x) \in \sigma(x), \text { all } x \in S \tag{1}
\end{equation*}
$$

It is easy to see that (1) is equivalent ${ }^{12}$ to

$$
\begin{equation*}
h^{-1}\left(\operatorname{St} u_{J}^{a}\right)=U_{J^{a}} \tag{2}
\end{equation*}
$$

St $u_{J}{ }^{a}$ denoting the (open) star of the simplex $u_{J}{ }^{a}$ in $\mathfrak{M}(\mathfrak{D})$.
The proof of the standard existence theorem for mappings in ordinary nerves can readily be extended to give:

Lemma 2. Let $U_{1}, U_{2}, \ldots, U_{n}$ be open F_{σ} sets which cover S and let $\mathfrak{D}=$ $\left\{U_{J^{a}}\right\}$ be a d.s. of $\left\{U_{j}\right\}$. Then there exists a strictly canonical mapping h of S in $\mathfrak{M}(\mathfrak{D})$.
6.3. The fundamental lemma is the following analogue of a lemma of Eilenberg [4, p. 105], and the idea of the proof is essentially the same, though with some complications.

Lemma 3. Let $B_{1}, B_{2}, \ldots, B_{n}$ be a covering of S by open F_{σ} sets of finite incidence, with $\left\{B_{J^{a}}\right\}$ as natural d.s., and suppose that $\left\{\mathrm{Cl}\left(B_{J^{a}}\right\}\right.$ is a d.s. of $\left\{\bar{B}_{j}\right\}$. Let h be a strictly canonical mapping of S in the modified nerve \mathfrak{M} of $\left\{B_{j}\right\}$, and let f be a mapping of \mathfrak{M} in S^{1} such that $f h \sim 1$ on S. Then $f \sim 1$ on \mathfrak{M}.

Suppose not. Then, as in [4, p. 105], there exists a simple closed edge-path in \mathfrak{M} on which f non ~ 1; let \mathbb{C} be such a closed edge-path having as few edges as possible. There is no loss of generality in assuming the sets B_{j} to be connected (otherwise we replace them by their components); hence the nota-

[^5]tion may be chosen so that \mathbb{C}^{5} consists of the edges $b_{12}{ }^{1}, b_{23^{1}}{ }^{1}, \ldots, b_{(s-1) s^{1}}, b_{s 1^{1}}$ joining successive vertices $b_{1}, b_{2}, \ldots, b_{s}$. (Note that here s may well equal 2.) As in [4], it follows from 2.2(1) and the choice of \mathbb{C} that $B_{j} \cap B_{k}=0$ $(1 \leqslant j<k \leqslant s)$ unless j, k are consecutive in the cyclic order $12 \ldots$ sl; and thence it follows, if $s>3$, that no three of the sets $B_{j}(1 \leqslant j \leqslant s)$ can have a common point. Further, this holds even if $s=3$. For otherwise b_{1}, b_{2}, b_{3} are the vertices of a 2 -cell $b_{123}{ }^{a}$ in \mathfrak{M}, which will have edges say $b_{23}{ }^{\beta}, b_{31}{ }^{\gamma}, b_{12}{ }^{\delta}$; but $f \sim 1$ on $\mathrm{Cl}\left(b_{123}{ }^{a}\right)$ (from 2.2(4)), and also $f \sim 1$ on $\mathrm{Cl}\left(b_{23}{ }^{1}\right) \cup b_{23}{ }^{3}$ (which is either an arc or a closed edge-path shorter than (5), and similarly $f \sim 1$ on $\mathrm{Cl}\left(b_{31}{ }^{1}\right) \cup b_{31}{ }^{\gamma}$ and on $\mathrm{Cl}\left(b_{12}{ }^{1}\right) \cup b_{12}{ }^{\delta}$, so that (from 2.2(1)) $f \sim 1$ on \mathfrak{C}, which is absurd. Hence, in view of the postulates on the sets B_{j}, we have:
(1) No three of the sets $\overline{B_{j}}$ have a common point
$$
(1 \leqslant j \leqslant s)
$$

Write $S^{\prime}=\mathrm{U} B_{j}(1 \leqslant j \leqslant s)$; evidently S^{\prime} is connected, and further, as an open F_{σ} subset of S, S^{\prime} is also locally connected and normal. In the next paragraph, all considerations will be relative to S^{\prime}, and we use dashes to indicate relative closures and frontiers. The suffixes j, k, will run between 1 and s, and will be taken modulo s.

For each fixed j we have

$$
\operatorname{Fr}^{\prime}\left(B_{j}\right) \subset \mathrm{Cl}^{\prime}\left(B_{j}\right) \cap \mathrm{Cl}^{\prime}\left(B_{j-1} \cup B_{j+1}\right)=\mathrm{U}_{a} \mathrm{Cl}^{\prime}\left(B_{(j-1) j}^{a}\right) \cup \mathrm{U}_{\beta} \mathrm{Cl}^{\prime}\left(B_{j(j+1)}{ }^{\beta}\right)
$$

the union of a finite number of pairwise disjoint and (relatively) closed connected non-empty sets. On applying $[10,3.4]$ in S^{\prime}, we obtain connected sets $H_{j}{ }^{a} \supset \mathrm{Cl}^{\prime}\left(B_{(j-1) j}{ }^{a}\right), K_{j}{ }^{\beta} \supset \mathrm{Cl}^{\prime}\left(B_{j(j+1)^{\beta}}{ }^{\beta}\right)$, no three of which have a common point (j being fixed), such that the intersection of every two of these sets is contained in $B_{j}-\mathrm{U}\left\{\mathrm{Cl}^{\prime}\left(B_{k}\right) \mid k \neq j\right\}$. Moreover, the sets $H_{j}{ }^{a}, K_{j}{ }^{\beta}$, so obtained will in the first instance satisfy $\mathbf{U}_{a} H_{j}{ }^{a} \cup \mathbf{U}_{\beta} K_{j}{ }^{\beta}=\mathrm{Cl}^{\prime}\left(B_{j}\right)$, and will be closed (relative to S^{\prime}); but we replace them (using 6.1(1) and 6.1(2)) by slightly larger sets to make them open F_{σ} 's (relative to S^{\prime} and thus also relative to S) without introducing any further intersections. For convenience, we introduce the symbol $L_{j}{ }^{a}$ to stand for either $H_{j}{ }^{a}$ or $K_{j}{ }^{a}$. If now j is allowed to vary, we see that, while $H_{j}{ }^{a} \cap K_{j-1}{ }^{a} \supset B_{(j-1) j^{a}} \neq 0$, all other intersections of the form $L_{j}{ }^{a} \cap L_{k}{ }^{\beta}(j \neq k)$ are empty, and consequently no three of the sets $L_{j}{ }^{a}, 1 \leqslant j \leqslant s$, can have a common point.

Let \mathfrak{N} denote the (unmodified) nerve of the sets $L_{j}{ }^{a}$; clearly \mathfrak{N} is a linear graph. We use $h_{j}{ }^{a}, k_{j}{ }^{a}, l_{j}{ }^{a}$ for the vertices of \mathfrak{R} corresponding to the sets $H_{j}{ }^{a}$, $K_{j}{ }^{a}, L_{j}{ }^{a}$ respectively. Since B_{j} is connected, there exists a simple edge-path C_{j} in \mathfrak{R}, joining $h_{j}{ }^{1}$ to $k_{j}{ }^{1}$ via vertices of the form $l_{j}{ }^{a}$ (j fixed) only; and since $B_{j(j-1)}{ }^{1} \neq 0$ there exists a 1 -cell $\left(k_{j-1}{ }^{1} h_{j}{ }^{1}\right)$ in \mathfrak{R}. The sequence

$$
\Omega=\left(k_{s}{ }^{1} h_{1}{ }^{1}\right), C_{1},\left(k_{1}{ }^{1} h_{2}{ }^{1}\right), C_{2}, \ldots,\left(k_{s-1}{ }^{1} h_{s}{ }^{1}\right), C_{s}
$$

constitutes a simple closed curve in $\mathfrak{\Re}$.
Now consider the (continuous) simplicial mapping ω of \mathfrak{N} in \mathfrak{M} defined as follows: w maps each vertex $l_{j}{ }^{a}$ and edge $l_{j}{ }^{a} l_{j}{ }^{\beta}$ on the vertex b_{j} of \mathfrak{M}, and maps
each edge of the form $k_{j-1}{ }^{a} h_{j}{ }^{a}$ "linearly" on the edge $b_{(j-1) j}{ }^{a}$ of \mathfrak{M}. Clearly $\varpi\left(C_{j}\right)=b_{j}$ and so ϖ maps Ω on \mathbb{C} with degree 1 . From this and the uniform continuity of f, we obtain a sequence of mappings $\omega=\omega_{0}, \omega_{1}, \ldots, \omega_{\mu}$ of Ω on \mathfrak{C} such that
ϖ_{μ} is a homeomorphism of Ω on \mathfrak{C},
$\left|f\left(\varpi_{\lambda-1}(x)\right)-f\left(\varpi_{\lambda}(x)\right)\right|<1$ for all $x \in \Omega \quad(1 \leqslant \lambda \leqslant \mu)$.

Thus, from 2.2(3), $f_{\varpi} \sim f_{\sigma_{1}} \sim \ldots f_{\sigma_{\mu}}$ on Ω; and from the fact that f non ~ 1 on \mathfrak{C}, we readily deduce $f_{\varpi_{\mu}}$ non ~ 1 on Ω, and consequently f_{w} non ~ 1 on Ω.

Thus there exist simple closed edge-paths in \mathfrak{R} on which f_{w} non ~ 1; let Ω_{0} be one having as few edges as possible, and let the corresponding sets $L_{j}{ }^{a}$ be renamed $L(1), L(2), \ldots, L(p), L(1)$, following the cyclic order of Ω_{0}. (Note that now $p \geqslant 3$.) As before, two sets $L(j), L(k)$ meet if and only they are consecutive in this cyclic order; hence the nerve of $L(1), L(2), \ldots, L(p)$ is precisely Ω_{0}. Write $Q=\mathbf{U} L(j)(1 \leqslant j \leqslant p)$, and let h^{\prime} be a strictly canonical mapping of Q in Ω_{0}. It is easy to see that, for each $x \in Q$, the point $\varpi h^{\prime}(x)$ of \mathfrak{M} belongs to the closure of the simplex $\sigma(x)$ of \mathfrak{M} which contains $h(x)$. Let $h(x)=h_{0}(x), h_{1}(x), \ldots, h_{N}(x)=\varpi h^{\prime}(x)$ be points dividing the "straight" segment joining $h(x)$ to $\varpi h^{\prime}(x)$, in $\mathrm{Cl}(\sigma(x))$, into N equal parts. One readily verifies that each h_{k} is a continuous mapping of Q in \mathfrak{M}, and that, from 2.2(3), $f h_{0} \sim f h_{1} \sim \ldots \sim f h_{N}$ if N is large enough. Thus $f \varpi h^{\prime} \sim f h \sim 1$ on Q.

The argument can be concluded as in [4, p. 106]; alternatively, by the theorem there proved, we must have $f_{w} \sim 1$ on Ω_{0}. contradicting the definition of Ω_{0}.
6.4. Theorem 6. Let $A_{1}, A_{2}, \ldots, A_{n}$ be non-empty closed connected sets of finite incidence which cover S; let \mathfrak{N} be their nerve and \mathfrak{M} their modified nerve. Then

$$
r(\mathfrak{\Re}) \leqslant r(\mathfrak{M}) \leqslant r(S) .
$$

That $r(\mathfrak{R}) \leqslant r(\mathfrak{M})$ has been proved in 1.3 Suppose $r(\mathfrak{M}) \geqslant m$; from Theorem 5 (5.1) it will suffice to prove $\rho(S) \geqslant m$. There exist closed subsets M, N of \mathfrak{M}, and m independent mappings $f_{j}(1 \leqslant j \leqslant m)$ of \mathfrak{M} in S^{1}, such that $M \cup N=\mathfrak{M}$, $f_{j} \sim 1$ on M, and $f_{j} \sim 1$ on N. By Lemma 1 (6.1), we can enlarge the sets A_{j} to open F_{σ} sets B_{j} having the same modified nerve \mathfrak{M} and satisfying the hypotheses of Lemma 3 (6.3). By Lemma 2(6.2), there exists a strictly canonical mapping h of S in \mathfrak{M}. let $X=h^{-1}(M)$ and $Y=h^{-1}(N) ; X$ and Y are closed sets covering S, and each of the m mappings $f_{j} h$ of S in S^{1} evidently satisfies $f_{j} h \sim 1$ on X and $f_{j} h \sim 1$ on Y. But Lemma 3 (6.3) shows that these mappings are independent on S; hence $\rho(S) \geqslant m$, and the theorem is proved.
6.5. Theorem 7. Let $A_{1}, A_{2}, \ldots, A_{n}$ be non-empty, connected, locally connected, normal sets of finite incidence, which cover S and are such that $A_{j}-A_{k}$ and $A_{k}-A_{j}$ are always separated ${ }^{6}$. Let \mathfrak{M} be their modified nerve. Then $r(S) \leqslant b_{1}(\mathfrak{M})+\sum r\left(A_{j}\right)$.

We may assume $r\left(A_{j}\right)=r_{j}<\infty$. Suppose there exist N independent mappings $f_{1}, f_{2}, \ldots, f_{N}$ of S in S^{1}, and closed sets X, Y such that $X \cup Y=S$, $f_{j} \sim 1$ on X, and $f_{j} \sim 1$ on $Y(1 \leqslant j \leqslant n)$; we must prove (in view of Theorem $5,5.1)$ that $N \leqslant b_{1}(\mathfrak{M})+\sum r_{j}$.

Since $f_{j} \sim 1$ on $X \cap A_{1}$ and on $Y \cap A_{1}$, Theorem 5 shows that at most r_{1} of the mappings f_{j} can be independent on A_{1}. Let the greatest number of independent mappings f_{j} on A_{1} be $s_{1} \leqslant r_{1}$; we may suppose the notation so chosen that $f_{1}, \ldots, f_{s_{1}}$ are independent on A_{1}, and obtain for each $j>s_{1}$ a relation, say

$$
g_{j} \equiv f_{j}{ }_{j}{ }_{j} f_{1}^{q_{j_{1}}} \ldots f_{s_{1}}{ }^{q_{j} s_{1}} \sim 1 \text { on } A_{1}
$$

where the exponents are integers and clearly $p_{j} \neq 0$. It readily follows that the $N-s_{1}$ mappings g_{j} are independent on S, and satisfy $g_{j} \sim 1$ on X and on Y.

By repeating this argument, applying it to A_{2}, \ldots, A_{n} in turn, we obtain $N-\sum s_{k}$ independent mappings (say) h_{j} of S in S^{1} (expressible as powerproducts of the N given mappings f_{j}), where $s_{k} \leqslant r_{k}$, such that $h_{j} \sim 1$ on each $A_{k}(1 \leqslant k \leqslant n)$. Hence, from 2.3(1),

$$
N-\sum s_{k} \leqslant p\left(A_{1}, A_{2}, \ldots, A_{n}\right) \leqslant b_{1}(\mathfrak{M})
$$

and the theorem follows.
Corollary. If further the sets A_{j} are closed and unicoherent, and no three of them have a common point, then $r(S)=r(\mathfrak{M})$.

For Theorem 7 gives $r(S) \leqslant b_{1}(\mathfrak{M})=r(\mathfrak{M})$, since \mathfrak{M} is now a graph; and on the other hand Theorem 6 (6.4) gives $r(S) \geqslant r(\mathfrak{M})$.
6.6. It is natural to ask whether, in Theorem 7 above, the term $b_{1}(\mathfrak{M})$ can be replaced by $r(\mathfrak{M})$. The answer is negative, as is shown by the following example: Let T be a 2 -manifold of genus k, simplicially subdivided, and let $B_{1}, B_{2}, \ldots, B_{n}$ denote the closed stars of the vertices of T in the barycentric subdivision. Let C be a small circular region interior to B_{1}, and define $S=T-C, A_{1}=B_{1}-C$, and $A_{j}=B_{j}(j \geqslant 2)$. It follows immediately from known theorems that $r(S)=2 k, r\left(A_{1}\right)=1$, and $r\left(A_{j}\right)=0(j \geqslant 2)$. But the modified nerve \mathfrak{M} of $A_{1}, A_{2}, \ldots, A_{n}$ is simply the nerve of B_{1}, B_{2}, \ldots, B_{n}-i.e., is T. Hence $r(\mathfrak{M})=r(T)=k$.

However, the replacement of $b_{1}(\mathfrak{M})$ by $r(\mathfrak{M})$ in Theorem 7 is justified (under reasonable conditions) provided all the sets A_{j} are unicoherent. For simplicity we consider only the polyhedral case (though the generalization to ANR's would be easy), and in stating the result do not distinguish between "complex" and "polytope".

Theorem 8. Let $A_{1}, A_{2}, \ldots, A_{n}$ be closed, connected, non-empty unicoherent subcomplexes of a complex S, which cover S, and let \mathfrak{M} be their modified nerve. Then $r(S)=r(\mathfrak{M})$.

Sketch of proof. Choose points $p_{J^{a}} \in A_{J^{a}},\left\{A_{J^{a}}\right\}$ being the natural d.s. of $\left\{A_{j}\right\}$, and for each pair $A_{J^{a}}, A_{K}{ }^{\beta}$ with $K \supset J$ and $A_{J}{ }^{a} \supset A_{K}{ }^{\beta}$, join $p_{K}{ }^{a}$ to $p_{J}{ }^{\beta}$ by an arc in $A_{J}{ }^{a}$. These arcs form a graph G. There is an obvious mapping ϕ of the edge-paths in \mathfrak{M} onto paths in $G \subset S$. In general, ϕ need not induce a homomorphism of $\pi_{1}(\mathfrak{M})$. However, if $r(S)=r$, there exists [4, p. 110] a homomorphism ψ of $\pi_{1}(S)$ onto F_{r}, the free (non-abelian) group on r generators. Using the fact that the sets A_{j} are unicoherent, one can show that $\psi \phi$ induces a homomorphism of $\pi_{1}(\mathfrak{M})$ onto F_{r}. Hence [4, p. 110] $r(\mathfrak{M}) \geqslant r$. But $r(\mathfrak{M}) \leqslant r$, by Theorem 6 (6.4); and Theorem 8 is established.

BIBLIOGRAPHY

[1] C. H. Dowker, Mapping theorems for non-compact spaces, Amer. J. Math., vol. 69 (1947), pp. 200-242.
[2] S. Eilenberg, Transformations continues en circonférence et la topologie du plan, Fund. Math., vol. 26 (1936), pp. 61-112.
[3] -, Sur les espaces multicohérents I, Fund. Math., vol. 27 (1936), pp. 153-190.
[4] ——, Sur les espaces multicohérents II, Fund. Math., vol. 29 (1937), pp. 101-122.
[5] ———Sur la multicohérence des surfaces closes, Comptes Rendus de l' Académie des Sciences de Warsaw, vol. 30 (1937), pp. 109-111.
[6] S. Lefschetz, Algebraic Topology, Amer. Math. Soc. Colloquium Publications, vol. 27 (1942).
[7] ——, Topics in Topology, Ann. of Math. Studies No. 10, Princeton, 1942.
[8] H. Seifert and W. Threlfall, Lehrbuch der Topologie (Leipzig, 1934).
[9] A. H. Stone, Incidence relations in unicoherent spaces, Trans. Amer. Math. Soc., vol. 65 (1949), pp. 427-447.
[10] -, Incidence relations in multicoherent spaces, I, Trans. Amer. Math. Soc., vol. 66 (1949), pp. 389-406.
[11] A. D. Wallace, Separation spaces, Ann. of Math., vol. 42 (1941), pp. 687-697.
[12] G. T. Whyburn, Analytic Topology, Amer. Math. Soc. Colloquium Publications, vol. 28 (1942).

Manchester University

[^0]: ${ }^{3}$ It would be easy to extend these considerations to suitable infinite decompositions; cf. 5.3 below.
 ${ }^{4}$ Following [3], $b_{0}(X)+1=$ number of components of X, if this number is finite, and $b_{0}(X)=\infty$ otherwise; in particular, $b_{0}(O)=-1$.
 ${ }^{5}$ Though \mathfrak{M} consists, roughly, of \mathfrak{N} with repeated cells, \mathfrak{M} need not contain any subcomplex isomorphic with $\mathfrak{\imath}$.
 ${ }^{6}$ This condition (introduced in [11]) will always be satisfied if the sets A_{j} are all open, or all closed, relative to their union.

[^1]: ${ }^{7}$ Generalizing [2, p. 96]. Here b_{1} denotes the 1 -dimensional Betti number with (say) rational coefficients.

[^2]: ${ }^{8}$ By definition [9, p. 441], $h\left(A_{1}, \ldots, A_{n}\right)=\Sigma_{1}^{n} b_{0}\left(X_{r}\right)-\Sigma_{1}^{n} b_{0}\left(A_{j}\right)$, where X_{r} is the set of all points belonging to A_{j} for r or more values of j.

[^3]: ${ }^{9}$ We use the customary abbreviations Cl for closure, Co for complement, Fr for frontier.

[^4]: ${ }^{10}$ For the definition and elementary properties of relative connectedness, see [$9, \mathrm{p} .428$] and [10, 3.3].

[^5]: ${ }^{11}$ Compare [1, p. 210].
 ${ }^{12}$ For ordinary nerves it is enough to require only that (2) hold for vertex-stars; but this reduction is no longer valid for modified nerves, in general.

