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SUMMARY

Acarological risk was calculated as the probability of encountering at least one host-seeking

Ixodes ricinus tick infected by the pathogen Borrelia burgdorferi sensu lato, in 100 m transects in

the province of Genoa, Italy. The seasonal pattern of I. ricinus was studied using generalized

estimating equations (GEE) with negative binomial error, to consider overdispersion of tick

counts and repeated sampling of the same dragging sites from April 1998 to March 1999.

Prevalence of infection by B. burgdorferi s.l. was evaluated by PCR and hybridization with

genospecies-specific probes. Acarological risk (R) peaked in April (R=0.2, 95% CI 0.13–0.26)

and November (R=0.29, 95% CI 0.10–0.46). Borrelia garinii and B. valaisiana were the most

common genospecies at our study site suggesting a major role of birds as reservoirs. DNA from

Anaplasma phagocytophilum, the agent of granulocytic ehrlichiosis in humans and animals, was

amplified from an adult I. ricinus.

INTRODUCTION

The first Italian case of Lyme borreliosis, a tick-borne

zoonosis caused by the spirochaete Borrelia burgdor-

feri sensu lato (s.l.) [1], was reported in 1984 from the

village of Borzonasca, in the province of Genoa, in

the northwestern region of Liguria [2]. The disease’s

annual incidence rate in the same area was estimated

to be 17 human cases per 100 000 inhabitants [3]. In

Italy, the intensity of transmission of B. burgdorferi

s.l. by the tick vector Ixodes ricinus varies geographi-

cally, with the highest prevalences of spirochaetes in

host-seeking ticks being reported from northeastern

regions [4, 5]. Anaplasma phagocytophilum, the aetio-

logical agent of human granulocytic ehrlichiosis

(HGE), was identified in ticks in Italy in 1998 [6], and

specific antibodies were detected in dogs from Liguria

[7]. Under these circumstances, the risk of exposure

to pathogen-infected I. ricinus for people and other

susceptible animals (acarological risk) should be as-

sessed in the Borzonasca area. Such a risk measure

can be estimated as the mean number of infected,

host- seeking ticks per 100 m2 of ground [8].

Borrelia burgdorferi s.l. can be further classified in

genospecies based upon genetic and phenotypic dif-

ferences [1]. Three genospecies are presently known to

cause the disease in Europe: B. garinii causes neuro-

borreliosis and is mostly associated with birds as

reservoir hosts ; whereas B. afzelii which causes cu-

taneous lesions, and B. burgdorferi sensu stricto (s.s.)
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which causes joint disease, are found in small and

medium-sized mammals [9]. Therefore, geographical

variations in the relative frequency of genospecies

may be associated with ecological and clinical pat-

terns of Lyme borreliosis.

In this study, we collected host-seeking I. ricinus

in Liguria, and applied statistical models for over-

dispersed, correlated data to obtain valid estimates of

tick abundance and seasonality [10]. We also carried

out laboratory analyses to identify B. burgdorferi

s.l., as well as A. phagocytophilum, in I. ricinus, and

characterized these agents by genetic techniques. Tick

abundance data and laboratory results were integrated

to obtain point estimates and confidence intervals

(CIs) of an acarological risk index.

METHODS

Tick collection

Host-seeking ticks were collected during 11 monthly

sessions, from April 1998 to March 1999, excluding

February 1999. Six inland sites were selected, based

on accessibility, which encircled the inhabited centre

of the village of Borzonasca (2000 inhabitants, ap-

proximately 50 km east of Genoa, and 13 km from

the sea). Three sites were in the immediate vicinity

of housing and three within 1 km. The area is charac-

terized by the presence of other villages of approxi-

mately the same size as Borzonasca, resulting in a

population density of 114 people per km2 [infor-

mation provided by the Consortium of Municipalities

(Comunità Montana) of Aveto, Graveglia, Sturla].

Five additional tick collection sites were within 2 km

from the sea, on the northern slopes of hills sur-

rounding the coastal town of Chiavari (27 500 inhabi-

tants). Here, the high density of houses and enclosed

private properties limited sampling, and four out of

five sites were within 3 km of each other. All sites were

on hills covered by deciduous woods, dominated by

chestnuts (Castanea sativa), oaks (Quercus cerris), and

black locust (Robinia pseudacacia).

At each site, ticks were collected by dragging on

50 m transects by two operators. One of them used

a tick drag comprised of 12 flannel strips, the other a

1 m2 cotton cloth. Ticks that were collected on a site

by the two operators were pooled together and

maintained alive in humidified vials or preserved in

70% ethanol and subsequently identified using keys

from Manilla and Iori [11]. Data on rainfall and

temperature in Borzonasca, from April 1998 to

March 1999, were provided by the Hydrographic and

Mareographic Office (Ufficio Idrografico e Mare-

grafico) of Genoa.

Detection of B. burgdorferi s.l. in ticks

Borrelia burgdorferi s.l. isolation was attempted from

10 adult and 18 nymphal I. ricinus from Borzonasca

and from 10 adult and 12 nymphs from Chiavari,

in pools of 4–10, as previously described [12]. For

the characterization of isolates by genospecies, re-

striction fragment length polymorphism (RFLP) was

employed as described by Postic et al. [13].

For pathogen detection by PCR, host-seeking

I. ricinus (115 nymphs and 55 adults) were individu-

ally homogenized with a pestle in microcentrifuge

tubes. After extraction by Isoquick (Orca Research,

Bothwell, WA, USA), DNA was suspended in 50 ml

of nuclease-free water and utilized (5 ml per reaction)

in a nested PCR as described by Rijpkema et al. [14],

using primer pairs specific for the intergenic spacer

region comprised between genes codifying for sub-

units 5S and 23S of ribosomal RNA. The variability

of the amplified fragment allows characterization of

B. burgdorferi s.l. species. The cycling profile de-

scribed in the original paper was used [14]. As positive

controls, we alternatively used DNA from a B. garinii

strain isolated within this study, B. burgdorferi s.s.

(Alcaide strain), B. afzelii (Nancy strain), B. valai-

siana VS 116 strain. Distilled water and I. scapularis

nymphs from a colony maintained at the Yale School

of Medicine (kindly provided by Professor D. Fish),

and DNA extracted from bacteria (Escherichia coli,

Staphylococcus intermedius, Streptococcus spp.) were

used as negative controls. Amplified DNA underwent

electrophoresis on agarose gel, and was visualized in

ethidium bromide.

Hybridization with DNA probes

In order to characterize amplified DNA by species,

we carried out hybridization with oligonucleotide

probes designed by Rijpkema et al. [14]. One probe

was specific for B. burgdorferi s.l., whereas the re-

maining four were specific for B. burgdorferi s.s.,

B. garinii, B. afzelii and B. valaisiana. Probes were

3k-tailed, labelled with digoxigenin-11-dUTP and

quantified. Amplicons were denatured at 95 xC for

5 min with 0.1 vol. of 4 M NaOH, 0.1 M EDTA,

spotted (2 ml/spot) on a positively charged nylon

membrane and cross-linked at 120 xC for 30 min. Pre-

hybridization was carried out for 1 h at 55 xC while
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the hybridization solution, containing 10 pmol/ml of

each labelled oligoprobe was allowed to react over-

night at the same temperature. After post-hybridiz-

ation washes and immunostaing procedures, positive

spots were identified by colorimetric detection. All

procedures were carried out according to the digoxi-

genin system user’s guide (Boehringer–Mannheim,

Germany). Amplicons of positive controls for each

B. burgdorferi s.l. genospecies that were included on

each membrane allowed checking for cross reactions.

Detection of A. phagocytophilum in host-seeking ticks

DNA from 19 I. ricinus adults and 41 nymphs was

used in PCR using primers EHR521 and EHR747

that amplify a 247-bp fragment of 16S rDNA [15].

Positive controls were pools of I. scapularis nymphs

that were fed of Peromyscus leucopus mice infected

by the agent of HGE, from a colony maintained at

the Yale School of Medicine (kindly provided by

Professor D. Fish). The amplification products were

visualized in 2.5% agar gel. If positive by electro-

phoresis, samples were subsequently sequenced.

DNA sequencing

Amplicons were purified using QIAquick PCR puri-

fication kit (Qiagen, Valencia, CA, USA). Sequencing

of PCR products (both strands) were performed on

an ABI PRISM 310 Genetic Analyser (Applied Bio-

systems, Foster City, CA, USA) by the dideoxy-chain

termination method with fluorescent dye terminators,

using PCR-derived primers. Sequences were analysed

by the software CHROMAS 2.0 (Technelysium,

Helensvale, Australia), and submitted to BLAST [16].

The determined sequences were aligned with the cor-

responding sequences of A. phagocytophilum strains

by using the multisequence alignment program

ClustalX [17].

Statistical analysis

Transects of 100 m, the sum of 50 m per operator per

site, were the units of dragging data analysis. The

proportions of tick-positive transects, where at least

one host-seeking tick was collected, were calculated

for dragging session and tick stage. Exact binomial

95% CIs were obtained by the Fisher exact method

using the Epi-Info software [18]. To obtain estimates

of mean numbers of host-seeking ticks per transect

and 95% CIs, we applied intercept-only, generalized

log-linear models using the GENMOD procedure in

the SAS1 system (Exp option in the ESTIMATE

statement, SAS version 8.2 [19]). Negative binomial

error was used in the statistical models in order to

take into account the potential overdispersion of the

distribution of host-seeking ticks among dragging

sites.

To estimate tick seasonal patterns and the effect

of proximity to the sea (inland vs. coastal sites) on

the numbers of collected ticks, we used generalized

estimating equations (GEE) for counted responses

with negative binomial error for larvae, nymphs and

adult I. ricinus (PROC GENMOD) [19]. Using GEE

(exchangeable correlation structure), we accounted

for correlation arising from repeatedly collecting ticks

at the same sites across the study period [20].

Seasonal pattern of larvae was modelled by sinus-

oidal fluctuations with an amplitude of 1 and a

period of 6 months, with peaks in January and

July, whereas sinusoidal functions with one peak in

April, or with two peaks in April and October, were

fitted for nymphs and adults, respectively. Distance

from the sea was coded as COAST=1 for coastal sites

and COAST=0 for inland sites. The inclusion of

locationrtime interaction allowed us to test differ-

ences in time pattern between inland and coastal

sites. The fit of the models and the presence of out-

liers were investigated by plotting Pearson residuals

against predicted values.

Proportions of ticks that were PCR-positive for

B. burgdorferi s.l. and A. phagocytophilum were

calculated for each stage. Mean numbers of host-

seeking nymphs and adults per transect were com-

bined with the prevalence of infection by pathogenic

B. burgdorferi s.l. species (B. burgdorferi s.s., B. afzelii,

B. garinii) to obtain monthly estimates of the acaro-

logical risk (R), the probability of collecting at least

one infected tick in a 100 m transect. In the following

equation:

R=1x(ex(min+mia)), (1)

estimates of the mean numbers of infected nymphs

(min) and adults (mia) per 100 m transect were obtained

as the products of the mean numbers of ticks (of

each stage) and observed infection prevalences. Con-

fidence intervals of R were obtained, for each month,

by a bootstrap method, that consisted in sampling

with replacement 11 observations from the original

set of the 11 transects, for 100 times. The SAS System

macro facility was used to generate statements and

commands for multiple simulated data sets [21].
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Simulated numbers of I. ricinus nymphs and adults

were used to calculate R. The 5th and the 95th per-

centiles of the distributions of R were then chosen as

the lower and upper limits of 95% CIs.

RESULTS

During dragging sessions from April 1998 to March

1999, we collected 257 host-seeking I. ricinus larvae,

96 nymphs, and 57 adults. Three Dermacentor mar-

ginatus adults were collected in March 1999. Larvae

were found in 40 out of 121 (33.1%) dragging ob-

servations (11 transects repeatedly sampled during

11 sessions), nymphs were collected in 46 observations

(38.0%), and adults in 33 observations (27.3%).

Larval I. ricinus showed a summer peak of activity in

July (2.7 larvae per transect, 95% CI 1.0–7.4), they

were subsequently found during autumn and winter,

and peaked again in December (3.6 larvae per tran-

sect, 95% CI 1.0–12.8) (Figs 1a and 2a). In January,

larvae were found across most of the study area (at

least one larva in 8 out of 11 transects ; Fig. 1a) ;

in fact, during this month, the 95% CI of the mean

number of larvae per transect (2.2) was relatively

narrow (1.2–4.0, Fig. 2a). At coastal sites, larval

activity decreased in autumn before rising again

in winter, whereas at inland sites such a decrease was

not observed (results not shown). Such differences

yielded a significant locationrtime interaction in

the log-linear regression (P<0.005, Table 1). Statisti-

cal analyses on larval counts were carried out after

excluding an outlier observation of 109 larvae that

were collected in November at an inland transect,

and probably originated during the hatching of
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Fig. 1. Percentages and 95% CIs, of transects where at least
one host-seeking I. ricinus was collected by dragging, from

April 1998 to March 1999, in the province of Genoa: (a)
larvae ; (b) nymphs ; (c) adults. For a better representation
of seasonal pattern, months are reported from January
1999 to December 1998, although sampling started in April

1998 (4).
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I. ricinus that were collected by dragging in 11 transects
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(a) larvae ; (b) nymphs; (c) adults.
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a cluster of eggs from one female tick. Nymphs were

collected during all sessions but were most abundant

during spring. A significant peak of nymph activity

was observed in April (mean=1.9, 95% CI 1.2–2.9,

P<0.001; Figs 1b and 2b, Table 1) when all transects

were positive for this stage. Adult I. ricinus were

active in spring and, more markedly, in autumn: 0.90

(0.37–2.3) adults per transect were collected in

March and 1.5 (0.51–4.1) in November (P<0.001;

Figs 1c and 2c, Table 1). Seasonal patterns of num-

bers of nymphs and adults did not differ between in-

land and coastal sites (Table 1), and SINErCOAST

interactions were therefore not included in the stat-

istical models. The negative binomial parameter was

smallest for larvae (k=0.28, 95% CI 0.18–0.46),

indicating aggregated distribution of this stage. In

Borzonasca, rainfall peaked in March and October.

July was characterized by the lowest rainfall and

highest temperature. Minimum temperature de-

creased below zero only in February (Fig. 3).

Infection of I. ricinus with B. burgdorferi s.l.

Two B. burgdorferi s.l. strains were isolated from

adult I. ricinus collected at Borzonasca and one strain

was isolated from adults from Chiavari. The three

isolates were subsequently characterized as B. garinii

by PCR–RFLP (Fig. 4). Thirty-one out of 170

(18.2%) host-seeking I. ricinus that were tested by

PCR for B. burgdorferi s.l. resulted positive, as deter-

mined by hybridization of amplified DNA with a

group-specific probe. Prevalence of infection was sig-

nificantly greater in adults (21/55, 38.2%) than in

nymphs (10/115, 8.7%, x2=19.8, 1 D.F., P<0.001).

Borrelia garinii was the most frequent genospecies

that was identified by species-specific probes (Table 2),

whereas prevalence of B. valaisiana was the same as

prevalence of B. garinii in adults but lower in nymphs.

Borrelia afzelii constituted approximately 10% of

PCR+specimens, whereas B. burgdorferi s.s. was

not identified in our sample. One adult I. ricinus

Table 1. Results of log-linear regression (fitted using GEE with negative binomial error and exchangeable

correlation) of counts of host-seeking I. ricinus ticks in 11 transects in Liguria, from April 1998 to March 1999

Stage

Parameter estimates (S.E.)

Intercept Seasonal SINE COAST INTER r k (95% CI) Deviance (D.F.)

Larvae 0.41 (0.43) 0.72 (0.25)
P<0.005

x1.3 (0.72)
P=0.07

1.2 (0.39)
P<0.005

0.13 0.28 (0.18–0.46) 83.4 (117)

Nymphs x0.35 (0.31) 1.0 (0.13)
P<0.001

x0.21 (0.49)
P=0.66

— 0.17 1.0 (0.48–2.1) 104.6 (118)

Adults x1.3 (0.21) 0.91 (0.21)

P<0.001

0.54 (0.44)

P=0.22

— 0.03 0.63 (0.27–1.4) 83.3 (118)

INTER, timerlocation interaction; r, correlation coefficient ; k, negative binomial parameter.
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Fig. 3.Monthly rainfall (line) and minimum and maximum temperatures (vertical bars) in the village of Borzonasca (province
of Genoa) from April 1998 to March 1999.
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was co-infected by B. garinii and B. valaisiana, and

another adult by B. garinii and B. afzelii.

R, the risk of finding at least one tick (adult or

nymph) infected by a pathogenic B. burgdorferi

s.l. species, was characterized by a bimodal seasonal

pattern and peaked during the wettest seasons of

spring and autumn (Figs 3 and 5). Although punc-

tual R estimate was highest in November (R=0.29,

95% CI 0.10–0.46), April was characterized by a

more homogeneous risk across the study area, as

shown by a narrower 95% CI (R=0.20, 95% CI

0.13–0.26).

One adult tick from Chiavari was positive by PCR

for A. phagocytophilum (Fig. 6). Subsequent sequence

analysis confirmed such a finding, with 100% hom-

ology with reference sequences. Lack of variability

of the amplified fragment prevented further phylo-

genetic analysis.

DISCUSSION

At our study area, the seasonal pattern of host-

seeking I. ricinus was characterized by a bimodal

larval activity, with summer and late autumn–winter

peaks. The mild climate of Liguria (Fig. 3) favoured

the activity of larvae during autumn and winter.

Conversely, we did not observe the larval spring

peak reported at other locations [22], and no larvae

1 2 3 4 5

Fig. 4. Restriction patterns of B. burgdorferi s.l. strains isolated from adult I. ricinus ticks in the province of Genoa. Lane 1,
B. burgdorferi s.s. ; lane 2, B. garinii ; lane 3, B. afzelii ; lane 4, Chiavari strain ; lane 5, Borzonasca strain. Strains in lanes 4–5
were classified as B. garinii.

Table 2. Identification and characterization of B. burgdorferi s.l. by PCR and hybridization with B. burgdorferi

s.l.-specific, and genospecies-specific probes, in host-seeking I. ricinus in 11 transects in Liguria, from April 1998

to March 1999

Stage

Genospecies [no. positive (%)]

n.d.B. burgdorferi s.l. B. garinii B. afzelii B. burgdorferi s.s. B. valaisiana

Nymphs
(n=115)

10 (8.7) 4 (3.5)*
(40.0)#

1 (0.87)
(10.0)

0 (0.0)
(0.0)

1 (0.87)
(10.0)

4

Adults

(n=55)

21 (38.2) 9 (16.4)

(42.8)

2 (3.6)

(9.5)

0 (0.0)

(0.0)

9 (16.4)

(42.8)

1

Total
(n=170)

31 (18.2) 13 (7.6)
(41.9)

3 (1.8)
(9.7)

0 (0.0)
(0.0)

10 (5.9)
(32.2)

5

* Percentage of all ticks of a certain stage that were infected with a genospecies.

# Percentage of positive specimens that were infected with a genospecies.
n.d., Not determined.
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were collected during March and April. Nymphs

were active during most of the year, with a significant

spring peak. Numbers of questing nymphs/100 m

dragging in Liguria (1.9 in April) were lower than

those reported from the province of Trento (north-

eastern Italy), where Rizzoli et al. [5] found up to

37.5 nymphs/100 m. Such differences are probably

due to variable population densities of favourite

hosts for adult ticks, such as the roe deer (Capreolus

capreolus), which reaches 32 heads/100 ha in Trento

but is absent from our study area. Adult I. ricinus

were mostly active in the wettest months of spring

and autumn and were not found in summer, and this

pattern is similar to those observed at other Italian

locations [4].

Our findings showed that larvae were the only tick

stage characterized by an aggregated distribution of

counts even after the inclusion of seasonal sine and

proximity to the sea in the statistical models (Table 1).

Hatching of clumps of eggs from individual female

ticks and scarce lateral movements of larvae might

lead to spatial aggregation [23].

A relatively low abundance of questing I. ricinus

in Liguria might explain the correspondingly moder-

ate intensity of B. burgdorferi s.l. transmission that

we observed. In fact, 8.7% (n=115, Table 2) preva-

lence of infection in nymphs in Liguria was lower

than the prevalence found in Trentino by Rizzoli et al.

[5], and by Altobelli et al. [24] in the Karst of Trieste

(up to 38% prevalence). Other European studies

showed that prevalence of infection in questing

nymphs is positively associated with tick abundance

which, in turn, depends on deer population density.

It is only above a relatively high threshold of deer

density that such species’ inability to serve as a reser-

voir for spirochaetes leads to a reduction of infection

levels in questing ticks [25].

Borrelia garinii and B. valaisiana, the most frequent

genospecies that we detected in host-seeking nymphs
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Fig. 5. Acarological risk (R), the probability of finding at least one I. ricinus tick (nymph or adult) infected with pathogenic
Borrelia burgdorferi s.l. genospecies, in 11 transects in the province of Genoa, from April 1998 to March 1999. Vertical bars
represent 95% CIs.
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Fig. 6.Agarose gel electrophoresis of PCR product obtained
by amplification, with primers specific for A. phagocyto-

philum, of DNA extracted from an adult I. ricinus from
Chiavari, Genoa. Lane 1, 100-bp DNA ladder ; lane 2,
positive control ; lane 3, 247-bp PCR-positive sample.
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and adults (Table 2), are mostly associated with

birds [9], and avian species might be major reser-

voirs of spirochaetes in Liguria. However, recent

studies showed that B. garinii serotype 4 was identi-

fied in wild rodents (D. Huegli et al., unpublished

observations). Laboratory techniques that we used

did not allow characterization of B. burgdorferi s.l.

by serotype, and further analysis would be necessary.

Higher infection levels in adults than in nymphs

(38.2 vs. 8.7%) were largely attributable to B. valai-

siana (Table 2). This finding might be explained by

the particular competence of birds for nymphal

I. ricinus [26]. The relative frequency of genospecies

that we found in Liguria differs from findings by

Cinco et al. [27] in the Friuli region where all four

genospecies were found, frequently in association but

with different rates. On the other hand, Ciceroni et al.

[28] most commonly isolated B. afzelii from human

patients in the Veneto region. Overall, our findings

are similar to those reported from other European

countries where B. garinii is the most common geno-

species [9].

The risk of collecting at least one pathogenic

B. burgdorferi-infected I. ricinus tick, as expressed by

R, followed the seasonal pattern of nymphal and

adult stages, with spring and autumn peaks. Nymphs

are more difficult to detect than adults when attached

to the skin, and they are therefore most likely to trans-

mit the agents of Lyme borreliosis. Consequently,

spring – when nymphs were most abundant – can be

considered as the period with the highest risk of

infection in Liguria. Moreover, the CI of R was nar-

rower in April than in November, showing a more

homogeneous distribution of risk of infection across

the study area in spring.

The identification of A. phagocytophilum DNA in

one host-seeking I. ricinus confirms a potential risk

of HGE in the study area, as previously suggested

by the detection of specific antibodies in dogs [7].

Although transmission of A. phagocytophilum gen-

erally occurs at low levels compared to B. burgdorferi

s.l. [29], the risk of infection by such a zoonotic

agent in Liguria should be considered in human and

veterinary medicine.

CONCLUSIONS

In the Borzonasca–Chiavari area, pathogen-infected

I. ricinus were active during most of the year in the

immediate vicinity of housing, indicating residential

risk of tick-borne zoonoses. People can also be

exposed to tick bites during leisure activities taking

place in the woods in spring, and during mushroom

collection and hunting in autumn. In summer, when

large numbers of tourists are present on the coast of

Liguria and often visit inland sites, acarological risk

was relatively low (Fig. 4). Information on spatial

and temporal distribution of acarological risk is

important in preventive medicine, and should be ob-

tained through locally targeted field studies in Italy,

where climatic and environmental determinants of

tick abundance and activity (such as temperature

and humidity) undergo major changes within short

distances.

ACKNOWLEDGEMENTS

Professor G. Rovetta and collaborators, Istituto

Reumatologico E. Bruzzone, University of Genoa,

provided information on reported human cases of

Lyme borreliosis. The study was funded by aMURST

60% grant and by Hunting District ATC Genova 2.

REFERENCES

1. Nadelman RB, Wormser GP. Lyme borreliosis. Lancet

1998; 352 : 557–565.
2. Crovato F, Nazzari G, Fumarola D, Rovetta G,

Cimmino MA, Bianchi G. Lyme disease in Italy : first

reported case. Ann Rheum Dis 1985; 44 : 570–571.
3. Cimmino MA, Fumarola D, Sambri V, Accardo S.

The epidemiology of Lyme borreliosis in Italy. Micro-
biologica 1992; 15 : 419–424.

4. Cinco M, Padovan D, Murgia R, et al. Rate of
infection of Ixodes ricinus ticks with Borrelia burg-
dorferi sensu stricto, Borrelia garinii, Borrelia afzelii

and group VS116 in an endemic focus of Lyme disease
in Italy. Eur J Clin Microbiol Infect Dis 1998; 17 :
90–94.

5. Rizzoli A, Merler S, Furlanello C, Genchi C. Geo-
graphical information systems and bootstrap aggre-
gation (bagging) of tree-based classifiers for Lyme

disease risk prediction in Trentino, Italian Alps. J Med
Entomol 2002; 39 : 485–492.

6. Cinco M, Padovan D, Murgia R, Heldtander M,
Engvall EO. Detection of HGE agent-like Ehrlichia

in Ixodes ricinus ticks in northern Italy by PCR. Mid
Eur J Med 1998; 110 : 898–900.

7. Mannelli A, Fish D, Coughlin RT, et al. Sieropositività
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