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We are considering below some complex problems which arise in theoretical description
of the processes developing in convective zones of rotating stars. It is common knowledge
that the solutions of the starting nonlinear equations of equilibrium or motion may have
singularities at the rotation axis, whose elimination in the case of equations of an even
more general nature including spins was treated in quantum mechanics by invoking a
numerical procedure (see, e.g., Varshalovich et al. (1988)). If spin effects are disregarded,
these equations, which describe general representations of conventional and Alfven veloc-
ities as expansions in orthogonal vector spherical harmonics can be cast in an analytical
form Vandakurov (1999).

The pattern of the self-establishing differential rotation of the convective zone should
obviously be related to the heat transport conditions. It is known, for instance, that in
order for radiative heat transport to set in in a rotating star, Eddington–Sweet circulation
has to be excited (see discussion in Tassoul (1978)). Consideration of convective heat
transport likewise meets with a specific difficulty associated with the fact that any radial
displacement of a convective element in a rotating medium (other than parallel to the
rotation axis) is intimately connected with generation of an unbalanced azimuthal force
Vandakurov (2003)). Thus, the condition of azimuthal balance in a nonviscous rotating
medium can be written in a nonmagnetic case as

∂vϕ

∂t
+

[
(∇ × v) × v

]
· iϕ = 0, (0.1)

where v is the velocity, t is the time, ϕ is the azimuthal angle, and iϕ is the azimuthal
unit vector. For instance, in a solid body rotating with an angular velocity Ω medium,
∇ × v = iz2Ω, where the z axis is parallel to the rotation axis, so that in the case
of a radially moving (with velocity vr) convective element Eq. (0.1) should contain an
azimuthal force. This force is nonzero everywhere except at the poles.

Such an azimuthal force is generated clearly in any differential rotation pattern of the
medium. For instance, the radial velocity vr at the bottom of the solar convection zone
was estimated Spruit (1974) to be of the order of 103 − 104 cm/s. This yields a year to a
month for the scale time of variation of the rotation velocity vϕ, if, as in the Sun, vϕ is
2 km/s. In actual fact, this force is naturally generated in ascending heated or descending
cooler flows of plasma; nevertheless, an unbalanced side force may probably bring about
noticeable deviations of convective elements from their radial motion and, hence, initia-
tion of chaotic variations in the rotation velocity, which would interfere with convective
heat transport. Thus, processes which favor ordering of convective heat transport in stars
may play an important role.
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We consider the solution to this problem under the assumption that additional forces
may appear in the convective zone as a result of self-excitation of longitude-dependent
toroidal fields (which contain both conventional and Alfven velocities). Calculations Van-
dakurov (2003) show that these longitude-dependent fields can be neutrally stable in a
rotating medium in the presence of an axisymmetric toroidal magnetic field whose lati-
tude dependence is governed by the sin(2θ) function. For example, for the bottom of the
solar convection zone (with the density ∼ 0.1 g/cm3) the maximum value of this field is
about 110 kG.
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