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Abstract

We study a stochastic differential equation with an unbounded drift and general Hölder
continuous noise of order λ ∈ (0, 1). The corresponding equation turns out to have a
unique solution that, depending on a particular shape of the drift, either stays above
some continuous function or has continuous upper and lower bounds. Under some mild
assumptions on the noise, we prove that the solution has moments of all orders. In addi-
tion, we provide its connection to the solution of some Skorokhod reflection problem.
As an illustration of our results and motivation for applications, we also suggest two
stochastic volatility models which we regard as generalizations of the CIR and CEV
processes. We complete the study by providing a numerical scheme for the solution.
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Introduction

Stochastic differential equations (SDEs) whose solutions take values in a given bounded
domain are widely applied in several fields. Just as an illustration, we can consider the Tsallis–
Stariolo–Borland (TSB) model employed in biophysics, defined as

dY1(t) = − θY1(t)

1 − Y2
1 (t)

dt + σdW(t), θ > 0, σ > 0, (0.1)

with W being a standard Wiener process. If σ 2

θ
∈ (0, 1], the TSB process is ‘sandwiched’

between −1 and 1 (for more details, see e.g. [16, Subsection 2.3] or [17, Chapter 3 and
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928 G. DI NUNNO ET AL.

Chapter 8]). Another example is the Cox–Ingersoll–Ross (CIR) process [12, 13, 14], defined
via an SDE of the form

dX(t) = (θ1 − θ2X(t))dt + σ
√

X(t)dW(t), θ1, θ2, σ > 0.

Under the so-called Feller condition 2θ1 ≥ σ 2, the CIR process is bounded below (more pre-
cisely, is positive) almost surely (a.s.), which justifies its popularity in the modeling of interest
rates and stochastic volatility in finance. Moreover, by [29, Theorem 2.3], the square root
Y2(t) := √

X(t) of the CIR process satisfies an SDE of the form

dY2(t) = 1

2

(
θ1 − σ 2/4

Y2(t)
− θ2Y2(t)

)
dt + σ

2
dW(t), (0.2)

and the SDEs (0.1) and (0.2) both have an additive noise term and an unbounded drift with
points of singularity at the bounds (±1 for the TSB and 0 for the CIR), which have a ‘repelling’
action, so that the corresponding processes never cross or even touch the bounds.

The goal of this paper is to study a family of SDEs of a type similar to (0.1) and (0.2),
namely

Y(t) = Y(0) +
∫ t

0
b(s, Y(s))ds + Z(t), t ∈ [0, T], (0.3)

where the drift b is unbounded. We consider separately two cases:

(A) In the first case, b is a real function defined on the set {(t, y) ∈ [0, T] ×R | y>ϕ(t)}
such that b(t, y) has an explosive growth of the type (y − ϕ(t))−γ as y ↓ ϕ(t), where ϕ is
a given Hölder continuous function and γ > 0. We will see that the process Y satisfying
(0.3) is bounded below by ϕ, i.e.

Y(t)>ϕ(t), a.s., t ∈ [0, T], (0.4)

which we will called a one-sided sandwich.

(B) In the second case, b is a real function defined on the set {(t, y) ∈ [0, T] ×R | ϕ(t)< y<
ψ(t)} such that b(t, y) has an explosive growth of the type (y − ϕ(t))−γ as y ↓ ϕ(t) and
an explosive decrease of the type −(ψ(t) − y)−γ as y ↑ψ(t), where ϕ and ψ are given
Hölder continuous functions such that ϕ(t)<ψ(t), t ∈ [0, T], and γ > 0. We will see
that in this case the solution to (0.3) turns out to be sandwiched, namely

ϕ(t)< Y(t)<ψ(t) a.s., t ∈ [0, T], (0.5)

as a two-sided sandwich.

The noise term Z in (0.3) is an arbitrary λ-Hölder continuous noise, λ ∈ (0, 1). Our main
motivation to consider Z from such a general class, instead of the classical Wiener process,
lies in the desire to go beyond Markovianity and include memory in the dynamics (0.3) via the
noise term. It should be noted that the presence of memory is a commonly observed empirical
phenomenon (in this regard, we refer the reader to [6, Chapter 1], where examples of datasets
with long memory are collected, and to [32] for more details on stochastic processes with long
memory). The particular application which we have in mind throughout this paper comes from
finance, where the presence of market memory is well known and has been extensively studied
(see e.g. [3, 15, 36] or [35] for a detailed historical overview of the subject). Processes with
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memory in the noise have been used as stochastic volatilities, allowing for the inclusion of
empirically detected features such as volatility smiles and skews in long-term options [10]; see
also [8, 9] for more details on long-memory models and [21] for short memory coming from
the microstructure of the market. Some studies (see e.g. [1]) indicate that the roughness of the
volatility changes over time, which justifies the choice of multifractional Brownian motion [4]
or even general Gaussian Volterra processes [25] as drivers. Separately we mention the series
of papers [26, 27, 28], which study an SDE of the type (0.2) with memory introduced via a
fractional Brownian motion with H > 1

2 :

dY(t) =
(
θ1

Y(t)
− θ2Y(t)

)
dt + σdBH(t), θ1, θ2, σ > 0, t ∈ [0, T]. (0.6)

Our model (0.3) can thus be regarded as a generalization of (0.6) accommodating a highly
flexible choice of noise to deal with the problems of local roughness mentioned above.

In this paper, we first consider the existence and uniqueness of a solution to (0.3), then
focus on the moments of both positive and negative orders. It should be stressed that the
inverse moments are crucial for e.g. numerical simulation of (0.3), since it is necessary to
control the explosive growth of the drift near bounds. We recognize that similar problems
concerning equations of the type (0.3) with lower bound ϕ ≡ 0 and the noise Z being a frac-
tional Brownian motion with H > 1

2 were addressed in [23]. There, the authors used pathwise
arguments to prove the existence and uniqueness of the solution, whereas a Malliavin-calculus-
based method was applied to obtain finiteness of the inverse moments. Despite its elegance,
the latter technique requires the noise to be Gaussian and, moreover, is unable to ensure the
finiteness of the inverse moments on the entire time interval [0, T]. These disadvantages of the
Malliavin method resulted in restrictive conditions involving all parameters of the model and
T in the numerical schemes in e.g. [22, Theorem 4.2] and [38, Theorem 4.1].

The approach we take is to use pathwise calculus together with stopping times arguments for
the inverse moments as well. This allows us, on the one hand, to choose from a much broader
family of noises well beyond the Gaussian framework and, on the other hand, to prove the
existence of the inverse moments of the solution on the entire interval [0, T]. The corresponding
inverse moment bounds are presented in Theorems 2.4 and 4.2.

In addition, we establish a connection of a certain class of sandwiched processes to
Skorokhod’s notion of reflected processes (see e.g. [33, 34] for more details). Note that (0.4)
contains a strict inequality, i.e. the one-sided sandwich Y does not reflect from the boundary ϕ.
However, as ε→ 0, the process Yε of the form

Yε(t) = Y(0) +
∫ t

0

ε

(Yε(s) − ϕ(s))γ
ds −

∫ t

0
α(s, Yε(s))ds + Z(t),

with α: [0, T] ×R→R being a Lipschitz function, converges to the solution of a certain
Skorokhod reflection problem, with

∫ t
0

ε
(Yε(s)−ϕ(s))γ ds converging to the corresponding regula-

tor. This result substantially expands and generalizes [29], where a similar result was obtained
specifically for processes of the form (0.6).

This paper is organized as follows. In Section 1, the general framework is described and the
main assumptions are listed. Furthermore, some examples of possible noises Z are provided
(including continuous martingales and Gaussian Volterra processes). In Section 2, we provide
the existence and uniqueness of the solution to (0.3) in the one-sided sandwich case, and we
derive upper and lower bounds for the solution in terms of the noise and study the finiteness of
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E
[
supt∈[0,T] |Y(t)|r] and E

[
supt∈[0,T] (Y(t) − ϕ(t))−r

]
, r ≥ 1. In Section 3, we establish a con-

nection between one-sided sandwiched processes and Skorokhod’s reflected processes. Section
4 is devoted to studying the two-sided sandwich case (0.5): existence, uniqueness, and proper-
ties of the solution are provided. Our approach is readily applied to introduce the generalized
CIR and CEV processes (see [2, 11]) in Section 5. Finally, to illustrate our results, we provide
simulations in Section 6. Details on the simulation algorithm are given in Appendix A.

1. Preliminaries and assumptions

In this section, we present the framework for the noise Z and the drift functional b from
Equation (0.3), and we provide some auxiliary results that will be required later.

We will start from the noise term Z in (0.3).

Assumption 1.1. Z = {Z(t), t ∈ [0, T]} is a stochastic process such that

(Z1) Z(0) = 0 a.s.;

(Z2) Z has Hölder continuous paths of order λ ∈ (0, 1), i.e. there exists a random variable

=
λ(ω)> 0 such that

|Z(t) − Z(s)| ≤
|t − s|λ, t, s ∈ [0, T]. (1.1)

Note that we do not require any particular assumptions on the distribution of the noise (e.g.
Gaussianity), but for some results we will need the random variable 
 from (1.1) to have
moments of sufficiently high orders. In what follows, we list several examples of admissible
noises and properties of the corresponding random variable 
.

Example 1.1. (Hölder continuous Gaussian processes.) Let Z = {Z(t), t ≥ 0} be a centered
Gaussian process with Z(0) = 0, and let H ∈ (0, 1) be a given constant. Then, by [5], Z has
a modification with Hölder continuous paths of any order λ ∈ (0,H) if and only if for any
λ ∈ (0,H) there exists a constant Cλ > 0 such that(

E|Z(t) − Z(s)|2
) 1

2 ≤ Cλ|t − s|λ, s, t ∈ [0, T]. (1.2)

Furthermore, according to [5, Corollary 3], the class of all Gaussian processes on [0, T], T ∈
(0,∞), with Hölder modifications of any order λ ∈ (0,H) consists exclusively of Gaussian
Fredholm processes

Z(t) =
∫ T

0
K(t, s)dB(s), t ∈ [0, T],

with B = {B(t), t ∈ [0, T]} being some Brownian motion and K ∈ L2([0, T]2) satisfying, for all
λ ∈ (0,H), ∫ T

0
|K(t, u) −K(s, u)|2du ≤ Cλ|t − s|2λ, s, t ∈ [0, T],

where Cλ > 0 is some constant depending on λ.
Finally, using Lemma 1.1, one can prove that the corresponding random variable 
 can be

chosen to have moments of all positive orders. Namely, assume that λ ∈ (0,H) and take p ≥ 1
such that 1

p <H − λ. If we take


= A
λ+ 1

p ,p

(∫ T

0

∫ T

0

|Z(x) − Z(y)|p
|x − y|λp+2

dxdy

) 1
p

, (1.3)
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then for any r ≥ 1,
E
r <∞,

and for all s, t ∈ [0, T],
|Z(t) − Z(s)| ≤
|t − s|λ;

see e.g. [31, Lemma 7.4] for fractional Brownian motion or [5, Theorem 1] for the general
Gaussian case.

In particular, the condition (1.2) presented in Example 1.1 is satisfied by the following
stochastic process.

Example 1.2. The fractional Brownian motion BH = {BH(t), t ≥ 0} with H ∈ (0, 1) (see e.g.
[30]) satisfies (1.2), since(

E|BH(t) − BH(s)|2
) 1

2 = |t − s|H ≤ TH−λ|t − s|λ;

i.e. BH has a modification with Hölder continuous paths of any order λ ∈ (0,H).

In order to proceed to the next example, we first need to introduce a corollary of the well-
known Garsia–Rodemich–Rumsey inequality (see [20] for more details).

Lemma 1.1. Let f: [0, T] →R be a continuous function, p ≥ 1, and α > 1
p . Then for all t, s ∈

[0, T] one has

|f (t) − f (s)| ≤ Aα,p|t − s|α− 1
p

(∫ T

0

∫ T

0

|f (x) − f (y)|p
|x − y|αp+1

dxdy

) 1
p

,

with the convention 0/0 = 0, where

Aα,p = 23+ 2
p

(
αp + 1

αp − 1

)
. (1.4)

Proof. The proof can be easily obtained from [20, Lemma 1.1] by putting in the notation of

[20] �(u) := |u|β and p(u) := |u|α+ 1
β , where β = p ≥ 1 in our statement. �

Example 1.3. (Non-Gaussian continuous martingales.) Denote by B = {B(t), t ∈ [0, T]} a
standard Brownian motion and σ = {σ (t), t ∈ [0, T]} an Itô integrable process such that, for
all β > 0,

sup
u∈[0,T]

Eσ 2+2β (u)<∞. (1.5)

Define

Z(t) :=
∫ t

0
σ (u)dB(u), t ∈ [0, T].

Then, by the Burkholder–Davis–Gundy inequality, for any 0 ≤ s< t ≤ T and any β > 0,

E|Z(t) − Z(s)|2+2β ≤ CβE

[(∫ t

s
σ 2(u)du

)1+β]
≤ Cβ (t − s)β

∫ t

s
Eσ 2+2β (u)du

≤ Cβ sup
u∈[0,T]

Eσ 2+2β (u)(t − s)1+β .
(1.6)
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Therefore, by the Kolmogorov continuity theorem and an arbitrary choice of β, Z has a

modification that is λ-Hölder continuous of any order λ ∈
(

0, 1
2

)
.

Next, for an arbitrary λ ∈
(

0, 1
2

)
, choose p ≥ 1 such that λ+ 1

p <
1
2 and put


 := A
λ+ 1

p ,p

(∫ T

0

∫ T

0

|Z(x) − Z(y)|p
|x − y|λp+2

dxdy

) 1
p

,

where A
λ+ 1

p ,p
is defined by (1.4). By the Burkholder–Davis–Gundy inequality, for any r> p,

we obtain
E|Z(t) − Z(s)|r ≤ |t − s| r

2 Cr sup
u∈[0,T]

Eσ r(u), s, t ∈ [0, T].

Hence, using Lemma 1.1 and the Minkowski integral inequality, we have

(
E
r) p

r = Ap

λ+ 1
p ,p

(
E

[(∫ T

0

∫ T

0

|Z(u) − Z(v)|p
|u − v|λp+2

dudv

) r
p
]) p

r

≤ Ap

λ+ 1
p ,p

∫ T

0

∫ T

0

(E[|Z(u) − Z(v)|r])
p
r

|u − v|λp+2
dudv

≤ Ap

λ+ 1
p ,p

C
p
r
r

(
sup

t∈[0,T]
Eσ rY(t)

) p
r ∫ T

0

∫ T

0
|u − v| p

2 −λp−2dudv<∞,

since p
2 − λp − 2>−1; i.e. E
r <∞ for all r> 0. Note that the condition (1.5) can actually

be relaxed (see e.g. [7, Lemma 14.2]).

Next, let us proceed to the drift b and initial value Y(0). Let ϕ: [0, T] →R be a λ-Hölder
continuous function, where λ ∈ (0, 1) is the same as in Assumption (Z2), i.e. there exists a
constant K = Kλ such that

|ϕ(t) − ϕ(s)| ≤ K|t − s|λ, t, s ∈ [0, T],

and for an arbitrary a1 ∈R, define

Da1 := {(t, y) | t ∈ [0, T], y ∈ (ϕ(t) + a1,∞)}. (1.7)

Assumption 1.2. The initial value Y(0)>ϕ(0) is deterministic, and the drift b satisfies the
following assumptions:

(A1) b: D0 →R is continuous;

(A2) for any ε > 0 there is a constant cε > 0 such that for any (t, y1), (t, y2) ∈Dε,

|b(t, y1) − b(t, y2)| ≤ cε|y1 − y2|;
(A3) there are positive constants y∗, c, and γ such that for all (t, y) ∈D0 \Dy∗ ,

b(t, y) ≥ c

(y − ϕ(t))γ
;
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(A4) the constant γ from Assumption (A3) satisfies the condition

γ >
1 − λ

λ
,

with λ being the order of Hölder continuity of ϕ and paths of Z.

Example 1.4. Let α1: [0, T] → (0,∞) be an arbitrary continuous function, and let α2: D0 →R

be such that
|α2(t, y1) − α2(t, y2)| ≤ C|y1 − y2|, (t, y1), (t, y2) ∈D0,

for some constant C> 0. Then

b(t, y) := α1(t)

(y − ϕ(t))γ
− α2(t, y), (t, y) ∈D0,

satisfies Assumptions (A1)–(A4) (provided that γ > 1−λ
λ

).

We finalize this initial section with a simple yet useful comparison-type result that will be
required in what follows.

Lemma 1.2. Assume that continuous processes {X1(t), t ≥ 0} and {X2(t), t ≥ 0} satisfy (a.s.)
the equations of the form

Xi(t) = X(0) +
∫ t

0
fi(s, Xi(s))ds + Z(t), t ≥ 0, i = 1, 2,

where X(0) is a constant and f1, f2: [0,∞) ×R→R are continuous functions such that for
any (t, x) ∈ [0,∞) ×R,

f1(t, x)< f2(t, x).

Then X1(t)< X2(t) a.s. for any t> 0.

Proof. The proof is straightforward. Define

�(t) := X2(t) − X1(t) =
∫ t

0
(f2(s, X2(s)) − f1(s, X1(s))) ds, t ≥ 0,

and observe that �(0) = 0 and that the function � is differentiable with

�′+(0) = f2(0, X(0)) − f1(0, X(0))> 0.

It is clear that�(t) =�′+(0)t + o(t), t → 0+, whence there exists the maximal interval (0, t∗) ⊂
(0,∞) such that �(t)> 0 for all t ∈ (0, t∗). It is also clear that

t∗ = sup{t> 0 | ∀s ∈ (0, t):�(s)> 0}.
Assume that t∗ <∞. By the definition of t∗ and continuity of �, �(t∗) = 0. Hence X1(t∗) =
X2(t∗) = X∗ and

�′(t∗) = f2(t∗, X∗) − f1(t∗, X∗)> 0.

As �(t) =�′(t∗)(t − t∗) + o(t − t∗), t → t∗, there exists such ε > 0 that �(t)< 0 for all t ∈
(t∗ − ε, t∗), which contradicts the definition of t∗. Therefore t∗ = ∞, and for all t> 0,

X1(t)< X2(t).
�
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2. One-sided sandwich SDE

In this section, we discuss existence, uniqueness and properties of the solution of (0.3)
under Assumptions (A1)–(A4). First, we demonstrate that (A1)–(A3) ensure the existence and
uniqueness of the solution to (0.3) until the first moment of hitting the lower bound {ϕ(t), t ∈
[0, T]}. We then prove that (A4) guarantees that the solution exists on the entire interval [0, T],
since it always stays above ϕ(t). The latter property justifies the name one-sided sandwich in
the section title. Finally, we derive additional properties of the solution, still in terms of some
form of bounds.

Remark 2.1. Throughout this paper, the pathwise approach will be used; i.e. we fix a Hölder
continuous trajectory of Z in most proofs. For simplicity, we omit the ω in brackets in what
follows.

2.1. Existence and uniqueness result

As mentioned before, we shall start from the existence and uniqueness of the local solution.

Theorem 2.1. Let Assumptions (A1)–(A3) hold. Then the SDE (0.3) has a unique local solution
in the following sense: there exists a continuous process Y = {Y(t), t ∈ [0, T]} such that

Y(t) = Y(0) +
∫ t

0
b(s, Y(s))ds + Z(t), ∀t ∈ [0, τ0],

with

τ0: = sup{t ∈ [0, T] | ∀s ∈ [0, t):Y(s)>ϕ(s)}
= inf{t ∈ [0, T] | Y(t) = ϕ(t)} ∧ T .

Furthermore, if Y’ is another process satisfying Equation (0.3) on any interval [0, t] ⊂ [0, τ ′
0),

where

τ ′
0 := sup{s ∈ [0, T] | ∀u ∈ [0, s):Y ′(u)>ϕ(s)},

then τ0 = τ ′
0 and Y(t) = Y ′(t) for all t ∈ [0, τ0).

Proof. For a fixed ε ∈ (0, Y(0) − ϕ(0)), define for (t, y) ∈ [0, T] ×R

b̃ε(t, y) :=
{

b(t, y), (t, y) ∈Dε,
b(t, ϕ(t) + ε), (t, y) /∈Dε.

Note that b̃ε is continuous and globally Lipschitz with respect to the second variable, and hence
the SDE

Ỹε(t) = Y(0) +
∫ t

0
b̃ε
(
s, Ỹε(s)

)
ds + Z(t), t ∈ [0, T],

has a unique solution. Define

τε := inf{t ∈ [0, T] | Ỹε(t) = ϕ(t) + ε} ∧ T .
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By the definition of τε, for all t ∈ [0, τε) we have (t, Ỹε(t)) ∈Dε. This means that for all t ∈
[0, τε],

Ỹε(t) = Y(0) +
∫ t

0
b(s, Ỹε(s))ds + Z(t);

i.e. Ỹε is a solution to (0.3) on [0, τε).
Conversely, let Ỹ ′

ε be a solution to (0.3). Define

τ ′
ε := inf{t ∈ [0, T] | Ỹ ′

ε(t) = ϕ(t) + ε} ∧ T

and observe that for all t ∈ [0, τ ′
ε],

Ỹ ′
ε(t) = Y(0) +

∫ t

0
b̃ε
(
s, Ỹ ′

ε(s)
)
ds + Z(t), t ∈ [0, T],

which, by uniqueness of Ỹε, implies that τ ′
ε = τε and Ỹ ′

ε = Ỹε on [0, τε]. Since the choice of ε
is arbitrary, we get the required result. �
Theorem 2.1 shows that Equation (0.3) has a unique solution until the latter stays above
{ϕ(t), t ∈ [0, T]}. However, an additional condition (A4) on the constant γ from Assumption
(A3) allows us to ensure that the corresponding process Y always stays above ϕ. More
precisely, we have the following result.

Theorem 2.2. Let Assumptions (A1)–(A4) hold. Then (0.3) has a unique solution Y =
{Y(t), t ∈ [0, T]} such that

Y(t)>ϕ(t), t ∈ [0, T].

Proof. Let Y be the local solution to (0.3) discussed in Theorem 2.1, and assume that
τ := inf{t ∈ [0, T] | Y(t) = ϕ(t)} ∈ [0, T]. For any ε <min {y∗, Y(0) − ϕ(0)}, where y∗ is from
Assumption (A3), consider

τε := sup{t ∈ [0, τ ] | Y(t) = ϕ(t) + ε}.
By the definitions of τ and τε,

ϕ(τ ) − ϕ(τε) − ε= Y(τ ) − Y(τε) =
∫ τ

τε

b(s, Y(s))ds + Z(τ ) − Z(τε).

Moreover, for all t ∈ [τε, τ ), we have (t, Y(t)) ∈D0 \Dε, so, using the fact that ε < y∗ and
Assumption (A3), we obtain that for t ∈ [τε, τ ),

b(t, Y(t)) ≥ c

(Y(t) − ϕ(t))γ
≥ c

εγ
. (2.1)

Finally, by the Hölder continuity of ϕ and Z,

−(Z(τ ) − Z(τε)) + (ϕ(τ ) − ϕ(τε)) ≤ (
+ K)(τ − τε)
λ = :
̄(τ − τε)

λ.

Therefore, taking into account all of the above, we get


̄(τ − τε)
λ ≥

∫ τ

τε

c

εγ
ds + ε= c(τ − τε)

εγ
+ ε,
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i.e.
c(τ − τε)

εγ
− 
̄(τ − τε)

λ + ε≤ 0. (2.2)

Now consider the function Fε: R+ →R such that

Fε(t) = c

εγ
t − 
̄tλ + ε.

According to (2.2), Fε(τ − τε) ≤ 0 for any 0< ε <min {y∗, Y(0) − ϕ(0)}. It is easy to verify
that Fε attains its minimum at the point

t∗ =
(
λ
̄

c

) 1
1−λ

ε
γ

1−λ

and
Fε(t

∗) = ε− D
̄
1

1−λ ε
γλ

1−λ ,

where

D :=
(

1

c

) λ
1−λ (

λ
λ

1−α − λ
1

1−λ
)
> 0.

Note that, by (A4), we have γ λ
1−λ > 1. Hence it is easy to verify that there exists ε∗ such that

for all ε < ε∗, Fε(t∗)> 0, which contradicts (2.2). Therefore, τ cannot belong to [0, T], and Y
exceeds ϕ. �
Remark 2.2.

1. The result above can be generalized to the case of infinite time horizon in a straightfor-
ward manner. For this, it is sufficient to assume that ϕ is locally λ-Hölder continuous;
Z has locally Hölder continuous paths, i.e. for each T > 0 there exist a constant KT > 0
and random variable 
=
T (ω)> 0 such that

|ϕ(t) − ϕ(s)| ≤ KT |t − s|λ, |Z(t) − Z(s)| ≤
T |t − s|λ, t, s ∈ [0, T];

and Assumptions (A1)–(A4) hold on [0, T] for any T > 0 (in this case, the constants cε,
y∗, and c from the corresponding assumptions are allowed to depend on T).

2. Since all the proofs above are based on pathwise calculus, it is possible to extend the
results to stochastic ϕ and Y(0) (provided that Y(0)>ϕ(0)).

2.2. Upper and lower bounds for the solution

As we have seen in the previous subsection, each random variable Y(t), t ∈ [0, T], is a pri-
ori lower-sandwiched by the deterministic value ϕ(t) (under Assumptions (A1)–(A4)). In this
subsection, we derive additional bounds from above and below for Y(t) in terms of the random
variable 
 characterizing the noise from (1.1). Furthermore, such bounds allow us to establish
the existence of moments of Y of all orders, including the negative ones.

Theorem 2.3. Let Assumptions (A1)–(A4) hold, and let 
 be the random variable such that

|Z(t) − Z(s)| ≤
|t − s|λ, t, s ∈ [0, T].

Then, for any r> 0, the following hold:
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1. There exist positive deterministic constants M1(r, T) and M2(r, T) such that

|Y(t)|r ≤ M1(r, T) + M2(r, T)
r, t ∈ [0, T].

2. Additionally, if 
 can be chosen in such a way that E
r <∞, then

E

[
sup

t∈[0,T]
|Y(t)|r

]
<∞.

Proof. It is enough to prove item 1 for r = 1, as the rest of the theorem will then become

clear. Define η := Y(0)−ϕ(0)
2 and let

τ1 := sup {s ∈ [0, T] | ∀u ∈ [0, s]:Y(u) ≥ ϕ(u) + η} .

Our initial goal is to prove the inequality of the form

|Y(t)| ≤ |Y(0)| + TAT + AT

∫ t

0
|Y(s)|ds +
Tλ + max

u∈[0,T]
|ϕ(u)| + η, (2.3)

where

AT := cη

(
1 + max

u∈[0,T]
|ϕ(u)| + η

)
+ max

u∈[0,T]
|b (u, ϕ(u) + η)|

and cη is from Assumption (A2). Let us get (2.3) by considering the cases t ≤ τ1 and t> τ1
separately.

Case t ≤ τ1. For any s ∈ [0, t], we have (s, Y(s)) ∈Dη, and therefore, by Assumption (A2), for
all s ∈ [0, t],

|b(s, Y(s)) − b (s, ϕ(s) + η)| ≤ cη |Y(s) − ϕ(s) − η| .

Hence

|b(s, Y(s))| ≤ cη|Y(s)| + cη

(
max

u∈[0,T]
|ϕ(u)| + η

)
+ max

u∈[0,T]
|b (u, ϕ(u) + η)|

≤ AT (1 + |Y(s)|).
Therefore, taking into account that |Z(t)| ≤
Tλ, we have

|Y(t)| =
∣∣∣∣Y(0) +

∫ t

0
b(s, Y(s))ds + Z(t)

∣∣∣∣
≤ |Y(0)| +

∫ t

0
|b(s, Y(s))|ds + |Z(t)|

≤ |Y(0)| + TAT + AT

∫ t

0
|Y(s)|ds +
Tλ

≤ |Y(0)| + TAT + AT

∫ t

0
|Y(s)|ds +
Tλ + max

u∈[0,T]
|ϕ(u)| + η.

Case t > τ1. From the definition of τ1 and continuity of Y , Y(τ1) = η. Furthermore, since
Y(s)>ϕ(s) for all s ≥ 0, we can consider

τ2(t) := sup {s ∈ (τ1, t] | Y(s)<ϕ(s) + η} .
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Note that |Y(τ2(t))| ≤ maxu∈[0,T] |ϕ(u)| + η, so

|Y(t)| ≤ |Y(t) − Y(τ2(t))| + |Y(τ2(t))|
≤ |Y(t) − Y(τ2(t))| + max

u∈[0,T]
|ϕ(u)| + η. (2.4)

If τ2(t)< t, we have that (s, Y(s)) ∈Dη for all s ∈ [τ2(t), t]; therefore, similarly to Step 1,

|b(s, Y(s))| ≤ AT (1 + |Y(s)|),
so

|Y(t) − Y(τ2(t))| =
∣∣∣∣∫ t

τ2(t)
b(s, Y(s))ds + (Z(t) − Z(τ2(t)))

∣∣∣∣
≤
∫ t

τ2(t)
|b(s, Y(s))|ds + |Z(t) − Z(τ2(t))|

≤ TAT + AT

∫ t

0
|Y(s)|ds +
Tλ,

whence, taking into account (2.4), we have

|Y(t)| ≤ TAT + AT

∫ t

0
|Y(s)|ds +
Tλ + max

u∈[0,T]
|ϕ(u)| + η

≤ |Y(0)| + TAT + AT

∫ t

0
|Y(s)|ds +
Tλ + max

u∈[0,T]
|ϕ(u)| + η. (2.5)

Now, when we have seen that (2.3) holds for any t ∈ [0, T], we apply Gronwall’s inequality to
get

|Y(t)| ≤
(

|Y(0)| + TAT +
Tλ + max
u∈[0,T]

|ϕ(u)| + η

)
eTAT

= :M1(1, T) + M2(1, T)
,

where

M1(1, T) :=
(

|Y(0)| + TAT + max
u∈[0,T]

|ϕ(u)| + Y(0) − ϕ(0)

2

)
eTAT ,

M2(1, T) := TλeTAT .
�

Theorem 2.4. Let Assumptions (A1)–(A4) hold, and let 
 be the random variable such that

|Z(t) − Z(s)| ≤
|t − s|λ, t, s ∈ [0, T].

Then, for any r> 0, the following hold:

1. There exists a constant M3(r, T)> 0, depending only on r, T, λ, γ , and the constant c
from Assumption (A3), such that for all t ∈ [0, T],

(Y(t) − ϕ(t))−r ≤ M3(r, T)
̃
r

γ λ+λ−1 , (2.6)

where


̃ := max

{

,K, (2β)λ−1

(
(Y(0) − ϕ(0)) ∧ y∗

2

)1−λ−γ λ}
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with

β := λ
λ

1−λ − λ
1

1−λ

c
λ

1−λ
> 0.

2. Additionally, if 
 can be chosen in such a way that E

r

γ λ+λ−1 <∞, then

E

[
sup

t∈[0,T]
(Y(t) − ϕ(t))−r

]
<∞.

Proof. Just as in Theorem 2.3, it is enough to prove that there exists a constant L> 0 that
depends only on T , λ, γ , and the constant c from Assumption (A3) such that for all t ∈ [0, T],

Y(t) − ϕ(t) ≥ L


̃
1

γ λ+λ−1

;

then the rest of the theorem will follow.
Put

ε= ε(ω) := 1

(2β)
1−λ

γλ+λ−1 
̃
1

γ λ+λ−1

.

Note that 
̃ is chosen in such a way that

|ϕ(t) − ϕ(s)| + |Z(t) − Z(s)| ≤ 
̃|t − s|λ, t, s ∈ [0, T],

and furthermore, ε < Y(0) − ϕ(0) and ε < y∗. Fix an arbitrary t ∈ [0, T]. If Y(t) − ϕ(t)> ε,
then, by definition of ε, an estimate of the type (2.6) holds automatically. If Y(t) − ϕ(t)< ε,
then, since Y(0) − ϕ(0)> ε, one can define

τ (t) := sup{s ∈ [0, t] | Y(s) − ϕ(s) = ε}.
Since Y(s) − ϕ(s) ≤ ε < y∗ for all s ∈ [τ (t), t], one can apply Assumption (A3) and write

Y(t) − ϕ(t) = Y(τ (t)) − ϕ(t) +
∫ t

τ (t)
b(s, Y(s))ds + Z(t) − Z(τ (t))

= ε+ ϕ(τ (t)) − ϕ(t) +
∫ t

τ (t)
b(s, Y(s))ds + Z(t) − Z(τ (t))

≥ ε+ c

εγ
(t − τ (t)) − 
̃(t − τ (t))λ.

Consider the function Fε:R+ →R such that

Fε(x) = ε+ c

εγ
x − 
̃xλ.

It is straightforward to verify that Fε attains its minimum at

x∗ :=
(
λ

c

) 1
1−λ

ε
γ

1−λ 
̃
1

1−λ ,
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and, taking into account the explicit form of ε,

Fε(x∗) = ε+ λ
1

1−λ

c
λ

1−λ
ε
γλ

1−λ 
̃
1

1−λ − λ
λ

1−λ

c
λ

1−λ
ε
γλ

1−λ 
̃
1

1−λ

= ε− βε
γλ

1−λ 
̃
1

1−λ

= 1

2
γ λ

γλ+λ−1 β
1−λ

γλ+λ−1 
̃
1

γ λ+λ−1

= ε

2
;

i.e., if Y(t)<ϕ(t) + ε, we have that

Y(t) − ϕ(t) ≥ Fε(t − τ (t)) ≥ Fε(x∗) = ε

2
,

and thus for any t ∈ [0, T]

Y(t) ≥ ϕ(t) + ε

2
= ϕ(t) + 1

2
γ λ

γλ+λ−1 β
1−λ

γλ+λ−1 
̃
1

γ λ+λ−1

= :
L


̃
1

γ λ+λ−1

,

where

L := 1

2
γ λ

γλ+λ−1 β
1−λ

γλ+λ−1

.

This completes the proof. �
Remark 2.3. As one can see, the existence of moments for Y comes down to the existence of
moments for 
. Note that the noises given in Examples 1.1 and 1.3 fit into this framework.

Remark 2.4. The constant M3(r, T) from Theorem 2.4 can be explicitly written as

M3(r, T) = 2
rγ λ

γλ+λ−1 β
r(1−λ)
γ λ+λ−1 .

3. Connection to Skorokhod reflections

We have seen that, under Assumptions (Z1)–(Z2) and (A1)–(A4), the solution Y to (0.3)
exceeds ϕ. Note that since the inequality in (0.4) is strict, Y is not a reflected process in the
sense of Skorokhod (see e.g. the seminal paper [33] for more details). However, it is still pos-
sible to establish a connection between reflected processes and a certain class of sandwiched
processes.

For any ε > 0, consider an SDE of the form

Yε(t) = Y(0) +
∫ t

0

ε

(Yε(s) − ϕ(s))γ
ds −

∫ t

0
α(s, Yε(s))ds + Z(t), (3.1)

where Z = {Z(t), t ∈ [0, T]} is a stochastic process satisfying Assumptions (Z1)–(Z2); γ >
1−λ
λ

, where λ is the order of Hölder continuity of ϕ and the paths of Z; Y(0)>ϕ(0); and α:
[0, T] ×R→R is a continuous function such that

|α(t, y1) − α(t, y2)| ≤ c|y1 − y2|, y1, y2 ∈R, (3.2)
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for some constant c> 0. It is clear that the drift bε(t, y) := ε
(y−ϕ(t))γ − α(t, y) satisfies

Assumptions (A1)–(A4), and hence there exists a unique solution Yε to (3.1) and Yε(t)>ϕ(t),
t ∈ [0, T].

Next, consider the Skorokhod reflection problem of the form

Y0(t) = Y(0) −
∫ t

0
α(s, Y0(s))ds + Z(t) + L0(t), (3.3)

where the process L0 = {L0(t), t ∈ [0, T]} is called the ϕ-reflection function (or ϕ-regulator)
for Y0 and is defined as follows:

(i) L0(0) = 0 a.s.,

(ii) L0 is non-decreasing a.s.,

(iii) L0 is continuous a.s.,

(iv) the points of growth for L0 occur a.s. only at the points where Y0(t) − ϕ(t) = 0, and

(v) Y0(t) ≥ ϕ(t), t ∈ [0, T], a.s.

Note that the solution to the Skorokhod reflection problem (3.3) is not just a stochastic process
Y0 but the pair (Y0, L0) with L0 being a ϕ-reflection function for Y0. Regarding the problem
(3.3), we have the following result.

Theorem 3.1. If a Skorokhod reflection problem (3.3) has a solution (Y0, L0), it is unique.

Proof. First note that, without loss of generality, we can put ϕ ≡ 0. Indeed, let (Y0, L0) be
a solution to the Skorokhod reflection problem (3.3) with the lower boundary ϕ. Then the
process satisfies

Yϕ0 (t) = Yϕ(0) −
∫ t

0
αϕ(s, Yϕ0 (s))ds + Zϕ(t) + L0(t), (3.4)

where Yϕ(0) := Y(0) − ϕ(0), αϕ(t, y) := α(t, y + ϕ(t)), Zϕ(t) := Z(t) − (ϕ(t) − ϕ(0)). It is
easy to check that L0 is a 0-reflection function for Yϕ0 , i.e. (Yϕ0 , L0) is a solution to the
Skorokhod reflection problem (3.4) with the lower boundary 0. Similar reasoning allows us to
establish that the opposite is also true: if (Yϕ0 , L0) is a solution to (3.4), then (Y0 = Yϕ0 + ϕ, L0)
is a solution to (3.3), and hence (3.3) has a solution if and only if (3.4) does; the uniqueness
of the solution of one Skorokhod problem implies the uniqueness of the solution of the other.
Therefore, in this proof we assume that ϕ ≡ 0.

The rest of the proof essentially follows [33, 34]. The only difference is that we have a
general Hölder continuous noise Z instead of a classical Brownian motion, but the additive
form of Z in (3.3) makes the arguments shorter.

Let (Y0, L0) and (Y ′
0, L′

0) be two solutions to (3.3). Define

�+(t) :=
{

Y0(t) − Y ′
0(t) if Y0(t) − Y ′

0(t)> 0,

0 otherwise,

�−(t) :=
{

Y ′
0(t) − Y0(t) if Y ′

0(t) − Y0(t)> 0,

0 otherwise.

By definition of a solution to Skorokhod reflection problem, both �+ and �− are continuous
with probability 1. Let

τ (t) := sup{s ∈ [0, t] |�+(s) = 0}.
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If τ (t)< t, we have that for all s ∈ (τ (t), t]

�+(s)> 0

and therefore Y0(s)> Y ′
0(s) ≥ 0. This means that Y0 does not hit zero on (τ (t), t], so L0(t) =

L0(τ (t)) by definition of the reflection function. Moreover, since Y0 − Y ′
0 is continuous,

Y0(τ (t)) − Y ′
0(τ (t)) = 0, and hence

Y0(t) − Y ′
0(t) = −

∫ t

τ (t)

(
α(s, Y0(s)) − α(s, Y ′

0(s))
)

ds + L′
0(τ (t)) − L′

0(t).

However, Y0(t) − Y ′
0(t)> 0 and L′

0(τ (t)) − L′
0(t) ≤ 0; therefore

�+(t) ≤
∣∣∣∣∫ t

τ (t)

(
α(s, Y0(s)) − α(s, Y ′

0(s))
)

ds

∣∣∣∣
≤
∫ t

0

∣∣α(s, Y0(s)) − α(s, Y ′
0(s))

∣∣ ds

≤ c
∫ t

0

∣∣Y0(s) − Y ′
0(s)
∣∣ ds,

which also holds true if τ (t) = t (i.e. if �+(t) = 0). Similarly,

�−(t) ≤ c
∫ t

0

∣∣Y0(s) − Y ′
0(s)
∣∣ ds,

and hence, for all t ∈ [0, T],

|Y0(t) − Y ′
0(t)| ≤ c

∫ t

0

∣∣Y0(s) − Y ′
0(s)
∣∣ ds. (3.5)

The equality of Y0(t) and Y ′
0(t) with probability 1 now follows immediately from Gronwall’s

lemma and (3.5), which in turn immediately implies that L0(t) = L′
0(t) a.s. �

Note that Theorem 3.1 does not clarify whether the solution to (3.3) exists. Moreover, the
existence arguments from [33, 34] cannot be straightforwardly translated to the problem (3.3),
since e.g. [34, Lemma 4] exploits the independence of increments of the driver, which is not
available to us because of the generality of Z. However, the next result not only proves the
existence of the solution to (3.3) but also establishes the connection between (3.1) and (3.3).

Theorem 3.2. Let Yε be the solution to (3.1). Then, with probability 1,

sup
t∈[0,T]

|Yε(t) − Y0(t)| → 0, sup
t∈[0,T]

∣∣∣∣∫ t

0

ε

(Yε(s) − ϕ(s))γ
ds − L0(t)

∣∣∣∣→ 0 as ε ↓ 0, (3.6)

where (Y0, L0) is the solution to the Skorokhod reflection problem (3.3).

Proof. Fix an arbitrary path ω ∈� such that Z(ω, t) is λ-Hölder continuous with respect to
t (in what follows, ω in brackets will be omitted). For any fixed t, Yε(t) is non-increasing with
respect to ε by Lemma 1.2, and hence the limit

Y0(t) := lim
ε↓0

Yε(t)
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is well defined. Since α is continuous,

α(s, Yε(s)) → α(s, Y0(s)), ε ↓ 0.

Moreover, (3.2) implies that there exists a constant C> 0 such that

|α(t, y)| ≤ C(1 + |y|), t ∈ [0, T], y ∈R;

hence, by Lemma 1.2 and Theorem 2.3, for any ε ∈ (0, 1] and s ∈ [0, T],

|α(s, Yε(s))| ≤ C(1 + |Yε(s)|) ≤ C(1 + |Y1(s)|) ≤ C(1 + M1(1, T) + M2(1, T)
).

Therefore, by the dominated convergence theorem, for any t ∈ [0, T]∫ t

0
α(s, Yε(s))ds →

∫ t

0
α(s, Y0(s))ds, ε ↓ 0.

In particular, this means that the left-hand side of

Yε(t) − Y(0) +
∫ t

0
α(s, Yε(s))ds − Z(t) =

∫ t

0

ε

(Yε(s) − ϕ(s))γ
ds

converges for any t ∈ [0, 1], and hence there exists the limit

L0(t) := lim
ε↓0

∫ t

0

ε

(Yε(s) − ϕ(s))γ
ds.

It remains to prove that L0 is the ϕ-reflection function for Y0. For the reader’s convenience, the
rest of the proof will be split into four steps.

Step 1. It is easy to see by definition that L0(0) = 0, L0( · ) is non-decreasing, and Y0(t) ≥
ϕ(t), t ∈ [0, T].

Step 2. Let us prove the continuity of L0 on (0, T). Take t ∈ (0, T) and assume that L0(t+) −
L0(t−) = � > 0 (one-sided limits of L0—and hence of Y0—exist by monotonicity of L0). Since

Y0(t) = Y(0) −
∫ t

0
α(s, Y0(s))ds + Z(t) + L0(t),

this implies that Y0(t+) − Y0(t−) = �. Moreover, since L0 is non-decreasing, L0(t−) ≤ L0(t) ≤
L0(t+), which in turn implies that Y0(t−) ≤ Y0(t) ≤ Y0(t+).

Consider now the only two possible cases.
Case 1: Y0(t−) − ϕ(t−) = Y0(t−) − ϕ(t) = y> 0. Since the left-sided limit Y(t−) exists

and ϕ is continuous, there exists δ > 0 such that for all s ∈ [t − δ, t], Y0(s) − ϕ(s)> y
2 > 0.

Moreover, since Y0 is assumed to have a positive jump in t and Y(t+) exists, one can choose δ >
0 such that Y0(s) − ϕ(s)> y

2 > 0 for all s ∈ [t − δ, t + δ]. Thus, for any t1, t2 ∈ [t − δ, t + δ],

L0(t2) − L0(t1) = lim
ε↓0

∫ t2

t1

ε

(Yε(s) − ϕ(s))γ
ds ≤ lim

ε↓0

∫ t2

t1

ε

(Y0(s) − ϕ(s))γ
ds = 0,

and hence in this case L0(t−) = L0(t+) = L0(t), which contradicts the assumption L0(t+) −
L0(t−) = � > 0.
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Case 2: Y0(t−) − ϕ(t) = 0, Y0(t+) − ϕ(t) = � > 0. Choose ε1, δ1 > 0 such that ε1 < 1, t +
δ1 < T , and

ε1 + 2γ (K +
)δγ1 + 2δ1 + 2C

(
1 + M1(1, T) + M2(1, T)
+ 2 max

s∈[0,T]
|ϕ(s)|

)
δ1 <

�

2
,

(3.7)

where K is such that |ϕ(s1) − ϕ(s2)| ≤ K|s1 − s2|λ, s1, s2 ∈ [0, T], 
 is from (Z2), C is such
that |α(s, y)| ≤ C(1 + |y|), and M1(1, T), M2(1, T) are such that

sup
s∈[0,T]

|Y1(s)| ≤ M1(1, T) + M2(1, T)
.

Next, note that there exists δ2 < δ1 such that Y0(t − δ2) − ϕ(t − δ2)< ε1 and Y0(t + δ2) − ϕ(t +
δ2)> �

2 . Moreover, there exists ε2 < ε
γ

1 ∧ ε1 such that Yε2 (t − δ2) − ϕ(t − δ2)< ε1, and since

Yε2 (t + δ2) − ϕ(t + δ2) ≥ Y0(t + δ2) − ϕ(t + δ2)>
�

2
, (3.8)

one can define

τ := sup{s ∈ (t − δ2, t + δ2) | Yε2 (s) − ϕ(s) = ε1}.

By continuity, Yε2 (τ ) − ϕ(τ ) = ε1, and by the definition of τ , Yε2 (s) − ϕ(s) ≥ ε1 for all s ∈
[τ, t + δ2). Hence

Yε2 (t + δ2) = Yε2 (τ ) +
∫ t+δ2

τ

ε2

(Yε2 (s) − ϕ(s))γ
ds

−
∫ t+δ2

τ

α(s, Yε2 (s))ds + Z(t + δ2) − Z(τ )

= ϕ(t + δ2) + (Yε2 (τ ) − ϕ(τ )
)+ (ϕ(τ ) − ϕ(t + δ2))

+
∫ t+δ2

τ

ε2

(Yε2 (s) − ϕ(s))γ
ds

−
∫ t+δ2

τ

α(s, Yε2 (s))ds + Z(t + δ2) − Z(τ )

≤ ϕ(t + δ2) + ε1 + K(t + δ2 − τ )γ + ε2

ε
γ

1

(t + δ2 − τ )

+ C

(
1 + sup

s∈[0,T]
|Yε2 (s)|

)
(t + δ2 − τ ) +
(t + δ2 − τ )γ .

Note that

sup
s∈[0,T]

|Yε2 (s)| ≤ sup
s∈[0,T]

|Y1(s)| + 2 max
s∈[0,T]

|ϕ(s)|

≤ M1(1, T) + M2(1, T)
+ 2 max
s∈[0,T]

|ϕ(s)|,
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whence, by (3.7) and the fact that ε2
ε
γ

1
≤ 1,

Yε2 (t + δ2) − ϕ(t + δ2) ≤ ε1 + 2γ (K +
)δγ1 + 2δ1

+ 2C

(
1 + M1(1, T) + M2(1, T)
+ 2 max

s∈[0,T]
|ϕ(s)|

)
δ1

<
�

2
,

which contradicts (3.8).
The contradictions in both cases above prove that L0 is continuous at any point t ∈ (0, T).

Step 3. Let us show that L0 is continuous at 0 and at T .

Left-continuity at T. Let T̃ > T . Define

ϕ̃(t) =
{
ϕ(t), t ∈ [0, T],

ϕ(T), t ∈ [T, T̃],
Z̃(t) =

{
Z(t), t ∈ [0, T],

Z(T), t ∈ [T, T̃],

α̃(t, y) =
{
α(t, y), t ∈ [0, T],

α(T, y), t ∈ [T, T̃],

and consider

Ỹε(t) = Y(0) +
∫ t

0

ε(
Ỹε(s) − ϕ̃(s)

)γ ds −
∫ t

0
α̃(s, Ỹε(s))ds + Z̃(t).

Arguments similar to those above prove that Ỹ0(t) := limε↓0 Ỹε(t) and

L̃0(t) := lim
ε↓0

∫ t

0

ε(
Ỹε(s) − ϕ̃(s)

)γ ds

are well defined and continuous at any point t ∈ (0, T̃). Moreover, Ỹε, L̃0, and Ỹ0(t) coincide
with Yε, L0, and Y0 respectively on [0, T]; hence L0 and Y0 are left-continuous at T ∈ (0, T̃).

Right-continuity at 0. By Lemma 1.2, each Yε exceeds the process U defined by

U(t) = Y(0) −
∫ t

0
α(s,U(s))ds + Z(t).

Define τ := inf{t ∈ [0, T] | U(t) − ϕ(t) = Y(0)/2}. Then, for any t ∈ [0, τ ], we have Yε(t) −
ϕ(t) ≥ U(t) − ϕ(t) ≥ Y(0)

2 , and hence

L0(t) = lim
ε↓0

∫ t

0

ε

(Yε(s) − ϕ(s))γ
ds ≤ lim

ε↓0

2γ τ

Yγ (0)
ε= 0,

i.e. L0(0+) = 0 = L0(0).
Step 4. It remains to prove that L0 has points of growth only in those t ∈ [0, T] such that

Y0(t) = ϕ(t). Let t be such that Y0(t) − ϕ(t) = y> 0. Then, by continuity of Y0, there exists an
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interval [t − δ, t + δ] such that Y0(s) − ϕ(s)> y
2 for all s ∈ [t − δ, t + δ], and hence, for any

ε > 0, Yε(s) − ϕ(s)> y
2 . Therefore,

L(t + δ) − L(t − δ) = lim
ε↓0

∫ t+δ

t−δ
ε

(Yε(s) − ϕ(s))γ
ds ≤ lim

ε↓0

21+γ δ
yγ

ε= 0,

i.e. t is not a point of growth for L0.
Therefore, L0 is a ϕ-reflection function for Y0, and the pair (Y0, L0) is the unique solu-

tion to the Skorokhod reflection problem (3.3) as required. Note that the uniform convergence
from (3.6) immediately follows from the continuity of L0 (and hence Y0) and the pointwise
convergence established above. �
Remark 3.1. Theorem 3.2 can be regarded as a generalization of Theorem 3.1 from [29],
which considered the sandwiched process of the type

Yε(t) = Y(0) +
∫ t

0

(
ε

Yε(s)
− bYε(s)

)
ds + σBH(t),

where BH is a fractional Brownian motion with a Hurst index H > 1
2 . When ε ↓ 0, Yε converges

to a reflected fractional Ornstein–Uhlenbeck (RFOU) process, and the reflection function of the
latter can be represented as

L0(t) = lim
ε↓0

∫ t

0

ε

Yε(s)
ds, t ∈ [0, T].

Theorem 3.2 shows that the reflection function of the RFOU process can also be represented
as

L0(t) = lim
ε↓0

∫ t

0

ε

Yγε,γ (s)
ds, t ∈ [0, T],

where

Yε,γ (t) = Y(0) +
∫ t

0

(
ε

Yγε,γ (s)
− bYε,γ (s)

)
ds + σBH(t),

and the value of the limit does not depend on γ .

Remark 3.2. Note that the arguments in this subsection are pathwise, and hence they hold
without any changes if the lower boundary ϕ is itself a stochastic process.

4. Two-sided sandwich SDE

The fact that, under Assumptions (A1)–(A4), the solution Y of (0.3) stays above the function
ϕ is essentially based on the rapid growth to infinity of b(t, Y(t)) whenever Y(t) approaches ϕ(t),
t ≥ 0. The same effect is exploited to get an equation whose solution has both upper and lower
boundaries.

Specifically, let ϕ, ψ : [0, T] →R be λ-Hölder continuous functions, λ ∈ (0, 1), such that
ϕ(t)<ψ(t), t ∈ [0, T]. For an arbitrary pair a1, a2 ∈R define

Da1,a2 := {(t, y) | t ∈ [0, T], y ∈ (ϕ(t) + a1, ψ(t) − a2)} (4.1)
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and consider an SDE of the form (0.3), with Z being, as before, a stochastic process with λ-
Hölder continuous trajectories, and with the initial value Y(0) and the drift b satisfying the
following assumption.

Assumption 4.1. The initial value ϕ(0)< Y(0)<ψ(0) is deterministic, and the drift b is such
that the following hold:

(B1) The function b: D0,0 →R is continuous.

(B2) For any pair ε1, ε2 > 0 such that ε1 + ε2 < ‖ϕ −ψ‖∞, there is a constant cε1,ε2 > 0
such that for any (t, y1), (t, y2) ∈Dε1,ε2 ,

|b(t, y1) − b(t, y2)| ≤ cε1,ε2 |y1 − y2|.

(B3) There are constants γ , y∗ > 0, y∗ < 1
2‖ϕ −ψ‖∞, and c> 0 such that for all (t, y) ∈

D0,0 \Dy∗,0,

b(t, y) ≥ c

(y − ϕ(t))γ
,

and for all (t, y) ∈D0,0 \D0,y∗ ,

b(t, y) ≤ − c

(ψ(t) − y)γ
.

(B4) The constant γ from Assumption (B3) satisfies the condition

γ >
1 − λ

λ
,

with λ being the order of Hölder continuity of ϕ, ψ , and paths of Z.

Example 4.1. Let α1: [0, T] → (0,∞), α2: [0, T] → (0,∞) and α3: D0,0 →R be continuous,
with

|α3(t, y1) − α3(t, y2)| ≤ C|y1 − y2|, (t, y1), (t, y2) ∈D0,0,

for some constant C> 0. Then

b(t, y) := α1(t)

(y − ϕ(t))γ
− α2(t)

(ψ(t) − y)γ
− α3(t, y), t ∈ [0, T], y ∈D0,0,

satisfies Assumptions (B1)–(B4) provided that γ > 1−λ
λ

.

Following the arguments of Subection 2.1, it is straightforward to verify that the following
result holds.

Theorem 4.1. Let Assumptions (B1)–(B4) hold. Then the equation (0.3) has a unique solution
Y = {Y(t), t ∈ [0, T]} such that

ϕ(t)< Y(t)<ψ(t), t ∈ [0, T]. (4.2)

Moreover, using the arguments in the proof of Theorem 2.4, one can check that the bounds
(4.2) can be refined as follows.
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Theorem 4.2. Let r> 0 be fixed.

1. Under Assumptions (B1)–(B4), there exists a constant L> 0 depending only on λ, γ ,
and the constant c from Assumption (B3) such that the solution Y to the equation (0.3)
has the property

ϕ(t) + L
̃− 1
γ λ+λ−1 ≤ Y(t) ≤ ψ(t) − L
̃− 1

γ λ+λ−1 , t ∈ [0, T],

where


̃ := max

{

,K, (4β)λ−1

(
(Y(0) − ϕ(0)) ∧ y∗ ∧ (ψ(0) − Y(0))

2

)1−λ−γ λ}
,

with

β := λ
λ

1−λ − λ
1

1−λ

(2γ c)
λ

1−λ
> 0

and K being such that

|ϕ(t) − ϕ(s)| + |ψ(t) −ψ(s)| ≤ K|t − s|λ, t, s ∈ [0, T].

2. If 
 can be chosen in such a way that E

r

γ λ+λ−1 <∞, then

E

[
sup

t∈[0,T]
(Y(t) − ϕ(t))−r

]
<∞ and E

[
sup

t∈[0,T]
(ψ(t) − Y(t))−r

]
<∞.

5. Stochastic volatility: generalized CIR and CEV

In this section, we show how two classical processes used in stochastic volatility modeling
can be generalized under our framework.

5.1. CIR and CEV processes driven by a Hölder continuous noise

Let ϕ ≡ 0. Consider

b(y) = κ

y
α

1−α
− θy,

where κ , θ > 0 are positive constants, α ∈ (0, 1), and the process Z is a process with λ-Hölder
continuous paths with α+ λ> 1. It is easy to verify that for γ = α

1−α Assumptions (A1)–(A4)
hold and the process Y satisfying the SDE

dY(t) =
(

κ

Y
α

1−α (t)
− θY(t)

)
dt + dZ(t) (5.1)

exists and is unique and positive. Furthermore, as noted in Theorems 2.3 and 2.4, if the cor-
responding Hölder continuity constant 
 can be chosen to have all positive moments, Y will
have moments of all real orders, including the negative ones.

The process X = {X(t), t ∈ [0, T]} such that

X(t) = Y
1

1−α (t), t ∈ [0, T],
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can be interpreted as a generalization of a CIR (if α = 1
2 ) or CEV (for general α) process in

the following sense. Assume that λ> 1
2 . Fix the partition 0 = t0 < t1 < t2 < ...< tn = t, where

t ∈ [0, T], |�t| := maxk=1,...,n (tk − tk−1). It is clear that

X(t) = X(0) +
n∑

k=1

(X(tk) − X(tk−1)) = X(0) +
n∑

k=1

(Y
1

1−α (tk) − Y
1

1−α (tk−1)),

so using the Taylor expansion we obtain that

X(t) = X(0) +
n∑

k=1

(
1

1 − α
Y

α
1−α (tk−1)(Y(tk) − Y(tk−1))

+ α�
2α−1
1−α

n,k

2(1 − α)2
(Y(tk) − Y(tk−1))2

)
,

with �n,k being a real value between Y(tk) and Y(tk−1).

Note that, by Theorem 2.3 (for α ∈
[

1
2 , 1
)

) or Theorem 2.4 (for α ∈
(

0, 1
2

)
),

sup
n≥1,

k=0,1,...,n

�
2α−1
1−α

n,k <∞.

Moreover, using Equation (5.1) and Theorem 2.4, it is easy to prove that Y has trajectories
which are λ-Hölder continuous. Therefore, since λ> 1

2 ,

n∑
k=1

λ�
2α−1
1−α

n,k

2(1 − α)2
(Y(tk) − Y(tk−1))2 → 0, |�t| → 0, (5.2)

and

n∑
k=1

1

1 − α
Y

α
1−α (tk−1)(Y(tk) − Y(tk−1)) = 1

1 − α

n∑
k=1

Xα(tk−1)(Y(tk) − Y(tk−1))

= 1

1 − α

n∑
k=1

Xα(tk−1)

(∫ tk

tk−1

(
κ

Y(s)
α

1−α
− θY(s)

)
ds + (Z(tk) − Z(tk−1))

)

= 1

1 − α

n∑
k=1

Xα(tk−1)
∫ tk

tk−1

(
κ

Xα(s)
− θX1−α(s)

)
ds

+ 1

1 − α

n∑
k=1

Xα(tk−1)(Z(tk) − Z(tk−1))

→ 1

1 − α

∫ t

0
(κ − θX(s))ds + 1

1 − α

∫ t

0
Xα(s)dZ(s), |�t| → 0.

(5.3)

Note that the integral with respect to Z in (5.3) exists as a pathwise limit of Riemann–Stieltjes
integral sums, owing to sufficient Hölder continuity of both the integrator and integrand; see
e.g. [37].
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Taking into account all of the above, X satisfies (pathwise) the SDE of CIR (or CEV) type,
namely

dX(t) =
(

κ

1 − α
− θ

1 − α
X(t)

)
dt + 1

1 − α
Xα(t)dZ(t)

= (̃κ − θ̃X(t))dt + ν̃Xα(t)dZ(t),
(5.4)

where the integral with respect to Z is the pathwise Riemann–Stieltjes integral.

Remark 5.1. The integral
∫ t

0 Xα(s)dZ(s) arising above is a pathwise Young integral; see e.g.
[18, Section 4.1] and references therein.

Remark 5.2. Note that the reasoning described above also implies that, for α ∈
[

1
2 , 1
)

and

λ> 1
2 , the SDE (5.4), where the integral with respect to Z is understood pathwise, has a

unique strong solution in the class of non-negative stochastic processes with λ-Hölder con-

tinuous trajectories. Indeed, {Y 1
1−α (t), t ∈ [0, T]} with Y defined by (5.1) is a solution to (5.4).

Moreover, if X is another solution to (5.4), then by the chain rule [37, Theorem 4.3.1], the
process {X1−α(t), t ∈ [0, T]} must satisfy the SDE (5.1) until the first moment of hitting zero.
However, the SDE (5.1) has a unique solution that never hits zero, and thus X1−α coincides
with Y .

Remark 5.3. Some of the properties of the process Y given by (5.1) in the case of λ= 1
2 and

Z being a fractional Brownian motion with H > 1
2 were discussed in [26].

5.2. Mixed-fractional CEV process

Assume that κ , θ , ν1, ν2 are positive constants, B = {B(t), t ∈ [0, T]} is a standard Wiener
process, BH = {BH(t), t ∈ [0, T]} is a fractional Brownian motion independent of B with H ∈
(0, 1), Z = ν1B + ν2BH , α ∈

(
1
2 , 1
)

is such that H ∧ 1
2 + α > 1, and the function b has the

form

b(y) = κ

y
α

1−α
− αν2

1

2y
− θy.

Then the process Y defined by the equation

dY(t) =
(

κ

Y(t)
α

1−α
− αν2

1

2(1 − α)Y(t)
− θY(t)

)
dt + ν1dB(t) + ν2dBH(t) (5.5)

exists, is unique and positive, and has all the moments of real orders.

If H > 1
2 , just as in Subsection 5.1, the process X(t) := Y

1
1−α (t), t ∈ [0, T], can be interpreted

as a generalization of the CEV process.

Proposition 5.1. Let H > 1
2 . Then the process X(t) := Y(t)

1
1−α , t ∈ [0, T], satisfies the SDE of

the form

dX(t) =
(

κ

1 − α
− θ

1 − α
X(t)

)
dt + ν1

1 − α
Xα(t)dB(t) + ν2

1 − λ
Xα(t)dBH(t), (5.6)

where the integral with respect to B is the regular Itô integral (with respect to the filtration
generated jointly by (B, BH)), and the integral with respect to BH is understood as the L2-limit
of Riemann–Stieltjes integral sums.
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Remark 5.4. Note that B is a martingale with respect to the filtration generated jointly by
(B, BH), Xα is adapted to this filtration, and∫ t

0
E[X2α(s)]ds<∞,

i.e. the Itô integral
∫ t

0 Xα(s)dB(s) is well defined.

Proof. We will use an argument that is similar to the one presented in Subsection 5.1,
with one main difference: since we are going to treat the integral with respect to the Brownian
motion B as a regular Itô integral, all the convergences (including convergence of integral sums
with respect to BH) must be considered in the L2 sense. For the reader’s convenience, we split
the proof into several steps.

Step 1. First we will prove that the integral
∫ t

0 Xα(s)dBH(s) is well defined as the L2-limit of
Riemann–Stieltjes integral sums. Let 0 = t0 < t1 < t2 < ...< tn = t be a partition of [0, t] with
the mesh |�t| := maxk=0,...,n−1 (tk+1 − tk).

Choose λ ∈
(

1
2 ,H

)
, λ′ ∈

(
0, 1

2

)
, and ε > 0 such that λ+ λ′ > 1 and λ+ ε <H, λ′ + ε < 1

2 .

Using Theorem 2.4 and the fact that for any λ′ ∈
(

0, 1
2

)
the random variable 
Z,λ′+ε which

corresponds to the noise Z and Hölder order λ′ + ε can be chosen to have moments of all
orders, it is easy to prove that there exists a random variable ϒX having moments of all orders
such that

|Xα(t) − Xα(s)| ≤ϒX|t − s|λ′+ε, s, t ∈ [0, T], a.s.

By the Young–Loève inequality (see e.g. [19, Theorem 6.8]), it holds a.s. that∣∣∣∣ ∫ t

0
Xα(s)dBH(s) −

n−1∑
k=0

Xα(tk)(BH(tk+1) − BH(tk))

∣∣∣∣
≤

n−1∑
k=0

∣∣∣∣∫ tk+1

tk
Xα(s)dBH(s) − Xα(tk)(BH(tk+1) − BH(tk))

∣∣∣∣
≤ 1

21−(λ+λ′)

n−1∑
k=0

[Xα]λ′;[tk,tk+1][B
H]λ;[tk,tk+1],

where

[f ]λ;[t,t′] :=
(

sup
�[t,t′]

m−1∑
l=0

|f (sl+1) − f (sl)| 1
λ

)λ
,

with the supremum taken over all partitions �[t, t′] = {t = s0 < ...< sm = t′} of [t, t’].
It is clear that, a.s.,

[Xα]λ′;[tk,tk+1] =
(

sup
�[tk,tk+1]

m−1∑
l=0

|Xα(sl+1) − Xα(sl)|
1
λ′

)λ′

≤ϒX

(
sup

�[tk,tk+1]

m−1∑
k=0

(sl+1 − sl)
1+ ε

λ′

)λ′

≤ϒX|�t|λ′+ε
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and similarly

[BH]λ;[tk,tk+1] ≤
BH |�t|λ+ε,
where 
BH has moments of all orders and

|BH(t) − BH(s)| ≤
BH |t − s|λ+ε,
whence

E

∣∣∣∣ ∫ t

0
Xα(s)dBH(s)−

n−1∑
k=0

Xα(tk)(BH(tk+1) − BH(tk))

∣∣∣∣2

≤E

⎡⎣( 1

21−(λ+λ′)

n−1∑
k=0

[Xα]λ′;[tk,tk+1][B
H]λ;[tk,tk+1]

)2⎤⎦
≤E

⎡⎣
2
BHϒ

2
X

1

22−2(λ+λ′)

(
n−1∑
k=0

|�t|λ+λ′+2ε

)2⎤⎦→ 0

as |�t| → 0. It is now enough to note that each Riemann–Stieltjes sum is in L2 (thanks to the
fact that E[ supt∈[0,T] Xr(t)]<∞ for all r> 0), so the integral

∫ t
0 Xα(s)dBH(s) is indeed well

defined as the L2-limit of Riemann–Stieltjes integral sums.
Step 2. Now we would like to get the representation (5.6). In order to do that, one should

follow the proof of the Itô formula in a similar manner as in Subsection 5.1. Namely, for a
partition 0 = t0 < t1 < t2 < ...< tn = t one can write

X(t) = X(0) +
n∑

k=1

(
Y

1
1−α (tk) − Y

1
1−α (tk−1)

)

= X(0) + 1

1 − α

n−1∑
k=0

(
Y

α
1−α (tk−1)(Y(tk) − Y(tk − 1))

)

+ 1

2

α

(1 − α)2

n−1∑
k=0

(
Y

2α−1
1−α (tk−1)(Y(tk) − Y(tk − 1))2

)
+ 1

6

α(2α − 1)

(1 − α)3

n∑
k=1

(
�

3α−2
1−α

n,k (Y(tk) − Y(tk−1))3
)
,

where �n,k is a value between Y(tk−1) and Y(tk).

Note that, using Theorems 2.3 and 2.4, it is easy to check that for any λ′ ∈
(

1
3 ,

1
2

)
there

exists a random variable ϒY having moments of all orders such that

|Y(t) − Y(s)| ≤ϒY |t − s|λ′
.

Furthermore, by Theorem 2.3 (for α ∈
[

2
3 , 1
)

) and Theorem 2.4 (for α ∈
(

1
2 ,

2
3

)
), it is clear that

there exists a random variable�> 0 that does not depend on the partition and has moments of
all orders such that �n,k <�, whence

n∑
k=1

(
�

3α−2
1−α

n,k (Y(tk) − Y(tk−1))3
)

≤� 3α−2
1−α ϒ3

Y

n∑
k=1

(tk − tk−1)3λ′ L2−→ 0, |�t| → 0.
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Using Step 1, it is also straightforward to verify that

1

1 − α

n−1∑
k=0

(
Y

α
1−α (tk−1)(Y(tk) − Y(tk−1))

)
L2−→ 1

1 − α

∫ t

0
(κ − θX(s)) ds + ν1

1 − α

∫ t

0
Xα(s)dB(s)

+ ν2

1 − λ

∫ t

0
Xα(s)dBH(s)

− αν2
1

2(1 − α)2

∫ t

0
Y

2α−1
1−α (s)ds, |�t| → 0

and

1

2

α

(1 − α)2

n−1∑
k=0

(
Y

2α−1
1−α (tk−1)(Y(tk) − Y(tk − 1))2

)
L2−→ αν2

1

2(1 − α)2

∫ t

0
Y

2α−1
1−α (s)ds, |�t| → 0,

which concludes the proof. �

6. Simulations

To conclude the work, we illustrate the results presented in this paper with simulations.
Details on the approximation scheme used in this section can be found in Appendix A. All
the simulations were performed in the R programming language on a system with Intel Core
i9-9900K CPU and 64 Gb RAM. In order to simulate values of fractional Brownian motion
on a discrete grid, we used the R package somebm utilizing the circulant embedding approach
from [24, Section 12.4.2].

6.1. Simulation 1: square root of fractional CIR process

As the first example, consider a particular example of the process described in Subsection
5.1, namely the square root of the fractional CIR process:

Y(t) = Y(0) + 1

2

∫ t

0

(
κ

Y(s)
− θY(s)

)
ds + σ

2
BH(t), t ∈ [0, T], (6.1)

where Y(0), κ , θ , and σ are positive constants and BH is a fractional Brownian motion with
Hurst index H > 1

2 . In our simulations, we take T = 1, Y(0) = 1, κ = 3, θ = 1, σ = 1, H = 0.7.
Ten sample paths of (6.1) are given in Figure 1.

6.2. Simulation 2: two-sided sandwiched process with equidistant bounds

As the second example, we take

Y(t) = 2.5 +
∫ t

0

(
1

(Y(s) − cos (5s))4
− 1

(3 + cos (5s) − Y(s))4

)
ds + 3BH(t), t ∈ [0, 1],

(6.2)
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FIGURE 1. Ten sample paths of (6.1); T = 1, Y(0) = 1, κ = 3, θ = 1, σ = 1, H = 0.7, n = 20.

FIGURE 2. Ten sample paths of (6.2).

with
ψ(t) − ϕ(t) = 3 + cos (5t) − cos (5t) = 3, t ∈ [0, 1].

Ten sample paths of (6.2) are presented in Figure 2.

6.3. Simulation 3: two-sided sandwiched process with shrinking bounds

As our final illustration, we consider

Y(t) =
∫ t

0

(
1

(Y(s) + e−s)4
− 1

(e−s − Y(s))4

)
ds + BH(t), t ∈ [0, 1], (6.3)

with
ψ(t) − ϕ(t) = 2e−t → 0, t → ∞.

Ten sample paths of (6.2) are presented in Figure 3.
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FIGURE 3. Ten sample paths of (6.3).

Appendix A. The numerical scheme

In this section, we present the scheme used in Section 6 to simulate the paths of sandwiched
processes. One must note that this scheme does not have the virtue of preserving ‘sandwiched-
ness’, and it has a worse convergence rate than some alternative schemes (see e.g. [22, 38]
for the case of fractional Brownian motion). On the other hand, it allows for much weaker
assumptions on both the drift and the noise and is much simpler from the point of view of
implementation.

We first consider the one-sided sandwich case. In addition to (A1)–(A4), we will require
local Hölder continuity of the drift b with respect to t in the following sense:

(A5) for any ε > 0 there exists cε > 0 such that for any (t, y), (s, y) ∈Dε,

|b(t, y) − b(s, y)| ≤ cε|t − s|λ.

Obviously, without loss of generality one can assume that the constant cε is the same for
Assumptions (A2) and (A5).

We stress that the drift b is not globally Lipschitz, and furthermore, for any t ∈ [0, T], the
value b(t, y) is not defined for y<ϕ(t). Hence classical Euler approximations applied directly
to the equation (0.3) fail, since such a scheme does not guarantee that the discretized version of
the process stays above ϕ. A straightforward way to overcome this issue is to discretize not the
process Y itself, but its approximation Ỹ (n) obtained by ‘leveling’ the singularity in the drift.
Namely, fix

n0 > max
t∈[0,T]

|b(t, ϕ(t) + y∗)|,

where y∗ is from Assumption (A3). For an arbitrary n ≥ n0, define the function yn: [0, T] →D0
by

yn(t) := min{y>ϕ(t): b(t, y)< n},
and consider

b̃n(t, y) :=
{

b(t, y), y ≥ yn(t),

n, y< yn(t).
(A.1)
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By (A3), b(t, y) ≥ n for all y ∈
(
ϕ(t), ϕ(t) + ( c

n

) 1
γ

)
; therefore yn(t) ≥ ϕ(t) + ( c

n

) 1
γ and thus,

by (A2),
|̃bn(t, y1) − b̃n(t, y2)| ≤ cn|y1 − y2|, t ∈ [0, T], y1, y2 ∈R,

|̃bn(t1, y) − b̃n(t2, y)| ≤ cn|t1 − t2|λ, t1, t2 ∈ [0, T], y ∈R,
(A.2)

where cn denotes the constant from (A2) and (A5) which corresponds to ε= ( c
n

) 1
γ . In

particular, this implies that the SDE

dỸ (n)(t) = b̃n(t, Ỹ (n)(t))dt + dZ(t), Ỹ (n)(0) = Y(0)>ϕ(0), (A.3)

has a unique pathwise solution which can be approximated by the Euler scheme.

Remark A.1. In this section, by C we will denote any positive constant that does not depend
on the order of approximation n or the partition, and whose exact value is not important. Note
that C may change from line to line (or even within one line).

Regarding the process Ỹ (n), we have the following result.

Proposition A.1. Let Assumptions (A1)–(A4) hold. Then, for any r> 0, there exists a constant
C> 0 that does not depend on n such that

max
t∈[0,T]

|̃Y (n)(t)|r ≤ C
(
1 +
r) .

Proof. Fix n ≥ n0, take ε > 0, and consider the processes

Ỹε(t) = Y(0) +
∫ t

0

(
b(s, Ỹε(s)) + ε

)
ds + Z(t)

and

Ỹ (n0)
ε (t) = Y(0) +

∫ t

0

(̃
bn0 (s, Ỹ (n0)

ε (s)) − ε
)

ds + Z(t).

It is easy to see that there exists C> 0 that does not depend n such that

|̃bn0 (t, y)| ≤ C(1 + |y|);
therefore there exists C> 0 such that

|̃Y (n0)
ε (t)| ≤ Y(0) + εT +

∫ t

0
|̃bn0 (s, Ỹ (n0)

ε (s))|ds + Z(t)

≤ C + C
∫ t

0
|̃Y (n0)
ε (s)|ds +
Tλ.

Hence, by Gronwall’s inequality,

max
t∈[0,T]

|̃Y (n0)
ε (t)| ≤ C (1 +
)

for some constant C> 0. Moreover, by Theorem 2.3, there exists C> 0 such that

max
t∈[0,T]

|̃Yε(t)| ≤ C (1 +
) .
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The result now follows from the fact that, by Lemma 1.2,

Ỹ (n0)
ε (t) ≤ Ỹ (n)(t) ≤ Ỹε(t), t ∈ [0, T]. �

Before proceeding to the main theorem of the section, let us provide another simple
auxiliary proposition.

Proposition A.2. Let Assumptions (A1)–(A4) hold. Assume also that the noise Z satisfying
Assumptions (Z1)–(Z2) is such that

E
[|Z(t) − Z(s)|p]≤ Cλ,p|t − s|λp, s, t ∈ [0, T],

for some positive constant Cλ,p > 0 and p ≥ 1 such that λp := λ− 2
p >

1
1+γ with γ from

Assumption (A4). Then

P

(
min

t∈[0,T]
(Y(t) − ϕ(t)) ≤ ε

)
= O(εγλp+λp−1), ε→ 0.

Proof. By Lemma 1.1,

|Z(t) − Z(s)| ≤ Aλ,p|t − s|λ− 2
p

(∫ T

0

∫ T

0

|Z(x) − Z(y)|p
|x − y|λp

dxdy

) 1
p

,

where

Aλ,p = 23+ 2
p

(
λp

λp − 2

)
.

Note that the random variable


p := Aλ,p

(∫ T

0

∫ T

0

|Z(x) − Z(y)|p
|x − y|λp

dxdy

) 1
p

is finite a.s., since

E
p
p = Ap

λ,p

∫ T

0

∫ T

0

E|Z(x) − Z(y)|p
|x − y|λp

dxdy

≤ T2Ap
λ,pCλ,p

<∞.

Now, by applying Theorem 2.4 and Remark 2.4 with respect to the Hölder order λp = λ− 2
p ,

one can deduce that for all t ∈ [0, T]

Y(t) − ϕ(t) ≥ 1

M3,p(1, T)
̃
1

γ λp+λp−1
p

,

where

M3,p(1, T) := 2
γ λp

γ λp+λp−1 β
1−λp

γ λp+λp−1 > 0,

βp := λ

λp
1−λp
p − λ

1
1−λp
p

c
λp

1−λp

> 0,
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and


̃p := max

{

p,Kp,

(
2βp
)λp−1

(
(Y(0) − ϕ(0)) ∧ y∗

2

)1−λp−γ λp
}
,

with y∗, c, and γ being from Assumption (A3), and with Kp being such that

|ϕ(t) − ϕ(s)| ≤ Kp|t − s|λp, s, t ∈ [0, T].

Therefore

P

(
min

t∈[0,T]
(Y(t) − ϕ(t)) ≤ ε

)
≤ P

⎛⎜⎝ 1

M3,p(1, T)
̃
1

γ λp+λp−1
p

≤ ε
⎞⎟⎠

= P

(

̃p ≥

(
1

M3,p(1, T)ε

)γ λp+λp−1
)

≤ (M3,p(1, T))γ λp+λp−1
E[
̃p]εγλp+λp−1

= O(εγλp+λp−1), ε→ 0.

�
Finally, let �= {0 = t0 < t1 < ...< tN = T} be a uniform partition of [0, T], tk = Tk

N , k =
0, 1, ...,N, |�| := T

N . For the given partition, we introduce

τ−(t) := max{tk, tk ≤ t},
κ−(t) := max{k, tk ≤ t},
τ+(t) := min{tk, tk ≥ t},
κ+(t) := min{k, tk ≥ t}.

(A.4)

For any n ≥ n0, define

ŶN,n(t) := Y(0) +
∫ t

0
b̃n

(
τ−(s), ŶN,n

τ−(s)

)
ds + Z(τ−(t)); (A.5)

i.e.
ŶN,n(ti+1) = ŶN,n(ti) + b̃n(ti, ŶN,n(ti))(ti+1 − ti) + Z(ti+1) − Z(ti)

with linear interpolation between the points of the partition. Recall that for each n> n0 the
function yn: [0, T] →D0 is defined as

yn(t) := min{y>ϕ(t): b(t, y) ≤ n},
and consider

δn := sup
t∈[0,T]

(yn(t) − ϕ(t)). (A.6)

Remark A.2. By (A3), it is easy to see that εn := ( c
n

) 1
γ ≤ δn. Moreover, δn ↓ 0 as n → ∞.

Indeed, by the definition of yn, for any fixed t ∈ [0, T] and n> n0,

yn(t) ≥ yn+1(t)
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and hence δn ≥ δn+1. Now, consider an arbitrary ε ∈ (0, y∗) and take

nε := [ max
t∈[0,T]

b(t, ϕ(t) + ε)],

with [ · ] denoting the integer part. Then

b(t, ϕ(t) + ε)< nε + 1

for all t ∈ [0, T]. On the other hand, by Assumption (A3),

b(t, ϕ(t) + ε′) ≥ nε + 1

for all ε′ <
(

c
nε+1

) 1
γ

, which implies that for each t ∈ [0, T],

ynε+1(t) − ϕ(t)< ε,

i.e. δnε+1 < ε. This, together with δn being decreasing, yields that δn ↓ 0 as n → ∞.

Theorem A.1. Let Assumptions (Z1)–(Z2) and (A1)–(A5) hold. Assume also that the noise Z
is such that

E
[|Z(t) − Z(s)|p]≤ Cλ,p|t − s|λp, s, t ∈ [0, T],

where p ≥ 2 is such that λp := λ− 2
p >

1
1+γ , γ is from (A3), and Cλ,p is a positive constant.

Then

E

[
sup

t∈[0,T]

∣∣Y(t) − ŶN,n(t)
∣∣]≤ C

(
δ
γλp+λp−1

2
n + (1 + cn)ecn

Nλp

)
,

where C is some positive constant that does not depend on n or the mesh of the partition
|�| = T

N , δn is defined by (A.6), δn → 0, n → ∞, and cn is from (A.2).

Proof. Just as in the proof of Proposition A.2, observe that

|Z(t) − Z(s)| ≤
p|t − s|λp,

where


p := Aλ,p

(∫ T

0

∫ T

0

|Z(x) − Z(y)|p
|x − y|λp

dxdy

) 1
p

,

and note that the condition p ≥ 2 implies that

E
2
p ≤
(
E
p

p

) 2
p
<∞.

It is clear that

E

[
sup

t∈[0,T]

∣∣Y(t) − ŶN,n(t)
∣∣]

≤E

[
sup

t∈[0,T]

∣∣∣Y(t) − Ỹ (n)(t)
∣∣∣]+E

[
sup

t∈[0,T]

∣∣∣̃Y (n)(t) − ŶN,n(t)
∣∣∣] .
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Let us estimate the two terms in the right-hand side of the inequality above separately. Observe
that

b(t, y) = b̃n(t, y), (t, y) ∈Dδn ,

with δn defined by (A.6). Consider the set

An := {ω ∈� | min
t∈[0,T]

(Y(ω, t) − ϕ(t))> δn}

and note that

b(t, Y(t))1An = bn(t, Y(t))1An,

i.e., for all ω ∈An the path Y(ω, t) satisfies the equation (A.3) and thus coincides with
Ỹ (n)(ω, t). Hence

E

[
sup

t∈[0,T]

∣∣∣Y(t) − Ỹ (n)(t)
∣∣∣]

=E

[
sup

t∈[0,T]

∣∣∣Y(t) − Ỹ (n)(t)
∣∣∣ 1An

]
+E

[
sup

t∈[0,T]

∣∣∣Y(t) − Ỹ (n)(t)
∣∣∣ 1�\An

]

=E

[
sup

t∈[0,T]

∣∣∣Y(t) − Ỹ (n)(t)
∣∣∣ 1�\An

]

≤
⎛⎝E

⎡⎣( sup
t∈[0,T]

∣∣∣Y(t) − Ỹ (n)(t)
∣∣∣)2
⎤⎦⎞⎠

1
2 √

P

(
min

t∈[0,T]
(Y(t) − ϕ(t))> δn

)
.

By Theorem 2.3 and Proposition A.1 applied with respect to λp = λ− 2
p ,

E

⎡⎣( sup
t∈[0,T]

∣∣∣Y(t) − Ỹ (n)(t)
∣∣∣)2
⎤⎦

≤ C

⎛⎝E
⎡⎣( sup

t∈[0,T]
|Y(t)|

)2
⎤⎦+E

⎡⎣( sup
t∈[0,T]

∣∣∣̃Y (n)(t)
∣∣∣)2
⎤⎦⎞⎠

≤ C
(

1 +E
2
p

)
<∞,

and by Proposition A.2 there exists a constant C> 0 such that√
P

(
min

t∈[0,T]
(Y(ω, t) − ϕ(t))> δn

)
≤ Cδ

γλp+λp−1
2

n .

Therefore, there exists a constant C> 0 that does not depend on n or N such that

E

[
sup

t∈[0,T]

∣∣∣Y(t) − Ỹ (n)(t)
∣∣∣]≤ Cδ

γλp+λp−1
2

n . (A.7)
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Next, taking into account (A.2), for any t ∈ [0, T] we can write∣∣∣̃Y (n)(t) − ŶN,n(t)
∣∣∣≤ ∫ t

0

∣∣∣̃bn(s, Ỹ (n)(s)) − b̃n

(
τ−(s), Ỹ (n)(s)

)∣∣∣ ds

+
∫ t

0

∣∣∣̃bn(τ−(s), Ỹ (n)(s)) − b̃n

(
τ−(s), ŶN,n

τ−(s)

)∣∣∣ ds

+
p|�|λp

≤ cnTp/2|�|λp + cnTp/2
∫ t

0

∣∣∣̃Y (n)(s) − ŶN,n(s)
∣∣∣ ds +
p|�|λp,

whence, since E
p <∞,

E

[
sup

s∈[0,t]

∣∣∣̃Y (n)(t) − ŶN,n(t)
∣∣∣]

≤ cnTp/2|�|λp + cnTp/2
∫ t

0
E

[
sup

u∈[0,s]

∣∣∣̃Y (n)(u) − ŶN,n(u)
∣∣∣] ds + C|�|λp ,

and, by Gronwall’s inequality, there exists a constant C> 0 such that

E

[
sup

t∈[0,T]

∣∣∣̃Y (n)(t) − ŶN,n(t)
∣∣∣]≤ C(1 + cn)ecn

Nλp
.

This, together with (A.7), completes the proof. �
Remark A.3. The processes from Examples 1.1, 1.2, and 1.3 satisfy the conditions of
Theorem A.1.

The two-sided sandwich case presented in Section 4 can be treated in the same manner.
Instead of Assumption (A5), one should use the following:

(B5) for any ε1, ε2 > 0, ε1 + ε2 ≤ ‖ϕ −ψ‖∞, there is a constant cε1,ε2 > 0 such that for any
(t, y), (s, y) ∈Dε1,ε2 ,

|b(t, y) − b(s, y)| ≤ cε1,ε2 |t − s|λ,
where Dε1,ε2 is defined by (4.1). Namely, let

n0 >max

{
max

t∈[0,T]
|b(t, ϕ(t) + y∗)|, max

t∈[0,T]
|b(t, ψ(t) − y∗)|

}
,

where y∗ is from Assumption (B3). For an arbitrary n ≥ n0 define

yϕn (t) := min{y ∈ (ϕ(t), ψ(t)): b(t, y)< n},
yψn (t) := max{y ∈ (ϕ(t), ψ(t)): b(t, y)>−n},

and consider the functions b̃n: [0, T] ×R→R of the form

b̃n(t, y) :=

⎧⎪⎨⎪⎩
b(t, y), yϕn (t) ≤ y ≤ yψn (t),

n, y< yϕn (t),

−n, y> yψn (t).

(A.8)
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Observe that, just as in the one-sided case,

|̃bn(t, y1) − b̃n(t, y2)| ≤ cn|y1 − y2|, t ∈ [0, T], y1, y2 ∈R,

|̃bn(t1, y) − b̃n(t2, y)| ≤ cn|t1 − t2|λ, t1, t2 ∈ [0, T], y ∈R,
(A.9)

where cn denotes the constant from Assumptions (B2) and (B5) which corresponds to ε=( c
n

) 1
γ . In particular, this implies that the SDE

dỸ (n)(t) = b̃n(t, Ỹ (n)(t))dt + dZ(t), Ỹ (n)
0 = Y(0)>ϕ(0), (A.10)

has a unique pathwise solution and, just as in the one-sided case, can be simulated via the
standard Euler scheme:

ŶN,n(t) := Y(0) +
∫ t

0
b̃n

(
τ−(s), ŶN,n

τ−(s)

)
ds + Z(τ−(t)). (A.11)

Now, define

δn := max

{
sup

t∈[0,T]
(yϕn (t) − ϕ(t)), sup

t∈[0,T]
(ψ(t) − yψn (t))

}
(A.12)

and note that δn → 0, n → ∞, just as in the one-sided case.
Now we are ready to formulate the two-sided counterpart of Theorem A.1.

Theorem A.2. Let Assumptions (Z1)–(Z2) and (B1)–(B5) hold. Assume also that the noise Z
is such that

E
[|Z(t) − Z(s)|p]≤ Cλ,p|t − s|λp, s, t ∈ [0, T],

where p ≥ 2 is such that λp := λ− 2
p >

1
1+γ , γ is from (A3), and Cλ,p is a positive constant.

Then

E

[
sup

t∈[0,T]

∣∣Y(t) − ŶN,n(t)
∣∣]≤ C

(
δ
γλp+λp−1

2
n + (1 + cn)ecn

Nλp

)
,

where C is some positive constant that does not depend on n or the mesh of the partition
|�| = T

N , δn is defined by (A.12), δn → 0, n → ∞, and cn is from (A.9).

Remark A.4. Theorems A.1 and A.2 guarantee convergence for all λ ∈ (0, 1), but in practice
the scheme performs much better for λ close to 1. The reason is as follows: in order to make

δ
γλp+λp−1

2
n small, one has to consider large values of n; this results in larger values of (1 + cn)ecn

that, in turn, have to be ‘compensated’ by the denominator Nλp . The bigger λp is, the smaller
the values of n (and hence of N) can be.
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