
INCIDENCE RELATIONS IN MULTICOHERENT 
SPACES II 
A. H. STONE 

Introduction. One standard method of studying the incidences of a sys
tem of sets A i, A 2,. . . , An is to consider the nerve 9Î of the system. However, 
this gives no direct information as to the numbers of components of the vari
ous intersections of the sets—information which would be desirable in several 
geometrical problems. The object of the present paper is to modify the defi
nition of the nerve so that these numbers of components can be taken into 
account, and to study this modified nerve 5DÎ for systems of sets in a connected, 
locally connected, normal 7 \ space S of a given degree of multicoherence1 r(S). 
The principal result (Theorem 6, 6.4) is a refinement of a theorem of Eilenberg 
[4, p. 107], and asserts that, if \}Ai = 5, then under suitable hypotheses we 
have 

(1) r(5tt)< r(2R)^ r(S). 

This theorem has several geometrical applications, but we shall have to leave 
these for subsequent treatment. 

The proof proceeds as follows. After the necessary definitions (§1), we 
show (§2) that the modified nerve 2)î is conveniently related to the family of 
(continuous) mappings of 5 in the unit circle S1. Next it is shown (§§3-5) 
that the analytic degree of multicoherence2 p(S) is equal to r(S) even at the 
present generality; the proof, which makes frequent use of modified nerves, 
depends essentially on first obtaining (1) for the case in which 9JÎ and 5ft are 
1-dimensional. The analytic technique of Borsuk and Eilenberg is then applied 
to deduce (1) in full generality, and to yield a few related results. 

Though it will be clear that much of the work does not require the assump
tion of local connectedness, we shall use S throughout the paper to denote a 
non-empty, connected, locally connected, normal 7\ space. For notations in 
general we refer to [9] and [10]. 

1. The modified nerve 

1.1. Definitions, etc. Let Ai, A2, . . . , An be n given subsets of 5. For 
each non-empty subset J = {ii, i2, . . . , iv] of the set I of all integers from 1 

Received September 20, 1949. 
1Here r{S) — sup bo(A f~\ B), where A and B are closed connected sets such tha t A VJ B = S; 

the definition of bo is given below (footnote 4). For the fundamental properties of r(S), see 
[3, 4, 12] in the bibliography a t the end of the paper; for notations in general, see [9, 10]. In 
[10] t/he space S was assumed in addition to be completely normal; but as indicated in [10, 
6.6(3)], this extra assumption is not needed for the results which will be quoted here. 

2This notation follows [12, p. 229]. 
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to n, we shall write Aj as an abbreviation for Aix C\ Ai2C\ . . . C\ A». By 
a decomposition system (abbreviated to d.s.) 3) = {^4/} of the system Ai, 
A 2, • . . , An, we shall mean a decomposition of each Aj into a finite number3 

(possibly zero) of pairwise separated sets Aja with a = 1, 2, . . . , a(J) (so that, 
for each fixed J, we have [}Aja = ^4j, ^4j° H A/ = 0 if a ^ 0, and ^4ja is 
both open and closed relative to Aj), in such a way that the following ''con
sistency" criterion is satisfied: 
(1) Given a, / and J' such that Jf C J, there exists a' such that Ay* 3 ^4/*. 
(It follows that a! is unique, unless Aja = 0.) 

The sets ^4i, 4 2 , . . . , An always have a trivial d.s. in which every a(J) = 1 
and ^4j1 = ^4j. If further Ai, A2l . . . , 4̂n satisfy4 &o(-4j) < °° for every / — 
or, as we shall say, if they are of finite incidence—they have a natural d.s., 
defined by taking the sets Aja to be the components of Aj. We shall be 
mainly interested in natural d.s.'s, though more general ones will sometimes 
have to be taken into account. 

1.2. Corresponding to every d.s. 3) of Ai, A2j . . . , An, we construct a com
plex 9ft(3)), the modified nerve of the decomposition, as follows. To each 
non-empty A(jf we assign a vertex a(j)a of 9ft(3)) ( 1 ^ j ^ n), and generally 
to each non-empty Aja we assign an open simplex aja of 9ft(35) having as 
vertices those points a(j)af for which j £ J and Ajad A(j)a' (in accordance 
with (1) above). The faces of aja are defined to be those simplexes aj'a' for 
which J'(Z J and Aj'a'Z) Aja; thus, for given a, J and J ' , there is exactly one 
face aj'a'. With the obvious definition of incidence numbers, 9ft(35) is a 
complex [6, p. 89] but not in general a simplicial complex [6, p. 92] (since several 
distinct simplexes may have identical vertices), though it becomes one on 
barycentric subdivision [8, p, 50]. We shall suppose 9ft(3)) to be realized 
geometrically ,and shall use 9ft (3)) to denote also the resulting (curved) poly-
tope. » 

For the trivial d.s., 9ft(3)) reduces to the usual nerve, 9Î of A\, A2, . . . , An. 
If the sets Aj have finite incidence and 3) is the natural d.s., we shall write 
9ft(3)) simply as 9ft, and refer to 9ft as " the" modified nerve5 of Au A2, . . . , An. 

1.3. THEOREM 1. Let 31 be the nerve and 9ft the modified nerve of a system of 
connected sets A\, A2, . . . , An of finite incidence, and suppose that Aj — Ak and 
Ah — Aj are always separated* (1 ̂  j " , k ^ n). Then Z>0(9ft) = i0(9l) = bo(\)Aj) ; 
and if LL4y, and therefore also 9ft and 9Ï, are connected, we have r(9ft)^ r(9l). 

Proof. We omit the easy argument showing that Z>0(9ft) = bQ(\)Aj) =&0($ft). 
3It would be easy to extend these considerations to suitable infinite decompositions; cf. 

5.3 below. 
4Following [3], bQ(X) + 1 = number of components of X, if this number is finite, and 

bo(X) = oo otherwise; in particular, b0(O) — — 1. 
5Though 9ft consists, roughly, of 91 with repeated cells, 9ft need not contain any subcomplex 

isomorphic with -ft. 
6This condition (introduced in [11]) will always be satisfied if the sets Aj are all open, or 

all closed, relative to their union. 
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To prove r(SDî)^ r($l), let the vertices of 9W (as in 1.2) be ai1, a2\ . . . , a^, 
and let those of 5ft be aïy a2, . . . , ani a}- and ay both corresponding to the 
connected set Aj. There exists an obvious simplicial mapping/ of 9K onto 
5ft such that / ( a / ) = ay, and it is easy to see that any closed edge-path in 9t 
is the image under / of at least one closed edge-path in 5DÎ. Thus / induces a 
homomorphism of TTI(9M) onto ?n(9l), 7ri denoting the fundamental group. By 
a theorem of Eilenberg [4, p. 110] there is a homomorphism of iri(-K), and thus 
also of iri(SDt), onto the free (non-abelian) group with r(Sft) generators; and 
hence [4, p. 110]r(2R)£ r(SR). 

2. Mappings in S1 

2.1. In what follows, / , g, etc. will denote (continuous) mappings of some 
normal space X (usually a subset of S) in the space S1 of complex numbers 
z with \z\ = 1 ; and <£, ^, etc. will similarly denote continuous real-valued func
tions on X. To save notation, we shall usually not distinguish between a 
mapping / : X —> S1 and the "partial mapping" f\Xf (f restricted to X') 
where X' C X, For the convenience of the reader, we repeat the following 
definitions (cf. [2], [3], [12, ch. 11]). 

The product f g is defined by fg{x) = f(x)g(x), the multiplication on the 
right being that of ordinary complex numbers; and the powers fq (q = 
0, =fc 1, ± 2, . . . ) are defined similarly. If there exists <£ such that f(x) = 
g(x) exp (i<t>(x)) for all x 6 X, we write / ~ g on X; in particular, if /(#) = 
exp (i0(#)) we w r i t e / ^ l on X. Mappings/ i , / 2 , . . . ,/n are said to be (linearly) 
dependent on X if integers gi, g2, . . . , qn exist, positive or negative but not all 
zero, such that / i 3 l / 2

a 2 . . .fn
qn ~ 1 on X; otherwise they are independent on X. 

If X — 5, the qualifying phrases "on X" will generally be omitted. 
Given n sets A i, -42, . . . , An, the greatest number of mappings/ of X — \}Aj 

in S1 which satisfy 

(1) f~l on Aj, 1 ^ 7 ^ n 

and which are independent on X (or oo if there is no such greatest number) 
is written p{A\, A2, . . . , An). 

Finally, the supremum of p(Fi, F2,) as Fi, F2 range over all pairs of closed 
sets (not necessarily connected) such that Fi U F2 = 5, is denoted by p(5). 
It is known ([3, p. 172], [4, p. 113]) that p(5) = r(5), provided that 5 is a Peano 
space or infinite polytope; we shall later be able to remove this proviso. 

2.2. Many of the arguments and results in [2], [3] (in which the space X is 
assumed to be metric) apply here also with, at most, trivial changes. In 
particular : 

(1) If/ maps A\J B in S1, where the sets A — B and B — A are separated 
and A C\ B is connected, and if / ~ \ on A and / ~ 1 on B, then / ^ l on 
A U B [2, p. 64, (5)]. 

(2) If / maps X in S1, where X is normal, and if A is a (relatively) closed 
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subset of X on which/ ~ 1, there exists a relatively open subset U of X such 
that C O 4̂ a n d / ^ 1 on f/([2, p. 65 (6)]; here the proof needs modification, 
and uses the fact that the real line is an AR [6, p. 28]). 

(3) H / , g both map X in S1 and |/(x) — g(x)\ < 1 for each x 6 X, then 
/ - g on X [3, p. 156, (2)]. 
(4) If / maps a closed simplex E in 51, then / ^ 1 on E. 

2.3. There is a close connection between modified nerves and mappings in 
S1, as is shown by: 

THEOREM 2. Let 9ft be the modified nerve of a system of closed sets A\, A2, 
. . . , An of finite incidence. Then7 6i(9K) = p(Ai, A2, . . . , An). 

We prove (and shall need) a little more than this : 

(1) If Au A2, . . . , An are of finite incidence and such that Aj — Ak and 
Ak — Aj are always separated (but are not necessarily closed), then 
&i(2K)£ p(AhA2,...,An). 

(2) If ^4i, A2, . . . , An are closed (but not necessarily of finite incidence), 
and if 9J? = 9K(S)) is the modified nerve corresponding to a d.s. 3) of Au 
A2t . . . , An, then &i(SDî) ̂  £(i4i, A2l . . . , i4n). 

2.4. Pm?/ 0/ (1). First, to each mapping/ of [JAj in S1 such that / ~ 1 
on each Aj, we can assign a 1-cocycle class on 9JÎ, as follows: We have/(x) = 
exp (i(l>j(x)) (say) for x £ Aj. For each 1-cell a,jka of 9JÎ (oriented from j to &), 
we pick y Ç ^4(y,fc)

a, and define ^y^a = {«AyCy) ~ <t>k(y)}/2w; this number is an 
integer independent of the choice of y (because A(j,k)a is connected). It is 
easily verified that the 1-chain c(J) = Y^njka^jka is a cocycle, and that differ
ent choices of functions <£y give rise to cocycles c{f) differing only by cobound-
aries. 

Now let JU such mappings f\ (1 ̂  X^ /z) be given, and suppose ix > &i(3Jî). 
There exist integers pu p2, . . . , p^ not all zero, such that ^2p\c(f\) ~ 0. 
Define F = fiPlf2

P2 . . .fn
pn; thus we have F ~ 1 on each Aj, say JP = exp 

(i$j) on i4y. Again, it readily follows that 

C(F) = Y.Nrfdrf, 

say ^ J2p\c(f\) ~ 0. Hence there exists a 0-cochain S g / a / such that 
A '̂fca = 3 / "~ Çky, where a / , #/b7 are the end-points of ay&a. Define a real-
valued function SF on [JAj by: ^(x) = <£y(x) — 2irg/ whenever x Ç i y . This 
definition is single-valued (and therefore continuous), since if x G A/ r\ Ak7 

we have x Ç Ajka for some a, and then 

($,•(*) - 27rg/) - ($*(*) - 2 ^ ) = 2ir(i\riifc« - g / + g^) = 0. 

Since clearly F — exp (i^f) on LM y, the mappings f\ are not independent on 
[}Aj if M > bi(W), and consequently p(Ah A2, . . . , i4n) ^ 6i(2W). 

7Generalizing [2, p. 96]. Here 61 denotes the 1-dimensional Betti number with (say) rational 
coefficients. 

https://doi.org/10.4153/CJM-1950-044-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1950-044-5


MULTICOHERENT SPACES 465 

2.5. Proof of (2). Now let c be a given 1-cocycle on 9ft, its multiplicity on 
the oriented 1-cell ajk

a being the integer mrf say ( = — mkj
a). We shall 

define, by recursion, real-valued continuous functions tyk on Ak H (Ai \J . . . 
U <4fc_i) and <j>k on 4fc, where & = 1, 2, . . . , », setting <f>i = 0 on i4i, \f/2 = 
— 27rmi2a + 0i on <4i2

a (a = 1, 2, . . . , a(12)), <j>2 = an extension of \f/2 to ^42, 
and generally 

\pk = - 2irmjk
a + tf>yon,4iA;

a (1 ̂  j < &, 1 ^ a^ atfk)), 

and <fo = an extension of \pk to 4*. To justify this definition, we must first 
show that the definition of \f/k is consistent, i.e., that if h <j<k and x 6 
Ahr\AjC\ Ak, say x Ç Ahjk

ôC Ajk
a H Ah]? C\ Ajk*, then 

- 27rmjk
a + 4>j(x) = -2irmhk

p + 4>h(x). 

This follows from the fact that mjk
a + mk}? + w^y7 = 0, c being a cocycle. 

Since ^ is thus a well-defined continuous function on the closed subset Ak C\ 
(A\ \J . . . VJ ^4fc_i) of the normal space Ak, the extension <t>k exists [6, p. 28]. 

It follows that, whenever x Ç Aj C\ Ak, we have exp (i<t>j(x)) = exp (i<t>k(x)) ; 
consequently the mapping / defined by 

/ = exp (%) on Ajy 1 ^ j ^ n 

is single-valued and continuous on [}Aj. Further, even though the sets Ajk
a 

need not now be connected, we have 4>j(y) — <t>k(y) = 2wmjk
a whenever y Ç Ajk

a, 
so that a cocycle c(f) can still be associated with / as in 2.4 above, and is 
evidently simply c. 

Now let bi($l) = M» and choose /x 1-cocycles cx, 1 ^ X^ /z, linearly indepen
dent modulo cohomology in 2ft. Corresponding to each c\y the above con
struction gives a mapping f\ of U-4y in S1 such that 

(i) / x ^ 1 on each iiy, (ii) c(/x) = cx. 

We have only to show that theses mappings f\ are independent on LL4y. 
But if say F =fiqif2

q*. . . / / " = exp (*$) on IMy, where the q/s are in
tegers and $ is a continuous real-valued function, we readily see that c(F) 
exists and £g\Cx ~ c(F) ~ 0; hence gi = g2 = . . . = 0. 

2.6. COROLLARY. If Au A2j . . . , An are closed sets of finite incidence, no 
three of which have a common point, then8 p{A\, A2} . . . , An) = b\(W) = 
h(Ai, A2j . . . , An). 

For the definition of h(Ah A2j . . . , An) here reduces to 

bo(\)A3) + E (&oWi H il*) + 1) - » + 1 - 2>oG4y). 

Now 9ft is a linear graph having &0(U-4y) + 1 components, ]£(ioC4y H Ak) + 1) 
edges, and L^o(^-y) + n vertices; hence h(Ah A2f . . . 4») = &i(9ft), by the 
Euler-Poincaré formula. 

«By definition [9, p. 441], h(Ah . . . , An) = S?60(X r) - SJôoWy), where Z r is the set of 
all points belonging to A y for r or more values of 7. 
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Remark. For closed sets m general we have 

p(Ai, A*,..., An) ^ h(Ai, - 4 2 , . . . , An). 

This can be proved by induction over », the case n = 2 being furnished by 
the above corollary. 

3. Lemmas on linear graphs 

3.1. In the next section we shall study "one-dimensional" coverings of 5, 
whose modified nerves will be linear graphs; in preparation for this, we here 
collect the necessary graph-theoretic lemmas. In view of the applications, a 
(linear) graph G will here mean a finite 1-complex which may be "improper", 
i.e., in which two vertices may be joined by several edges (open 1-cells); but 
each edge is to have two distinct vertices. We denote the numbers of vertices 
and edges of G by a0(G), a\{G) respectively. The order v(p, G) of a vertex p 
of G is the number of edges of G which are incident with p (have p as a vertex). 
A vertex p of order 1 is an end-point of G, and the single edge incident with p 
is then an end-line. An acyclic connected non-empty graph is a tree. 

3.2. From the Euler-Poincaré formula, combined with the equality of b\ 
and r for 1-dimensional Peano spaces [3, p. 162], we have: 

(1) If G is a connected and non-empty graph, then 

ai(G) - aQ(G) + 1 = b^G) = r(G). 

An elementary computation then gives: 

(2) If G is a tree having exactly X end-points and /x other vertices qi, q2, ... , q^, 
then 

Eï{K<Z;,G)-2} = X - 2 . 

We note also the obvious property: 

(3) If G is a connected graph having an end-point p with end-line C, then 
G — C — (p) is connected. 

3.3. Now let G be a graph having vertices pi, p2, . . . , pm and edges Cu 

C2, . . . , Cni and suppose there exists a (continuous) monotone simplicial map
ping m of a graph H onto G. Thus tar-1 (£y) is a (closed) connected subgraph 
of H, m^iCk) is a single (open) edge of H, and these inverse sets are pairwise 
disjoint, non-empty, and cover H. Suppose further that whenever Cy, Ck 
are distinct edges of G, the edges ID-""1 (Cy), -m~l{Ck) have disjoint closures (i.e., 
have no end-point in common). We shall then callitr-1 a dispersion of G, and 
shall also say that H is a dispersion of G. (Roughly speaking, the operation 
of "dispersing" G into H consists in replacing the vertices pj of G by disjoint 
connected graphs xtr_1(^y), and reattaching the 1-cells of G in such a way that 
no two of them have a common vertex.) 
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3.4. In what follows, we suppose that H is a dispersion of a connected 
graph G. Since w is monotone, 

(1) H is connected; 

and from 3.2(1) we readily obtain 

(2) bi(H)Z 6X(G). 

A dispersion of G will be called minimal if it satisfies: (a) the sub-graphs 
tiT~1{pj) are all trees, (b) each end-point of each vx~1(pj) is incident with at 
least one (and therefore exactly one) edge tu--1 (C^). From 3.2(1) we see that : 
(3) If H is a minimal dispersion of G, then 

h(H) = 6x(G). 
Further, 

(4) Given a dispersion H of G, and a subgraph G* of G, there exists a sub
graph H* of H which is a minimal dispersion of G*. 

In fact, i?i = w"1(G*) is a subgraph of H which is a dispersion of G*. Of 
those subgraphs of Hi which are dispersions of G*, let H* be one having as 
few edges as possible. It is easy to see that H* will be a minimal dispersion 
ofG*. 

Now assume that H is a minimal dispersion of a connected graph G, and let 
the vertices of the subgraph m'~1(p) of H (p being a given vertex of G) be 
fii» $2, . . . , 3A. An easy calculation, based on 3.2(2), gives Za{K<Z;> H) ~~ 2} 
= v(p, G) — 2, whence, since (with trivial exceptions) each summand is non-
negative : 

(5) v(qj,H)^ v{p,G) 

and if for some j we have v(q3-9 H) = v(p, G), then 

v(qkl H) = 2 for all JM j ( 1 O ^ h). 

We shall say that a minimal dispersion i7 of a connected graph G is non-
trivial if there exists a vertex p oi G for which the vertices gy of vx~1(p) all 
satisfy *>(<?,•, i î ) < v(p, G), and that it is trivial otherwise. From (5) we have: 

(6) If Gi, G2, . . . is an infinite sequence of connected graphs such that Gn+i is: 
a minimal dispersion of Gn {n = 1 , 2 , . . . ) , then, for all large enough n, Gn+& 
is a trivial dispersion of Gn. 

Further, (5) shows that a trivial minimal dispersion of G is essentially a 
1'subdivision" of G. In fact, we have: 

(7) Let Gi, G2, . . . , Gn (n^ 2) be connected graphs such that Gj+i is a trivial 
minimal dispersion of Gj ( l ^ j ^ n — 1). Then each non-zero 1-cycle of Gn 

contains (i.e., has non-zero multiplicity on) a sequence of edges E\, E2, . . . , Emy 

where m = 2n~2 + 1, such that 

( 1 ^ * ) ; 
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(i) Ej and £y+ i have exactly one common end-point, which is moreover of 
order 2 in Gn (1 ̂  j ^ m — 1), and9 

(ii) Cl(£y) H Cl(Ek) = 0 if \j - k\ Ï 2 (1 < j , fe^ m). 

The proof of (7) is straightforward by induction over n, using (5). 

4. One-dimensional coverings 

4.1. THEOREM 3. Let r(S) be finite, and let A\, A%, . . . , An be n non-empty 
closed connected sets covering S, no three of which have a common point. Then the sets 
Aj are of finite incidence] and if 9JJ is their modified nerve, we have r(Jffl) ^ r(S). 

We have, if j ^ k, 

Fr(Aj) r\ FrUk) H Fr(ilyU Ak) C Aj C\AkC\ Cl(Co(,4y \J Ak)) 
C i i ^ i ^ n U {Am\m 9* j , k) = 0; 

hence [10, 7.3] b0(Aj P\ Ak) ^ r(S) < o°. Thus the sets Aj are of finite inci
dence, and 2ft is defined (and is evidently a graph). In accordance with the 
notation of 1.1, we write Ajk

a (1 ̂  a ^ a(j,k)) for the components of Ajk 

= Aj C\ Ak. Since 

¥r{A3)CAjr\ \}{Ak\k * j) = \Jk,aAjk*, 

a union of pairwise disjoint closed connected (non-empty) sets, there exist 
[10, 3.4], for each fixed j , closed connected sets Hjk

a D Ajk
a such that 

\JkiaHjk
a = Aj, no three of the sets Hjk

a have a common point, and the intersec
tion of every two of them is contained in Aj — [}{Ak\k 9^ j}. (Note that 
Hjk

a 7* Hkj
a, though of course Ajk

a = Akj
a.) 

It readily follows that no three of all the sets Hjk
a can have a common point, 

even if j varies. Thus if we renumber the sets Hjk
a, say as -4i(l), -42(1), . . . , 

Ani(l)j the sets Aj(l) have all the properties which were postulated for the 
sets Aj] hence they are also of finite incidence. Let the nerve and modified 
nerve of {.4y(l)} be G\ and H\ respectively; both are graphs. We assert: 

(1) G\ is a dispersion of 9)?. 

In fact, we can map G\ on 9JÎ as follows. Each vertex q of G\ corresponds 
to some set Hjk

a] we define w(q) = ay, the vertex of 9ft corresponding to Aj. 
Each edge of G\ corresponds to a non-empty intersection Hjk

a C\ Him?. If 
j = I, we map the whole edge on ay; if j ^ /, we must have m = j , k = I and 
a = j(3, and map the edge "linearly" onto the edge ajk

a of 5DÎ. The resulting 
mapping HT is easily seen to be continuous. Further, it is monotone, since m~l 

is clearly 1 — 1 on ay&a, while m~l(aj) is precisely the nerve of the sets Hjk
a 

with fixed j , and is connected since A y is connected. And it is not hard to 
see that if ajk

a and aim? are distinct edges of 3JI, their inverse images under w 
cannot have a common end-point. Thus (1) is established. 

9We use the customary abbreviations CI for closure, Co for complement, Fr for frontier. 
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Clearly also, to within isomorphism, 

(2) Gi is a subgraph of H\. 

The whole process is now repeated, starting with the sets A3-(l) ; and so on. 
We thus obtain, for each X ( = l , 2 , . . . ) , a covering of S by closed connected 
sets Aj(X) (1 ̂  j ^ ^x), no three of which have a common point, having nerve 
G\ and modified nerve H\, such that Gx+i is both a dispersion of H\ and a 
subgraph of H\+i. 

From 3.4(4), we obtain recursively a sequence of graphs K\ such that 
K\ = Gi and K\ is a subgraph of G\ which is a minimal dispersion of i£x-i 
(X^ 2). By 3.4(6), there exists an integer N > 3 such that i£x+i is a trivial 
minimal dispersion of K\ whenever X^ N — 2. On applying 3.4(7) to 
i£#_2, KN-i, KN, we see that every non-zero 1-cycle of KN contains a sequence 
Ci, C2, C3 of three edges, such that: 

(i) Ci H C2 = a single vertex pi of i£#, 
(ii) Ci C\ Cz = a single vertex £2 of i£#, 

(iii) VJJ>I,K_N) = 2 = v(p*,KN), 
(iv) Ci H C3 = 0. 

For short we shall call such a sequence of three edges a "triad". 
The graph KN is connected (3.4(1) and Theorem 1, 1.3); hence if it is not 

already a tree it contains a cycle containing a triad (CV, C21, C31). The sub
graph KN — C21 is clearly connected, and has d 1 and C31 among its end-lines. 
Hence if KN — C21 is not a tree it contains a triad (Ci2, C22, C32) disjoint from 
the first. After a finite number of steps, say r, we obtain r mutually exclusive 
triads (Cis, £2*, C3S)> 1 ^ 5 ^ r> m 2̂V> such that KN — UC28 = T, say, is a 
tree having all the edges d s , Czs among its end-lines. 

From 3.2(1) we obtain 

(3) r = r(KN). 

Let £7» denote the subgraph of T formed by omitting from T all the edges 
d8 and the corresponding end-points C1(C»*) Pi C1(C28) (i = 1,3). From 
3.2(3), Ui and £/3 are connected subgraphs of K^, and thus a fortiori of G#; 
further, UiC\Uz ^ 0, and we note that G^ also contains the r distinct edges 
C2

S, no two of which have a common end-point, and each of which joins a 
vertex in Ui — Uz to a vertex in Z73 — Z7i. 

For each vertex p ol GN — (Ui^J Us), join p to a vertex of Ui U C/3 by a 
simple edge-path W(p) in G# (this is possible since G^ is connected, by 1.3), 
and further choose W(p) to have as few edges as possible. Define V% = union 
of Ui with all those paths W(p) whose ends (other than p) are in U% (i = 1,3). 
Clearly Vi — VzZ) Ui — Uz and Vz — F O Uz — U\, and moreover Fi \J Vz 
contains all the vertices of G#. Now G^ is the nerve of the closed connected 
sets Aj(N) covering S. Let Xi = union of those sets Aj(N) which correspond 
to vertices in V% (i = 1,3). It readily follows that Xi, X3 are closed con
nected sets which cover 5, and hence 
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(4) 6 0 ( I i n i 3 ) ^ ( 5 ) . 

We may suppose the notation so chosen that A j corresponds to a vertex in 
V\C\ Vz if 1 ^ j ^ ju> in Vi — Vz if M < j ^ v, and in F3 — V± if v < j ^ w#. 
Write £> = Ax(N) U il2(iV) U . . . U ilM(JV)- Then clearly 

(5) Z i H X , = 2?UUMi(iV)ni l i f c( iV) | / i < i ^ y < * ^ » ^ } . 

The sets D, Aj{N) C\ Ak{N) appearing here are closed and pairwise disjoint 
(for no three of the sets Aj(N) have a common point). Further, D ^ 0 
(for Vi C\ Vz s* 0), and at least r of the sets Aj(N) C\ Ak(N) are non-empty 
—namely those corresponding to the edges C2

8 of GN. Hence (5) shows that 
b0(Xi H Xz) Ï r, and so, from (3) and (4), we have r(KN) ^ r(S). But 3.4(2) 
and 3.4(3) show that 

f(3W)< r(Gi) = r(Kt) = r(K2) = . . . = r(KN), 

and consequently r(9W) ^ r(S). 

4.2. COROLLARY. Ifr(S)<<x>> there exists a covering of S by a finite number 
of closed connected sets A j , no three of which have a common point, such that (i) their 
nerve 9Î satisfies r(j!l) = r(S), and (ii) every intersection Aj C\ Akis connected. 

4.3. We next derive, for later use, a related property of open sets (which 
need not necessarily cover S). 

LEMMA. Let A\,A2, . . . , An be n non-empty closed connected sets such that 
Fr(Aj) r\ Fr(̂ 4fc) r\ Fr (A j\J A k) = 0 whenever j ^ k, and no three of which 
have a common point. Then 

boiVAj) + boiUiAj r\ Ak\j * k}) ^ r(S) +n-2. 

We may evidently assume n > 1 and r(S) < oo. Write U = Co(LMy) and 
Fj — Fr(C/) C\ Fr(Aj); thus [JFj = Fr(U) and the sets Fj are pairwise dis
joint. By [10, 3.4], there exist closed sets Hj ( 1 ^ j ^ n) such that i f / D Fj, 
Hj is connected relative10 to Fj} [)Hj = U, Hj C\ Fk = 0 if j V k, Hj r\ HkC U 
if j ^ k, and no three of the sets Hj have a common point. 

Write Aj\J Hj = B$\ thus the n sets Bj are closed, connected, and cover 
5, and no three of them have a common point. Hence, from Theorem 3 (4.1) 
and 3.2(1), the modified nerve 9JÏ of Bi, B2, . . . , Bn exists and satisfies 

(1) r(3R) = ai(SK) - a0(m) + 1 ^ r(S), a0(9») = ». 

Now if j 9* k we have i4y C\ Hk = Aj C^TJ C\ HkC Fj Pi i7fc = 0, and 
similarly AkC\ Hj = 0. Thus 

(2) By C\ Bk = (iiy H 4*) U (fTy H IT*) J 

and since Hj C\ Hk C £A the closed sets Aj C\ Ak and Hj (~\ Hk are disjoint. 
10For the definition and elementary properties of relative connectedness, see [9, p. 428] and 

[10, 3.3]. 
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Thus the modified nerve 2W0 of Ax, A2, . . . , An exists and can be obtained 
from 5DÎ merely by deleting certain edges of 9ÏÎ (corresponding to the components 
of the sets Hj H Hk). Since 5D? is connected, while &0($D?o) = bo([)Aj) (Theo
rem 1, 1.3), the number of edges so deleted must be at least &0(LL4y). Thus 
we have b0(\jAj) + ai(9ft0) ^ ai&l) ; and since the sets Aj C\ Ak (J < k) are 
pairwise disjoint, ai(9fto) = number of components of [)(Ajr\Ak) = 
b0(l)(Aj H il*)) - 1. The lemma now follows from (1). 

4.4. THEOREM 4. Let U, V be open subsets of S which satisfy Fr(£7) C\ 
¥r(V)C\¥r{Ur\ V) = 0. Thenh(U, V)$ r(S) (i.e.,b0(U\JV) + b^UCW) 
^ bo(U)+b0(V)+r(S)). 

Proof. We may assume that r(S), b0(U) and b0(V) are all finite. Let U, 
V have components U\, . . . , Um, V\, . . . ,Vn respectively. From [10, 7.4], 
each of the sets Uj P\ Vk has only a finite number of components, say Wjka 

( 1 ^ a ^ a(jk)). Pick points xj G Uj, yk G Vk, Zjk
a G Wjka- Since Uj is 

open and connected, there exists a closed connected set joining Xj and Zjka in 
Z7y; let the union of these closed connected sets, as k and a vary, be denoted 
by Aj. Similarly we construct a closed connected set Bkd Vk containing all 
the points Zjk

a(tor each fixed k). Write [)Aj = A, \JBk = B. Then Co(A) 
and Co(5) are open sets containing Co(£/) and Co(F) respectively; and [10, 
6.3] gives the existence of open sets C, D such that Co(^4)D CZ) Co(U), 
Co(B) DD^Co(V), and Fr(C) H Fr(Z>) = 0. Thus A C Co(C) C U, which 
shows that each component Aj oî A is contained in a component Cy (say) of 
Co(C), and that CyC Uj. Similarly we obtain n distinct components Dk of 
Co{D) such that BkCDkC Vk. We have Fr(Cy) H Fr(r>*) C Fr(C) H Fr(£>) 
= 0, so that the sets G, . . . , Cm, Dh . . . , Dn satisfy the hypotheses of the 
lemma (4.3), and therefore 

(1) bo(\JCjV[)Dk) +bo(\J(Cjr\Dk))^ r(S)+m + n-2. 

Now the different sets Cj C\ Dk are pairwise disjoint, and, since Zjka € 
Cj r\ Dkd Uj n Vk, each set Cj C\ Dk has at least as many components as 
Uj C\ Vk. Thus 

bo(\J(Cj K Dk))Z b0(Ur\ V). 

Similarly b0([)Cj W [)Dk) ^ b0(U\J V); and the theorem now follows from (1). 

4.5. Remark. A similar argument will apply to any finite number of open 
sets, no three of which have a common point, and every two of which satisfy 
the frontier relation of Theorem 4. Further, if S is completely normal, the 
"approximation" method [10, 6.5] can be carried a step farther [10, 7.5] to 
yield the following theorem: 

THEOREM 4a. If S is completely normal, and Eu E2, . . . , En are n sets, no 
three of which have a common point, and every two of which satisfy (i) Ej — Ek 
and Ek — Ej are separated, (ii) Ej C\ Ek and Co(Ey \J Ek) are separated 
(J 5e k), then 
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2>o(£y) + n - 2 ^ botVEj) + bo([){Ej H Ek\j * k}) 
$ E6o(£y) + K5) + n - 2. 

5. The analytic definition of r(5) 

5.1. The number p(S), defined (2.1) in terms of mappings of S in S1, is 
known to equal r(S) for e.g. Peano spaces. We shall now show that this 
equality holds for all connected, locally connected, normal Ti spaces, without 
any requirements of compactness or completeness. 

THEOREM 5. p(S) = r(5). 

5.2. Proof. It is easy to see that 

(1) r(S)^ p(5). 

In fact, let Ai, A 2 be closed connected sets which cover 5, and suppose 
b0(Ai C\ A2) •£ n. We can write Ai C\ A2 as a union of n + 1 disjoint closed 
non-empty sets 412"; and this defines a d.s. of ^41, A 2 for which the correspond
ing modified nerve 9K has 2 vertices and n + 1 edges, so that » = &i(9Jî). But 
(2.3 (2)) h(m)^ p(AhA2)^ p(S); thus n^ p(5), and (1) follows. 

5.3. Now suppose 

(2) r(S)<P(S); 

we shall derive a contradiction. From (2), r(S) = n say < 00, and there 
exist closed (but not necessarily connected) sets Fi, F2 and n + 1 independent 
(continuous) mappings/y of S in S1 (1 ̂  j ^ » + 1) such that /y ^ 1 on each 
of Fi, F2. There exist (2.2 (2)) open sets AZ) Fi, B~Z) F2, and continuous 
real-valued functions <j>j, \pj, such that 

(3) fj = exp(i^y) on ^4, and/y = exp(^y) on J3 ( 1 ^ j ^ » + 1). 

Let ^4, B have components {^4x}, {$M}, repectively. Each of these components 
is open; further, we have 

Fr(^x) C\ F r ( ^ ) C Fr (^) C\ Fr(B) C Co(il) H Co(B) = 0. 

Hence for any finite unions 31 = A\x \J A\2 \J . . . U ^4\A and 93 =^M1 ^ 5 ^ 
U . . . U£M/k we have Fr(») H Fr(93) = 0 and therefore (Theorem 4, 4.4) 

(4) A(«, 93) ^ ». 

In particular, 

(5) froWxHSJ^ ». 

Now form a "graph" 93? (which however will be infinite, in general) by 
taking vertices ax, 0M corresponding to the sets A\, B^ and joining ax to b^ 
by as many edges as A\ C\ B^ has components. (Thus 9JÎ is the ''modified 
nerve" of A and B except that it is formed with respect to an infinite decompo-
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sition, in general.) From (4) and 3.2 (1) we have bi(G) ^ n whenever G is a 
subgraph of 9ft generated by a finite number of vertices of 9ft, and hence also 
whenever G is any finite subgraph of 9ft. Thus there is a finite subgraph d 
of 9ft for which &i(d) is as large as possible; say &i(d) = N, where N^ n. 
Next, since 9ft is connected (for S is), there exists a connected finite subgraph 
G2 of 9ft containing G\ (obtained by adding to d a finite number of edge-paths 
connecting the vertices of d in 9ft). Let a\lf . . . , a\h, &Ml, . . . , by.k be the ver
tices of G2, and let G3 be the subgraph of 9W which they generate. Thus G3 is a 
connected finite graph, and since G3D G2D Gi we have &i(G8)£ 61(d) £ iV, 
and therefore 61(d) = iV. Write §1 = ,4Xl U . . . U 4Xfc, 33 = J5ft U . . . U 
J3MÂ.; then clearly SI and 33 are of finite incidence, and their modified nerve is G3. 

We shall next assign a "rank" to each vertex of 9ft, as follows. Let p(= a\ 
or by) be a given vertex of 9ft. If p € G3, its rank is zero. If p non £ G3, 
join p to G3 by a finite edge-path W(£) in 9ft such that W(p) contains no edge 
in G3 (e.g., take W{p) to be as short as possible). We assert that W(p) is now 
unique. In fact, if W{p) were a different edge-path satisfying these require
ments, the subgraph G3 U W(p) U W'(£) would (as is easy to see) contain 
a closed path not lying entirely in G3, so that &i(G3 W TV(£) W W(£)) > 
&i(G3) = JV, contradicting the definition of N. The rank of p is now defined 
to be the number of edges in W(p). 

The "rank" of a component A\ or By, oî A or B is defined to be the rank 
of the corresponding vertex of 9ft, and we write Cv — union of all sets 04 x or 
J5M) of rank ^ v (v = 0, 1, 2, . . . ). Thus Cv is open, 21 U 93 = CoCCiCC 2 

C • • . 1 and U d = 5. Further, the construction shows that the sets of fixed 
rank v > 0 are pairwise disjoint, while each set of rank v > 0 intersects one 
and only one set of rank v — 1, and this intersection is always connected. 

We have n + 1 > N = 6 i ( d ) £ £(H, S3), from 2.3 (1); hence, in view of 
(3) above, there must exist integers qi, q2, . . . ,gn+i, not all zero, and a con
tinuous real-valued function 6 on 31 KJ S3, such that 

(6) F s / x ' i / ^ . . . / n + 1 ^ + 1 = exp(id) on 21 U 33. 

Using (3), we define 

$ = Efttfi on ,4, ^ = L&V'y on £ ; 

thus JF = exp(i$) on ^4, and F = exp(i^) on 5 . 

We now extend 0 to a continuous function 9, defined for all x Ç 5 , and such 
that F = exp(iO), as follows. On Co, define 0 = 0. Now suppose G has 
been defined with the desired properties on Cv. If Ax is a set of rank v + 1, 
it intersects a unique set of rank v, necessarily of the form B», and A\C\ Cv 

= A\C\Bll which is connected. Hence on A\C\CV we have G = $ — 2irm\ 
where m\ is a (constant) integer; and we define G = <ï> — 2wtn\ on ^4X. Simil
arly G is defined on each By. of rank v + 1 (using the function SI>). Since the 
sets of rank v + 1 are pairwise disjoint open sets, G is single valued and con-
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tinuous on C„+i, and clearly exp(iG) = F on C„+i. This process defines 9 
with the above properties on all of S; but this contradicts the independence 
of the mappings /y, and the proof is complete. 

6. Finite coverings in general 

6.1. LEMMA 1. Given a d.s. {Aja} of n closed sets A\, Ai, . . . , An, and 
given open sets U(J, a )D Aja, there exist open Fa sets B\, B2l . . . , Bn and a 
d.s. {Bj«}of Bh B* . . . , Bn, such that (i) AjaC BjaC Cl(Bj*)C U{J, a), 
(ii) Bja is connected10 relative to Aja, (iii) Cl(Bja) P\ C\(Bj>a') — 0 whenever 
Ajar\Aj'af = 0, (iv) BjaCBj>a' whenever AjaCAj>a', and (v) Cl(Bj) = 

n{ci(5y) | je/}. 
Remark. I t follows that {Cl(Bja)} will be a d.s. of the sets Bj, and that if 

the sets Aj have finite incidences then so do the sets Bj and the sets Bj, and 
all three systems of sets have then the same modified nerve. 

Proof. Let k be the greatest number of different suffixes jy 1 ^ j ^ n, for 
which the intersection of the corresponding sets Aj is not empty. The proof 
will go by induction over k (n remaining fixed). If k = 1, the result follows 
easily from the following two well-known properties: 

(1) Given FC U, where F is closed and U open, there exists an open Fa set 
V such that FC VC VC U. 

(2) If £ is an open Fa set, so is every union of components of E. 

Now assume the lemma holds whenever every intersection of k of the sets 
Aj is empty (k > 1). In what follows, K and Kr will always denote sets of k 
suffixes j (1 ̂  j ^ : n) for which the corresponding intersections AKJ AK, are 
not empty; / , J r , etc. denote (as hitherto) arbitrary non-null sets of suffixes; 
and, except where the contrary is stated, all suffixes and superscripts run over 
all their admissible values. 

From the definition of k and the properties of a d.s., we have 

(3) AK^ H Aja = 0 unless J C K and Aj*D AKK 

In particular, the sets AK^ are all pairwise disjoint. Hence there exist open 
sets V(K, /3) such that 

(4) AK
pC V(K,0), 

V{K, {$) = 0 whenever A^ = 0, 
C\(V{K, 0))C U(J, a) whenever A^C Aj\ 
C1(V(K, &)) H Aja == 0 whenever AK

& C\ Aja = 0, and 
Cl(V(K, 13)) H Cl(V(K', 0')) = 0 unless K = K' and j8 = p. 

From (1) and (2), we may further suppose that each V(K, 0) is an open F„ 
and is connected relative to AK^-

Now write 
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(5) W = l)V(K, 0), A'j = Aj - W, A'j* = Aj- - W. 

Clearly the sets A'j are closed, {^4'/a} is a d.s. of {-4'y}, and no k of the sets 
A'j have a common point. Again, in view of (3), there exist open sets U'(Jfa) 
such that 

(6) A'j'C U'(Jya)C U(J,a), 
Cl(U'(J, a)) H C1(V(K, 0)) = 0 whenever AK* C\ Aj* = 0, and 

C1(Z7'(/. a)) Pi Ar« = 0 whenever Aja C\ Aj>a'= 0. 

Applying the hypothesis of induction to the system [A'j] and open sets 
U'(J, a), we obtain open F9 sets JB'i, . . . , B'n, with a d.s. {B'ja}, having the 
properties corresponding to (i)—(v) of the lemma. Define 

(7) Bj = B'j U U { F ( X , / 3 ) | j e # } , a n d 
Bj* = B'j* U U{ V(K, 0)\AK^ H ^ j a ^ 0} 

= B'j* KJ U{ F(X, 0)\KD J and 4 K * C 4 j -} 

(as follows from (3) and (4)). Clearly Bj is an open Ffft and J3/a is connected 
relative to Aj (for B'ja is connected relative to A'jaQ Aja, and each F(i£, 0) 
occurring is connected relative to AR^CAJ0). It follows easily from (4), (6), 
and the hypothesis of induction that C\(Bja) C U(J, a). To prove AjaC Bja, 
suppose x G Aja— Bja; then x non G ^4'ya (else x G BrjaC Bja), and so, from 
(5), x G PF, say x G F(i£, 0). From (4), . 4 ^ H 4 j a ^ 0; hence, from (7), 
V{K, 0) C Bja, contradicting x non G J5y. Thus properties (i) and (ii) are 
established. 

Property (iii) is proved as follows. Suppose Aja C\ Aj>af = 0 and 

x G C1(£V W F(X, |8)) H C1(B V U V(K', 0')), 

where (from (7)) KD J, K'Z) J', AK^C Aja and AK'*'C Aj>af; we must de
rive a contradiction. The hypothesis of induction gives Cl(Bfja) Pi C\(B'j'a') 
= 0, while from (4) we obtain Cl(V(K, 0)) P C\(V(K', 0')) = 0. Hence we 
may assume 

x G Cl(V(K, 0)) P C 1 ( S V ) ) C C\(V(K, 0)) P Cl(U'(J', a')). 

From (6) we must have AK^AJ**' ^ 0, and therefore (from (3)) AK^CAJ'*'. 

But this contradicts the assumption Aja C\ Aj>a' = 0. 
Property (iv) is immediate from (7), (5) and the hypothesis of induction. 

Thus all that remains to be proved, apart from (v), is that {Bja\ is in fact a 
d.s. of {Bj} ; and in virtue of (iii) and (iv) it will suffice to verify that 

(8) \JaBj« = Bj, where Bj = (\{Bj\j G / } . 

First suppose x G Bja. If x G B''ja, then x G (\{B'j\j G/} C BJ; hence we 
may suppose x G V(K, 0) where (from (7)) AK

PC Aja and K^J. Thus (7) 
gives V(K, 0) C Bj whenever j G / , so again x G Bj. This proves \JaBja(Z Bj. 

Conversely, suppose x G Bj. If for every j £ J we have x G B'j, then 
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x G B'j = U o B V C Ua-Bja, as desired. Thus we may assume (from (7)) that 
x G V(K, 0), where j G K, for at least one j G J. We assert JC. K. For if 
s a y / £ J — K, then x G JBV, since otherwise x G V(K', /3') w i t h / G K', and 
then V(K',ff)r\V(K,0)y*O though K^K', contradicting (4). Thus 
x G U 7 5 V C U £/ '(/ , T ) , and so for some 7 we have x G U'(j', T) H V(K, p), 
which from (6) implies AR^ (~\ Aj>y ^ 0, whence (by (3)) f G K, a contradic
tion. Thus Jd K\ and the definition of a d.s. now gives the existence of an 
a' such that AK

pCAj*'. From (7), we have V(K, p) C Bja', and so x G U a ^ j a , 
completing the proof of (8). 

Finally, the verification of (v) is along similar lines, and is left to the reader. 

6.2. Strictly canonical mappings. Let Ui, U2, . . . , Un be a given covering of 
S, with a given d.s. 3) = { f/ja}. For each # £ 5, let 7(x) be the set of all suf
fixes j for which x G Uj\ thus x G Uj(x), and so x G Uj(x)

a for one and only one 
value of a, say for a — a(x). The corresponding (open) simplex Uj{x)

a{x) of 
2fl(2)) will be denoted by o-(x). 

A continuous mapping h of S in $Dt(S)) will be called strictly canonical11 

if it satisfies 

(1) h(x) G cr(x), a l l s G 5. 

It is easy to see that (1) is equivalent12 to 

(2) h-^St uj") = Uj«, 

St wja denoting the (open) star of the simplex Uja in 9ft(2)). 
The proof of the standard existence theorem for mappings in ordinary 

nerves can readily be extended to give: 

LEMMA 2. Let Ui, U2, . . . , Un be open Fa sets which cover S and let 5D = 
{ Uja) be a d.s. of { Uj}. Then there exists a strictly canonical mapping h of S 
in 2K(S)). 

6.3. The fundamental lemma is the following analogue of a lemma of 
Eilenberg [4, p. 105], and the idea of the proof is essentially the same, though 
with some complications. 

LEMMA 3. Let Bi, B2, . . . ,Bn be a covering of S by open Fa sets of finite 
incidence, with {Bja} as natural d.s., and suppose that {Cl(J3ja} is a d.s. of {Bj\. 
Let h be a strictly canonical mapping of S in the modified nerve 2ft of {Bj}, and let 
fbe a mapping of 9ft in S1 such that fh~lon S. Then f ~ 1 on 9ft. 

Suppose not. Then, as in [4, p. 105], there exists a simple closed edge-path 
in 9ft on which / n o n ^ 4 ; let 6 be such a closed edge-path having as few 
edges as possible. There is no loss of generality in assuming the sets Bj to be 
connected (otherwise we replace them by their components) ; hence the nota-

"Compare [1, p. 210]. 
12For ordinary nerves it is enough to require only tha t (2) hold for vertex-stars; but this 

reduction is no longer valid for modified nerves, in general. 
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tion may be chosen so that Ê consists of the edges 6121, &231, . . . , &(s-i)s\ ^si1 

joining successive vertices 61, &2, . . . , b8. (Note that here 5 may well equal 
2.) As in [4], it follows from 2.2(1) and the choice of 6 that Bj H Bk = 0 
(1 ̂  j < k^ s) unless j , k are consecutive in the cyclic order 12 . . . s i ; and 
thence it follows, if s > 3, that no three of the sets Bj (1 ̂  j ^ s) can have a 
common point. Further, this holds even if s = 3. For otherwise bi, 62, b% 
are the vertices of a 2-cell buza in Wl, which will have edges say b2/, #3i7, &128; 
b u t / — 1 on Cl(Z>i23

a) (from 2.2(4)), and a l so / ~ 1 on CK&231) U &28' (which 
is either an arc or a closed edge-path shorter than S), and similarly / ~ 1 on 
Cl^ai1) yj bzly and on CK&u1) U&u8, so that (from 2.2(1)) / - l o n g , which 
is absurd. Hence, in view of the postulates on the sets Bj, we have: 

(1) No three of the sets Bj have a common point (1 ̂  j ^ s). 

Write S' = [}Bj ( 1 ^ j ^ s); evidently 5 ' is connected, and further, as an 
open Fa subset of 5, S' is also locally connected and normal. In the next 
paragraph, all considerations will be relative to 5', and we use dashes to in
dicate relative closures and frontiers. The suffixes j , k, will run between 1 
and 5, and will be taken modulo 5. 

For each fixed j we have 

Fr'(By) C CY(Bj) H CY(Bj.x U Bj+1) = U.Cl'(B(y-i);') U U,Cl'(By(y+1)<0, 

the union of a finite number of pairwise disjoint and (relatively) closed con
nected non-empty sets. On applying [10, 3.4] in S', we obtain connected sets 
HjaZ) CY(B(j-i)ja), X / 3 Cl'(J3j(i+i)^), no three of which have a common 
point (j being fixed), such that the intersection of every two of these sets is 
contained in Bj — [}{CY(Bk)\k 9^ j}. Moreover, the sets iJya, i £ / , so 
obtained will in the first instance satisfy \JaHja U \}pKj& = Cl'(-By), and will 
be closed (relative to S')\ but we replace them (using 6.1(1) and 6.1(2)) by 
slightly larger sets to make them open TVs (relative to 5 ' and thus also relative 
to 5) without introducing any further intersections. For convenience, we 
introduce the symbol Lja to stand for either Hja or Kja. If now j is allowed 
to vary, we see that, while Hja P\ i£y_ iO B(j-i)ja 9^ 0, all other intersections 
of the form Lja P\ L^ (j 9e k) are empty, and consequently no three of the 
sets Lja, 1 ^ j ^ 5, can have a common point. 

Let 9Î denote the (unmodified) nerve of the sets Lya; clearly 91 is a linear 
graph. We use hja, &ya, lja for the vertices of 91 corresponding to the sets Hja, 
Kja, Lja respectively. Since Bj is connected, there exists a simple edge-path 
Cj in 91, joining hj1 to k3

x via vertices of the form lja (j fixed) only; and since 
Bj(j-i)1 9^ 0 there exists a 1-cell (kj-^hj1) in 91. The sequence 

St = (WW), d, (WW), C 2 , . . . , (Jfe.-JW), C , 

constitutes a simple closed curve in 91. 
Now consider the (continuous) simplicial mapping vr of 91 in Wl defined as 

follows :w maps each vertex lja and edge Z/Z/ on the vertex bj of SD?, and maps 
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each edge of the form kj-iahja "linearly" on the edge &(/-i)ya of 9ft. Clearly 
m(Cj) = bj and so-or maps S on 6 with degree 1. From this and the uniform 
continuity of/, we obtain a sequence of mappings m = vr0, mi, . . . ,XD-M of S on 
6 such that 

(i) Wfj, is a homeomorphism of $ on S, 
(ii) |/(nrx_i(*)) - / f a x ( * ) ) | < 1 for all * G « (1 < X^ M). 

Thus, from 2.2(3), /to- ~fmi ~ . . ./GTM on S; and from the fact t h a t / n o n ~ 1 
on S, we readily deduce/orM non ^-' 1 on S, and consequently /BJ non ~ 1 on $ . 

Thus there exist simple closed edge-paths in Sft on which fur non ~ 1 ; let 
So be one having as few edges as possible, and let the corresponding sets Lja 

be renamed L(l), L(2), . . . , L(p), L( l ) , following the cyclic order of S0 . 
(Note that now ^?^ 3.) As before, two sets L(j), L(k) meet if and only they 
are consecutive in this cyclic order; hence the nerve of L( l ) , L(2), . . . , L(p) 
is precisely S0. Write Q = UL(j) (1 ̂  / ^ £), and let h' be a strictly canoni
cal mapping of Q in S0 . It is easy to see that, for each x Ç Q, the point mh'(x) 
of 9ft belongs to the closure of the simplex o-(x) of 9ft which contains A(x). Let 
h(x) = Ao(x), Ai(x), . . . ,}IN(X) =mhf(x) be points dividing the "straight" 
segment joining h(x) to mh'(x), in Cl(cr(x)), into iV equal parts. One readily 
verifies that each hk is a continuous mapping of Q in 9ft, and that, from 2.2(3), 
fho ~fhi ~ . . . ~ fh>N if N is large enough. Thus fmh' ~fh~l on Q. 

The argument can be concluded as in [4, p. 106]; alternatively, by the 
theorem there proved, we must have/cr ^ 1 on So. contradicting the definition 
of So. 

6.4. THEOREM 6. Let A\, Ai, . . . , An be non-empty closed connected sets 
of finite incidence which cover S; let 9Î be their nerve and 9ft their modified nerve. 
Then 

r(5R)^ r(Wl)^ r(S). 

That r(3t) ^ r(9ft) has been proved in 1.3 Suppose r(9ft) ^ m ; from Theorem 
5 (5.1) it will suffice to prove p(5) ^ m. There exist closed subsets M, N of 9ft, 
and m independent mappings fj (1 ̂  j ^ m) of 9ft in S1, such that M VJ N= 9ft, 
fj ~ 1 on M, and/y ^ 1 on iV. By Lemma 1 (6.1), we can enlarge the sets 
Aj to open Fa- sets Bj having the same modified nerve 9ft and satisfying the 
hypotheses of Lemma 3 (6.3). By Lemma 2(6.2), there exists a strictly 
canonical mapping h of 5 in 9ft. let X = h~~l(M) and Y = h~l{N)\ X and 
Y are closed sets covering S, and each of the m mappings /^ of S in S1 evidently 
satisfies fjh ~ 1 on X and fjh ~ 1 on Y. But Lemma 3 (6.3) shows that these 
mappings are independent on S; hence p(S) ^ m, and the theorem is proved. 

6.5. THEOREM 7. Let A\, At, . . . , An be non-empty, connected, locally 
connected, normal sets of finite incidence, which cover S and are such that Aj — Ak 
and Ak — Aj are always separated6. Let 9ft be their modified nerve. Then 
r(S)^ bm) + Y,r(Aj). 
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We may assume r(Aj) = ry < ° ° . Suppose there exist N independent 
mappings/i, /2 , . . . , / # of S in S1, and closed sets X, F such that I U F = S , 
/y ~ 1 on X, and/y ^ 1 on F(l ^ j ^ n);we must prove (in view of Theorem 
5, 5.1) that N^ h(m) + E*V-

Since / y ^ l on X f \ 4 i and on FfVli, Theorem 5 shows that at most ri of 
the mappings fj can be independent on A i. Let the greatest number of in
dependent mappings fj on Ai be si^ r\, we may suppose the notation so 
chosen t h a t / i , . . . ,fSl are independent on Ai, and obtain for each j > Si a 
relation, say 

where the exponents are integers and clearly pj =̂  0. It readily follows that 
the N — Si mappings gj are independent on S, and satisfy gj ^ l o n l and 
on F. 

By repeating this argument, applying it to Az, . . . , An in turn, we obtain 
N ~~ Hsk independent mappings (say) hj of 5 in S1 (expressible as power-
products of the N given mappings fj), where sfc^ rkj such that hj ^ 1 on 
each Ak ( 1 ^ k^ n). Hence, from 2.3(1), 

and the theorem follows. 

COROLLARY. If further the sets Aj are closed and unicoherent, and no three 
of them have a common point, then r(S) = r(9)i). 

For Theorem 7 gives r(S)^ bi(W) = r(2K), since 9ft is now a graph; and 
on the other hand Theorem 6 (6.4) gives r(S) ^ r(W). 

6.6. It is natural to ask whether, in Theorem 7 above, the term &i(5D?) can 
be replaced by r(W). The answer is negative, as is shown by the following 
example: Let T be a 2-manifold of genus k, simplicially subdivided, and let 
Bit B2, . • . , Bn denote the closed stars of the vertices of T in the barycentric 
subdivision. Let C be a small circular region interior to B\, and define 
S = T — C, A\ = B\ — C, and Aj = Bj ( j ^ 2). It follows immediately 
from known theorems that r(S) = 2k, r{A^) = 1, and r(^4y) = 0 ( j ^ 2). 
But the modified nerve 5DÎ of Au A2l . . . , -4n is simply the nerve of J5i, 2?2, . . . , 
Bn—i.e., is T. Hence r(2W) = r ( r ) = k. 

However, the replacement of &i(9K) by rÇM) in Theorem 7 is justified (under 
reasonable conditions) provided all the sets A y are unicoherent. For simplicity 
we consider only the polyhedral case (though the generalization to ANR's 
would be easy), and in stating the result do not distinguish between "complex" 
and "polytope". 

THEOREM 8. Let A\, A2, . . . , An be closed, connected, non-empty unicoherent 
subcomplexes of a complex S, which cover S, and let 9J? be their modified nerve. 
Thenr(S) = r(2K). 
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Sketch of proof. Choose points pja £ Aja, {Aja} being the natural d.s. of 
{A,}, and for each pair Aja, AK^ with K~2)J and AjaZ)AK

p, join pK
a to pjt 

by an arc in A j a . These arcs form a graph G. There is an obvious mapping 0 
of the edge-paths in 9JÎ onto paths i n G C ^ . In general, <j> need not induce a 
homomorphism of 7ri(3K). However, if r(S) = r, there exists [4, p. 110] a 
homomorphism \f/ of TTI(5) onto iv, the free (non-abelian) group on r generators. 
Using the fact that the sets Aj are unicoherent, one can show that yp<j> induces 
a homomorphism of TTI(90Î) onto Fr. Hence [4, p. 110] r(2)î) ^ r. But 
r(W) ^ r, by Theorem 6 (6.4) ; and Theorem 8 is established. 
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