Can. J. Math., Vol. XXIX, No. 6, 1977, pp. 1171-1197

CERTAIN VARIETIES AND QUASIVARIETIES
OF COMPLETELY REGULAR SEMIGROUPS

MARIO PETRICH

1. Introduction and summary. We adopt the following definition of a
completely regular semigroup S: for every element a of S, there exists a unique
element ¢! of S such that

1 a = aala, a'=qglaa™t, aa"! = ala.
)

This property is equivalent to .S being a union of its (maximal) subgroups, and
for this reason, these semigroups are frequently called umions of groups.
Another equivalent definition is that they are semilattices of completely
simple semigroups, a result due to Clifford {2], which is of fundamental im-
portance for studying their structure, and hence they are occasionally referred
to as Clifford semigroups. Further characterizations of these semigroups can
be found in the books [3] and [14].

The class €% of completely regular semigroups does not form a variety,
for it is not closed under taking subsemigroups. However, if we consider ele-
ments of € as algebras with two operations (S, -, =), where - is the given
semigroup operation and x — x~—! is the unary operation on S satisfying condi-
tions (1), then € constitutes a variety of universal algebras. Note that for
x € Sand Sin €, x~'is the inverse of x in the maximal subgroup of S con-
taining x. The purpose of this work is to study certains subvarieties and sub-
quasivarieties of the variety € of universal algebras just introduced. We
first present two diagrams of the objects under study.

The notation introduced in the two diagrams is fixed throughout the paper.
Section 2 contains some special notation and terminology. We start with a
study of subvarieties of orthodox bands of groups, normal bands of groups,
and of orthodox normal bands of groups. The principal results in Sections 3—5
are the isomorphisms:

V(OBG) =V (B) XV (D),

VYV NBG) =2V (H) XV (€YL),

V(ONBYG) = V3 XYV (D),
where 7 (%) is the lattice of all subvarieties of a variety .% of completely
regular semigroups, and Y, is a 2-element semilattice. These sections also con-

tain various characterizations of the semigroups under study, as well as a
description of an equational base for the join of a variety of bands and a
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E AR : completely regular semigroups

X Y : bands of groups
?

OB % : orthodox

bands of groups

NHBYG : normal
ONBYG : orthodox Abands of groups

normal bands of
groups

%Y : completely
simple semigroups

| ...
F Y : semilattices

N% . normal bands
of lgroups

R G : rectangular groups

RH : rectangular

g
|
bands

% : semilattices : groups

J " : trivial semigroups
Diagram 1: Varieties

variety of groups, and the join of % and a variety of completely simple semi-
groups. This study shows that Diagram 1 represents a sublattice of the lattice
of all varieties of completely regular semigroups.

Sections 6-8 contain a similar analysis for quasivarieties which are joins of
some of the pairs of varieties considered in Sections 3-5. We establish the
following isomorphisms:

QUBG) ~ D2(F) X 2(9),
QSSCS) =~ 2WH) X 2(¢Y),
LSS RG) = Y* X 2(F),
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2

g
U#Y = unitary bands of groups
S S ECS = sturdy semilattices of completely simple semigroups

LSRG = sturdy semilattices of rectangular groups
FSSY = sturdy semilattices of groups
LS R = sturdy semilattices rectangular bands

Diagram 2: Quasivarieties

as well as characterize the joins of quasivarieties of bands and groups, etc., as
above for varieties. This study yields that Diagram 2 represents a sublattice of
the lattice of all quasi-varieties of completely simple semigroups.

We prove, in Sections 9-11, that each of the varieties in Diagram 1 is the
homomorphic closure of the quasivarieties at the corresponding vertex in
Diagram 2. We define here a certain congruence on a regular semigroup which
is a subdirect product of a band and a completely simple semigroup. The princi-
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pal results are the statements that all congruences on regular semigroups which
are subdirect products of a band and a group or a semilattice and a completely
simple semigroup are of the type constructed.

Certain properties of these congruences are studied in Section 12. The main
result here is that a special type of this congruence still yields all semigroups in
the three varieties mentioned above.

Section 13 contains a few problems which suggest themselves naturally in
this study.

It seems remarkable that the form of Diagrams 1 and 2 occur repeatedly in
[16] where further references to this type of diagram can be found.

2. Notation and terminology. For a variety % of completely regular
semigroups, the lattice of all subvarieties of .% will be denoted by ¥ (%) and
the join in it by v.

An implication is an ordered pair ({#e = Us}acs, # = v) of a family of equa-
tions and a single equation, to be denoted by

(g = Vglaca = u = .

A semigroup .¥ satisfies this implication if for any substitution of variables in
all u,, v,, u and v, whenever 1, = v, is true for all «, then also # = v is true.
The class of all semigroups satisfying all implications in a family £ of implica-
tions is a quasivariety, to be denoted by [#]. The notation [.#, Z, .. ] stands
for the quasivariety of all semigroups satisfying all implications in £, all
implications in #, etc. For a quasi-variety.% of semigroups, 2(%) will denote
the lattice of all quasivarieties contained in . ordered by inclusion; the join
will be denoted by V. If all implications in .# are identities, then [ £] is a
variety.

The above definitions and notation will be used here only for the universal
algebra @ X of completely regular semigroups.

In forming the join V we will often use subdirect products. We denote by
S <18 XS, X ... XS, that a semigroup S is a subdirect product of semi-

groups Si, Sy, ..., S,. The cross X will be used for direct products of semi-
groups as well as of lattices. In particular ¥Y” stands for ¥ X ¥ X ... X ¥,
7 times.

The class of regular semigroups will be denoted by #. A semigroup S in #
is orthodox if its idempotents Eg form a subsemigroup. If p is a congruence on
a semigroup S, the quotient semigroup will be denoted by .S/p and the natural
homomorphism by p*. If S/p is a semilattice (band or group), then p is a
semilattice (band or group) congruence on S. We denote by 5 the least semi-
lattice congruence on any semigroup. If each p-class is a group, then S is a
band of groups; if also S/p is a normal band, then S is a normal band of groups.

If S is a semilattice ¥ of semigroups S, and the multiplication in .S is deter-
mined by a transitive system of homomorphisms ¢, s, then S is a strong semzi-
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lattice of semigroups S,, to be denoted by [V; S,, ¢.6] briefly by [V; S,]. If also
all ¢, g are one-to-one, then S is a sturdy semilattice of semigroups S,.

For complete definitions concerning these concepts, as well as for undefined
terms and notation, we refer the reader to books [3] and [14]. A comprehensive
review of results on varieties of semigroups is given in Evans [4].

3. Varieties of orthodox bands of groups. We have proved in [17] that
V(OBG) =V (#B) XV (F). Note that OX Y is denoted by ¥ in [17)].
We will give below an alternate proof of this result, and will subsequently use
its method of proof several times.

We have seen in [17] that an Sin ¥ is a band of groups (equivalently the
Green relation 5 on S is a congruence) if and only if S satisfies the identity

(2)  (a%c?) (a2bc?)~t = (abc) (abc)™.

It follows from [14, IV.3.1] that Sin € % is orthodox if and only if it satisfies
the identity

3) ab = abb—a"'ab.

Now [17, Proposition 1] asserts that the conjunction of (2) and (3) is equiva-
lent to the single identity

4)  (ab) (ab)~! = aa~'bb~\.
Some notation from [17] will be very handy.

3.1 Notation. Let £ be a family of identities on Z. For each identity u = v
in #, we formally substitute each variable x occurring in # = v by xx~!, and
denote the new identity by # = 9. Let

I =i =70lu=vin S}
and consider £ as a family of identities on € %.

Next let # be a family of identities on %. Let u = v be an identity in .#.
We may suppose that both # and v contain the same set {x;, x3, ..., x,} of
variables. We formally set e = (x1x2 ... x,) (x1x2 ... x,)~! and substitute
each occurrence of x; in # = v by ex,e. We then obtain an identity to be
denoted by 4 = 9. Let

j={d=ﬁlu=vinﬂ}

and consider .£ as a family of identities on & %. Note that any choice of the
order in which the variables x; are written will do.

The next proposition is essentially [17, corollary to the theorem and Proposi-
tion 2]; for the sake of completeness, we furnish a (better) proof for it.

3.2 ProPOSITION. If ¥ = [ I €V (D) and V" = [I"] €V (D), then
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VY = I, I @)
=S¢ OBBYG|EscV ' and G, € V" for all e € Eg}.

Proof. Denote the three sets in the statement of the proposition by A, 4., 43
in the given order.

First let S € A;. Then Eg satisfies £’ and hence S satisfies .. Let u = v
be an identity in £/, with the notation as in the second part of Notation 3.1
above. Letting y, = ex;efort = 1,2,..., n, we obtain from # = 4 an identity
of the form u = v with all variables ranging over the group G,. The hypothesis
that G, € 77" implies tha}g = 9 is valid in G,, and hence #Z = 9 is valid in S.
Consequently S satisfies #''. Since Sis in OZ Y, it must statisfy identity (4).
Hence S € 4., and thus 4; C A.,.

Next let S € A.. Since S satisfies identity (4), we must have S € OZ Y.
Further, S satisfies .#’, which evidently implies that Eg satisfies #’. Similarly,
since S satisfies #'’, each maximal subgroup of S must satisfy #’’. Hence
S € Aj, and consequently 4, C 4.

It is clear that 7"/, 7" C A;. The equality 4, = A; implies that 43 is a
variety, which then shows that?”’ v ¥" C A4; by the very definition of the
join v. Hence 4; C 4.

Finally let S € A4;. According to [15, Theorem 3.2], we can write S as a
subdirect product of a band B and a semilattice of groups 7', where B =~ Eg
and B/n = T'/n. We represent 7" as a semilattice ¥ = B/n of groups Ga,
where G, are isomorphic to maximal subgroups of S. The hypothesis implies
that G, € ¥ It follows from [14, I11.7.2] that 7" is a subdirect product of
semigroups 1., where 7, = G, or T, = G,°. This implies that ¥ is nontrivial.
Since ¥V =~ B/n and B € 7", it follows that ¥/ contains all semilattices. Let
Y, = {0, 1} be a 2-element semilattice, and p be the Rees congruence on the
direct product G, X Y, relative to its kernel (i.e., p identifies all elements of
the form (g, 0)). Then G,* = (G, X Y,)/p which proves that G,* € 7" v ¥,
Consequently, in any case, 7, € ¥ v ¥, and thus T € ¥ v ¥ since T’
is a subdirect product of various 7,. Finally, S is a subdirect product of B =<
Es, where Egis in?”’, and 7 which is in?”" v ¥”""; we deduce that S is in
Y v ¥ Therefore A3 C A, and the proof is complete.

We now come to the main result of this section.
3.3. THEOREM. The function
XV > NB,Y NG & eV (OBY))
is an isomorphism of ¥ (OB G ) onto?V (B) X ¥V (9).

Proof. It is clear that x maps ¥ (OZ G ) into ¥ (#) X ¥ (%) and is in-
clusion preserving. If ¥/, ¥ ¢ ¥ (OHG) satisfy ¥ 'x =¥ "'x, then by
[17, Lemma 1], we have

V' =" NB)Yv ' N\NG)y=F"NB)Yv " NGy =o4"
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and hence x is one-to-one. Let ¥ € ¥ (X)), V" ¢ ¥ (%) and ¥ = ¥ v
""", Then by Proposition 3.2, we have

VY NZ =T 'vV"YNHB

={Sc OBYG|Esc?¥ and G, € ¥ " foralle € Es N %
=/V/

and analogously ¥ N9 =%"". Hence ¥ ¢ ¥ (OB Y )and¥ x = (V' 7"").
Therefore x is a (lattice) isomorphism of ¥ (O# %) onto ¥ (#) X ¥ (9D).

The lattice " (Z) of all varieties of bands has been constructed by Birjukov
(1], Fennemore [5] and Gerhard [6]. As contrasted to this, the lattice ¥ (%)
is not known. The book by Neumann [11] contains an extensive study of
varieties of groups. Note that the lattice of all varieties of abelian groups
is known.

4. Varieties of normal bands of groups. These semigroups, symbolized
by N B G, are by definition semigroups S which have a congruence p such that
each p-class is a group and S/p is a normal band, i.e. satisfies the identity axya
= ayxa. It is easy to see that this is equivalent to the Green relation S# being
a congruence such that S/ is a normal band. Since in any completely regular
semigroup a S b if and only if aa=! = bb~!, the semigroups in /B Y are
characterized by identity (2) and

B)  (axya) (axya)™' = (ayxa) (ayxa)='.

We will characterize these semigroups in various manners below. We start with
some auxiliary statements.

4.1 LEMMA. Let S be a regular semigroup satisfying axya H ayxa for all a, x,
vy € S. Then S is completely regular and H is a congruence.

Proof. Let a € S; there is x € S such that ¢ = axa. Then a = axa =
ax(ax)a A a2 so that a € a2xaS C a2S. Similarly, we have ¢ € Sa?, which
shows that S is completely regular.

Nextletxs# yanda € S. Then x = yu and thus xa = (yua)t(yua) for some
t € S. The hypothesis yields xa = yu(at)yua S y(at)uyua and thus xa € yaS,
which implies, by symmetry, that xaS = yaS.

Trivially Sx = Sy implies Sxa = Sya. Consequently xa # ya. A dual proof
shows that also ax 3% ay. Therefore 5# is a congruence.

4.2 LEMMA. Let S be a completely regular semigroup for which xy H yx implies
xay S yax for all a, x,y € S. ThenS is a congruence.

Proof. Let x#° y and a € S. Then xS = yS so that
xyS = x2S = xS = yS = y2S = yxS
and analogously Sxy = Syx. Hence xy 2 yx which by hypothesis implies
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xay # yax. In particular, we have xayS = yaxS. There exists # € S such that
xa = (xa)?u. Hence

xa = (xax)au € xa(xS) = xayS = yaxS C yaS
which implies xa.S C yaS and, by symmetry, xaS = yaS. Trivially Sxa = Sya,
and thus xa# ya. By symmetry, we conclude that.# is a congruence.
4.3 LEMMA. T'he following implications on a band are equivalent.
(1) axya = ayxa.
(i) axyb = ayxb.
(ii) xy = yx = xay = yax.
Proof. A proof of this can be found in [18].
From the preceding lemmas, we deduce
4.4 PROPOSITION. Semigroups in N B'YG can be characterized within € R by
satisfaction of any of the following implications:
(i) (axya) (axya)™ = (ayxa) (ayxa)™,
(i) (axyb) (axyb)~ = (ayxb) (ayxb)~",
(iii) (xy) (xp)7' = (yx) (yx)~' = (xay) (xay)™" = (yax) (yax)='.
Further characterizations of normal bands of groups can be found in [14,

1V.4.3]. The following notation will be presently useful. Recall that ¥.% is
the variety of completely simple semigroups.

4.5 Notation. If £ is a family of identities on ¥.¥, let
J* = {uv = vu, uvu = vuvlu = v in S}
and consider #* as a family of identities on ¥ %.
4.6 ProprosITION. If YV = [ I] € ¥ (€.L), then
vy =[I% G ={Y;S]|YeH,S. €V forulac Y}

Proof. Denote by A, As, As the sets in the statement of the proposition in
the given order. Any semilattice trivially satisfies #* and (5). If S € ¥, then
S satisfies £ and thus £*, and is a completely simple semigroup so that it also
satisfies (5). Consequently %, %" C A, which implies that 4, € A4.,.

Next let S € A4,. Then S is a normal band of groups and is hence, by [14,
1V.4.3], a strong semilattice of completely simple semigroups, say S = [V; S.].
The hypothesis implies that each S, satisfies #*. Let u = v be an identity in
J. Then uv = vu and uvu = vuw are identities in #* so each S, satisfies them.
Singling out any S,, and considering # and v as elements of S,, we see that
uv = vu implies that . v and thus uvu = vuv implies that « = v since every
H-class of S, is a group. It follows that S, satisfies # = v. Consequently S,
satisfies £ and thus.S, € ¥ foralla € V. Thus 4, C 4.
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Finally let S € 4;. Then S = [V; S,] with S, € ¥ for all « € Y. It follows
from [14, 111.7.2] that .S is a subdirect product of semigroups 7, where 7, =
Seor T, = S,°. As in the proof of Proposition 3.2, one sees that S,° ¢ % v ¥,
which shows that T, € # v ¥ for all« € Y. But then S € # v ¥  which
proves that S € A;. Therefore A3 C A, and the proof is complete.

We are now ready for the main result of this section.

4.7 THEOREM. The function
XV = N AV NCF) V€V  NBDG))
is an isomorphism of V(N BG ) onto ¥ (%) X ¥V (€.F).

Proof. 1t is clear that x maps ¥ (N B G ) into ¥ (%) X ¥ (¥.%) and that
it is order preserving. For ¥~ ¢ ¥ (N XY ), we assert

6) ¥ =& N¥)vF N\ECP).

If % & ¥, this is trivial since then?” € ¥ and ¥ N% = .7 . Assume
that % C ¥ . The right hand side of (6) is obviously contained in the left
hand side. Let S € ¥". Then S = [V; S,] with S, € ¥ for all « € Y in light
of [14, IV.4.3]. Similarly as in the proof of Proposition 4.6, we have that
SeEHW v (" N EYL). This establishes (6) which easily implies that x is
one-to-one.

Finally, let ¥ ¢ ¥ (%) and ¥ ¢ V' (¥F). f ¥"' = 7, than ¥"'x =
(T,7""). f¥"" = %, then by Proposition 4.6, we obtain

@S x= (@YY FHY)NECS) = W, V")

where @' v ¥ ¢ NH Y. It follows that x is an isomorphism ofV(/Vgg)
onto ¥V (%) XV (€.5).

Letting Y be a 2-element semilattice, and noting that % has no non-trivial
proper subvarieties, we have ¥ (%) = V,, and by the theorem,? (V# G ) =~
YV, X ¥ (4.%). Nothing seems to be known about the lattice ¥ (6.9).

5. Orthodox normal bands of groups. By definition, these are bands of
groups which are also orthodox semigroups, and thus the idempotents must
form a normal band. According to (14, IV.4.6], a completely regular semigroup
whose idempotents form a normal band is necessarily a band of groups, and
thus an orthodox normal band of groups. These semigroups are thus character-
ized, within €%, by the identity

(7) axx~lyy~la = ayy xx"la.

As for varieties of these semigroups, we have the following results. Recall the
symbolism ONBYG and /B, and let 0F stand for orthodox completely
regular semigroups.
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5.1 ProposITION. If ﬂz (I eV NB) and V" = [I"] c ¥ (9D),

then?' v ¥ = [ I, F", (1)) ={S€ OF|Es € ¥ and G, € V" for all
e € Eg}

Proof. This is a special case of Proposition 3.2 except for the fact that in the
square bracket we have (7) instead of (4) and in the third set S € % (i.e.,

S is only orthodox) instead of S € OZ Y. These modifications are justified
by the remarks made above.

5.2 COROLLARY. ONBG = NBNG =Y VRYG = OBYG N\ NBYG
= {S € CHA|Esis anormal band}.
Proof. This follows easily from Proposition 5.1.

It is well known that #/F = AL v% and that LY = L& v RL,
the join of left zero semigroups and right zero semigroups, and that ¥ (%) =~
VLY 2V (RL) =~ Vs, a 2-element semilattice. The next corollary now
follows from the above.

5.3 COROLLARY.

V(ONBG) = VP XV (D),
YV (ND) = V33,
V(RG) > V2 XV (D),
V(Y)Y XV (D),
V(RH) = V2,

YV (#) =Y.

This 1s as much as we can say about Diagram 1. As we have already men-
tioned, the lattice ¥ (%4.%) remains unknown; in fact the unknown part is
the portion above #%. We have been also unable to compute the join of
O#FYG and /HYG. With this join, Diagram 1 represents a sublattice of
YV (CR). 1tislikely that OBYG v NHBYG is strictly less than ZY, but this

question remains open.

So far, Sections 3, 4 and 5 were concerned with the lattices of varieties

OBG NBG andONB Y, respectively, with
OBG =B vbG, NBG =W v CF, ONBG =% v RY.

The next three sections concern the joins of & and 9, % and 4.%, and %
and #%, but in the lattice 2(€ R), of quasivarieties of completely regular
semigroups. For these quasivarieties we will establish results analogous to
those we have seen for varieties. We will prove later that the variety in any
vertex of Diagram 1 is a homomorphic closure of the quasivariety in the cor-
responding vertex in Diagram 2. In the latter diagram, the join is built by
subdirect products.
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6. Quasivarieties of unitary bands of groups. It is proved in [9] that
the set of idempotents of a regular semigroup is left unitary if and only if it is
right unitary. For the sake of brevity we call a completely regular semigroup S
unatary if its set E 5 of idempotents is left (equivalently, right) unitary. We write
this in terms of an implication

8) «x*=x (xa)? =xa=a’ = q,

and denote the quasivariety of unitary bands of groups by ## % . It is also
proved in [9] that for a regular semigroup S, if Es is unitary, it forms a sub-
semigroup. We can thus say that ‘“unitary implies orthodox'’ for (completely)
regular semigroups. According to [15, Theorem 4.1], semigroups in X% Y
coincide with regular semigroups which are subdirect products of a band and
a group. Compare the following with Notation 3.1.

6.1 Notation. If # is a family of implications on bands, we substitute every
variable x occurring in # by xx~!, denote the new family of implications by %
and consider it over € #. If {u; = v;}7-1 = u = v is an implication from a
family # of implications on groups, we may assume that all the words u,, v, u,v
contain the same variables xi, xs, . . ., x,. We then let e = (xx2...x,)"
(x1x2 . . . x,)~'and substitute each occurrence of x; by ex,e. We do this for each
implication in .#, denote the new family of implications by 7 and consider it

over %%.
6.2 ProposITION. If 2/ = (S € (D) and D" = [ I"] € L(D), then

2N 2 = [T, F7 (4), (8)]
= {SEAS<ABXG B 2,G¢e 2.

Proof. Denote by Ay, 4,, 43 the three sets in the statement of the proposition
in the given order.

Let S€ Ay and S < B X G with B¢ £, G ¢ £”. Then B satisfies the
family of irEE/l\ications S’ and hence also #’. Similarly G satisfies #"' and
hence also #’”> But then S satisfies both £’ and ﬁbeing a subdirect product
of B and G. Both B and G satisfy identity (4) and implication (8) trivially, and
hence S satisfies both (4) and (8). This shows that S € 4, s0 that A3 C A..

Now let S € A,. In view of [15, Theorem 4.1], we may represent S as a sub-
direct product of a band B and a group G because S satisfies (4) and (8). Since
Ssatisfies #’, itis clear that Egsatisfies £’ and thus Es € £'. Let {u; = v} -1
= u = v be an implication in £’ and let g1, g3, . . . , gn be a set of elements of G
satisfying the equations {u; = v;}—1. For j = 1,2, ..., m, there exist ¢; € B
such that (e;, g;) € S, where we assume that S C B X G. Since S is regular, we
must have (e;, 1) € .S, where 1 is the identity element of G. Lete = ejes . . . €.
Then (e, 1) € .S and thus

(e, g5) = (e,1)(ej, g5)(e, 1) €S
for j =1,2,...,m. Consequently the elements (e, g1), (e, g2), ..., (€, gn)

https://doi.org/10.4153/CJM-1977-118-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1977-118-7

1182 MARIO PETRICH

satisfy the equations {u; = v;}i—, and thus also the equations {#; = 9,}—1. By
hypothesis, these elements then satisfy 4 = 9, and hence also # = v, since all
these elements are in the same maximal subgroup of S. But then the elements
g1, g2, - - - , g satisfy the equation # = v. Consequently G satisfies /'’ and thus
G € 2. Therefore S € A; which proves that 4, C 4.

We have proved so far that 4. = 4;. Now 43 C A; since the latter is closed
under subdirect products and in 43 all semigroups are necessarily completely
regular. It is clear that both £’ and &'’ are contained in A3. Since 4, = A3, we
have that 4;is a quasivariety, so that 2’, 2" C Ajimplies that 2' V 2" C 4.
Consequently 4; C A3 which completes the proof.

We are now able to prove the principal result of this section, viz.

6.3 THEOREM. The function
x: 25 (92NH,2NYG) (2¢c QUXY))
is an isomorphism of 2(UBYG) onto 2(B) X 2(9D).

Proof. The argument goes along the same lines as in the proof of Theorem 3.3
now using Proposition 6.2 and the assertion that

2=(2NHB)v (2NG) (2c QUFXD)).

Indeed, let S € . Using the arguments as in the proof of Proposition 6.2, we
show that .S represented as a subdirect product of a band B and a group G, has
the properties B~ Es ¢ £ M Band G € £ M 9. This proves one inclusion,
the other is trivial.

The lattices 2(Z) and £ (%) are not known. However, the lattice 2( /%)
of quasivarieties of normal bands has been determined by Gerhard and
Shafaat [7] (see also Shafaat {19]). Yamada [20] classified all implications on
bands in two variables; for a proof, see [18].

7. Quasivarieties of sturdy semilattices of completely simple semi-
groups. By definition, these are the semigroups which are strong semilattices
of completely simple semigroups, i.e., the multiplication among the completely
simple components is determined by a transitive system of homomorphisms,
and in addition, all these homomorphisms are one-to-one. We have reserved the
symbol [ V; S,, ¢ 4] for a strong semilattice ¥ of semigroups S, determined by
homomorphisms ¢. 5 The following statement provides several alternative
characterizations of semigroups at hand.

7.1 PropOSITION. The following conditions on a semigroup S are equivalent.
() S e XY6Y.
(i) S € N/BG and satisfies the implication

a
b

It

xby, e = € = eaa™ = aa~'e = ebb~! = bb'e
=a = b.
waz, ae = be
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(iii) S zs regular and a subdirect product of a semilaitice and a completely simple
semigroup.

(iv) S € /BYG and satisfies for all a, x,y € S,
xay A yax = xy H yx,

xy = x}y=>x = x%

Proof. (i) implies (ii). First let S = [V; Sa, éa 5] be a strong semilattice of
completely simple semigroups. Let @, b € S, « = B, and a¢a s = bdaps. In view
of the proof of [14, I11.4.7], a¢a s = ae where e € Es,z has the property that
e < aa™; analogously b¢.s = fb where f € Eg; and f < bb~'. Taking into
account that various S, are precisely the # -classes of S, so that a /# b and e/f,
we can transcribe the condition that ¢, s be one-to-one by the implication in
part (ii) of the proposition.

(i) emplies (1). In view of [14, IV.4.3], the above argument also shows that
conversely (ii) implies (i).

(i) emplies (iii). This follows easily from [14, 1V.5.1].

(iii) tmplies (iv). Let S € ¥V X C be a regular semigroup subdirect product
of a semilattice ¥ and a completely simple semigroup C. Let

(@, x) (8, @) (v, ) (v, ¥) (B, @) (e, )

in S. Then xay# yax in C, which clearly implies that xy.5# yx. Since ay # ya
in Y, and according to [14, IV.4.1], the restriction of the #-relation in ¥ X C
coincides with the 5 -relation in S, we deduce that (a, x) (v, ¥) (v, ¥) (a, x).

Next let (a, x) (8, ¥) = (o, x)2(8, ) in S. Then xy = x?y in C, which in view
of the Rees theorem evidently implies that x = x2. Consequently (a,x) = (a,x)2.

(iv) 1mplies (ii). We assume the hypotheses of the implication in part (ii).
It follows that aeb = (bf)b = bea which by hypothesis yields abs# ba. The
assumption « = xby and b = waz shows that «,b € S, for some completely

simple component of S. But then b3 ba evidently implies that o€ b.
Further,

(a=b)2 = a~'ba~'(be) = a~b(a"'ae) = a~'be,

so that a=1b = f, the identity of the maximal subgroup of S containing ¢ and b.
Consequently @ = b, as required.

Now Propositions 4.4 and 7.1 directly imply that semigroups in ¥ %%
are characterized by the implications

@ @) = 0m)0x) & (ay) ) = (yax) (ax)
xy = x¥y =x = x2

7.2 Notation. Let # be a family of implications on %.%. For each implication
{u; = v;}i1=u = vin #, construct a new implication
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(u; = vio1= wv = vu, uvu = vuw

and let #* be the family of all implications which are so derived from implica-
tions in J.

Compare the above with Notation 4.5, and note that any semilattice satisfies
any J*,

7.3 ProrositioN. If £ = [I] € 2(FY), then
HN2=[I*5),N]=1SERSAYXC,YeH Ce LY.

Proof. Denote by A,, As, A; the sets in the statement of the proposition in
the given order. Both® and < are clearly contained in A, and hence 4, C 4.
Since a quasivariety is closed under subdirect products, we have that 43 C 4,
(note that the semigroups in 4, are automatically completely regular).

Let S € 4,. We may assume that S C V X Cisa subdirect product, where
V€% and C € €% since S satisfies (5) and (9). Let {u; = v;}io1=u = v
be an implication in £ and ay, as, . . . , a, be elements of C satisfying the equa-
tions {#; = v;}i=1. There exista; € ¥such that (a;, ;) € Sforj=1,2,...,m.
Leta = ajas. .. a, Thena; = aand [15, Theorem 4.3] implies that (o, ¢;) € S
forj =1,2,...,m. Hence the elements (@, ¢;), j = 1,2,...,m, satisfy the
equations {u#; = v,};-1. By hypothesis, these elements also satisfy the equations
uv = vu and yvu = vuv. But then the elements ay, a, . . . , a,, themselves satisfy
the equations uv = vu and uvu = vuv, which, as in the proof of Proposition
4.6, implies that they satisfy # = v. Consequently S € A; and thus 4, C A4,
which completes the proof.

We can now prove the main result of this section.
7.4 THEOREM. The function
X: 2> E@NY, 2NECYF) (2¢c QLSCS))
is an isomorphism of L(F S CF) onto (W) X L(€L).
Proof. The function x clearly maps 2(¥¥%¢¥) into (%) X 2(€F)

and is order preserving. We assert next that
2=E2NU)v(EZNECY) (2c LFLSCY)).

Indeed, the only nontrivial part consists in assuming that % C £, letting
S € &, and proving that S €¢ % v (2 N ¥.%). To this end, we first note
that such a semigroup S can be assumed to be a subdirect product, in fact a
subsemigroup, of ¥ X Cwhere V € & C ¢ 4% . An argument similar to that
in the preceding proof can be used to show that C € £. Consequently
SEX v (£ N\ FS). This establishes the above assertion, which in its turn
implies that x is one-to-one.

Using Proposition 7.3 and an argument closely similar to that of the second
part of the proof of Theorem 4.4, one shows without difficulty that x maps

(S S CS) onto L) X 2(CF).
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The lattice (%) has only two elements, as it is easy to see. As contrasted to
this, the lattice 2(%.%) is entirely unknown.

8. Quasivarieties of sturdy semilattices of rectangular groups. These
are evidently semigroups which are orthodox sturdy semilattices of completely
simple semigroups. They are thus characterized by implications (3), (5) and
(9). The conjunction of (3) and (5) is clearly equivalent to identity (7).
Consequently FL.FAY —sturdy semilattices of rectangular groups — are
characterized, within €%, by identity (7) and implications (9). For normal
bands, implications (9) take on the form

(10) xay = yax = xy = yx,
so thaton ON B G, it has the form

(11) e=e* f=/f, g=2g, egf = fge=ef = fe

8.1 LEMMA. On ON B G | implications (9) are equivalent to the conjunction of
implications (8) and (11).

Proof. Any S € ONZBY can be assumed to be of the form S = [V; Sa, Xa.s),
where S, = Lo, X R, X G, with L,, R,, G, being a left zero semigroup, a right
zero semigroup, and a group, respectively. Here xq5: Lo X Ro X G, — Lg X

Rg X Ggis a homomorphism if @« = B. All such homomorphisms were computed
in [14, IV.4.4] as follows

Xa,B * (l, 7, g) - (ld)a.ﬂv Va8, gwn,ﬁ)
where ¢o g : Lo — Lg, Yup: Ro — Rp, wap: Go — Gg are homomorphisms. It is
easy to see that x, g is one-to-one if and only if ¢, g, ¥« s and w, g are one-to-one.
Furthermore,

(9) is equivalent to all x, s being one-to-one,
(8) is equivalent to all w, g being one-to-one,

(11) is equivalent to all ¢, and all ¥, g being one-to-one,

which can be easily verified. The assertion of the lemma now follows directly.

8.2 ProproSITION. S RYG = SSRBN G = N RYG = ULYG N
SLSCS = (L € CR|\Esunitary, Es € SSRB} ={Sc RS YXRX
G, YEH, Rec RE,G ¢ G).

Proof. Denote the sets in the statement of the proposition by 41, 4, ..., 4s
in the given order.

We have remarked above that semigroups in Y% Y are characterized by
identities (7) and (9), and in view of Lemma 8.1 alternatively by (7), (8) and
(11). In particular (11) on a normal band B is equivalent to B €¢ S AH.
The equality 4, = A; now follows without difficulty.

Let S € A;. Then S == [Y;S,, xas] Where S, = R, X G, with R, € X,
G, € 9, and all x, s are one-to-one, see the preceding proof. According to
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(14, II1.7.11], S is a subdirect product of ¥ and S/7, where the latter is a
rectangular group, say S/r = R X Gwith R € #% and G € ¥ . Consequently
S <4 YV X (R XG) which evidently implies that S <1 ¥ X R X G. Hence
As © Ag. If S € Ag, then a straightforward verification shows that S € 4.
Thus A¢ € A5 and therefore 4, = A5 = A4s.

It is clear that A¢ € A, € Ay, and 44 € A, C 4, which proves the equali-
ties 47 = A, = Aj. Also, it is easily seen that A, C A, C A4; which establishes
the equality A, = 4.

8.3 COROLLARY. S S RHB =Y \| BB =% N LZL N RZL .

Similarly as in Corollary 5.3, we also have 2(L.SRG) =~ V,* X 2(9),
DS S RH) = V3, etc.

9. Construction of orthodox bands of groups. We have characterized
these semigroups, within €4, in Section 3 as those satisfying identities (2)
and (3) or, alternatively, identity (4). According to [15, Theorem 3.1], they
can be characterized, within %, as subdirect (respectively spined) products of a
band and a semilattice of groups. The following symbolism will prove con-
venient.

9.1 Notation. For any class € of semigroups, # (%) denotes the homo-
morphic closure of €, i.e., the class of all semigroups which are homomorphic
images of semigroups in % .

We will need a theorem several times (see e.g. [8, § 23, Theorem 3]) which
indicates that for two varities of universal algebras .%7 and &, of the same kind,
their join.oZ v Z consists of homomorphic images of subdirect products of A

in.Z and Bin &.

9.2 PropoSITION. If V" € ¥ (B) and V""" € ¥ (9), then
VIV =N .
Proof. This follows directly from [8, § 23, Theorem 3], and I’roposition 6.2.

9.3 COROLLARY. OXBY = H (UHBG).

As an alternative to a construction of orthodox bands of groups in terms of
subdirect or spined products mentioned above, Corollary 9.3 provides an
opportunity to construct them as homomorphic images of unitary bands of
groups. According to Proposition 6.2, the latter can be thought of as regular
semigroups which are subdirect products of a band and a group. In order to
construct all congruences on these subdirect products, we first present a
construction of subdirect products, and their congruences, for a more general
situation, which encompasses the hypotheses on completely regular semigroups
considered in this and the next two sections.
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9.4 Notation. Recall that 4 stands for the least semilattice congruences on any
semigroup. For any regular semigroup S, we denote by . (S) the lattice, under
inclusion, of all regular subsemigroups of S.

Let B be aband and C be a completely simple semigroup. Let ¢ : B/7—.%(C)
be an order inverting full mapping in the sense that en* = fn* implies ent¢ C
frFp and Uep ent¢ = C. Denote the set

{(e,c) € B X Clc € en¥o¢},

together with the multiplication induced on it by the direct product, by
(B, C; ¢). It is easy to verify that (B, C; ¢) is a regular semigroup which is a
subdirect product of B and C.

Further, let S € B X C be a subdirect product of B and C. Let £ be a con-
gruence on B, and for each x € (B/£)/q let

®, = {c € C|(e,c) € S where x = efFn*},

and 6, be a congruence on ®,. Assume that if x = y, then 6, C 6, (the inclusion
of binary relations). Define a relation p = pg,4,) on S by

(e,a)p(f,0) if etfand abe;*,*d.

First note that for any x € (B/t)/n, ®, is indeed a subsemigroup of C. The
inclusion 6, C 6, is in terms of 6, and 6, as binary relations since their domains
must only satisfy ®, C &, and need not be equal. If S = (B, C; ¢), then the
condition ‘‘x = y implies ®, € &,” can be written as

efFn* 2 frp*t = entd C frté

which reduces to the condition in the second paragraph of Notation 9.4 if ¢ is
the equality relation. For any e € B, we have

Doprr = Ul frroleEtn™ = firn*].

With the notation as in 9.4, we prove
9.5 LEMMA. For S C© B X C a subdirect product, the relation p is a congruence.

Proof. It is easy to see that p is an equivalence relation on S. Let (e, a) p (f, b)
and (g, ¢) € S. By hypothesis e £ f and af.:*,%b. Since ¢ is a congruence, we
have eg £ fg. The relation ef¥n¥ = (eg)é+n* by hypothesis implies 0.+, C
Oeqyt ¥y sO that af ¢ +,*b implies ab.,:*,*b. Further, gi¥g* = (eg)tFy* implies
0,6, © O(epye*y* which together with c0,¢%,*c yields cO(cpe*,*c. The latter
means that ¢ € ®(,:*,* We now have a, b, ¢ € (%, * and ab,, *,*b. Since
O(eqye o * is a congruence on Py, %, it follows that acbe,:*,*bc. Consequently
ac p be; one shows analogously that ca p ¢b. Therefore p is a congruence.

9.6 LEMMA. Let pto,y and p o,y be congruences on a subdirect product

S C B X C. Then pio.) S o o0y if and only of £ & ¢ and Oet*p® & O,p +y*
foralle € B.
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Proof. Necessity. Let e £ f. Then 0,:%,* = 0,:%,* and thus ®,%,* = Pp*,*
Further, (e, ¢) € Sforsomec € C,and hence (f,c) € S. Butthen (e, ¢)pc, 0, (f, ¢)
which by hypothesis implies (e, ¢) per 0.y (f, ¢) and thus e & f. Consequently
£ C ¢. Next let ab.+,*b. Then a, b € ®,%,* and (e, a), (¢, b) € S. Hence
(e, a)pct.e, (e, b) which by hypothesis implies (e, a)p o,/) (e, b). But then
af ¢ #,#b, which proves that 0,:%,* C 0,p *,*

Sufficiency. The argument here is straightforward and may be omitted.

So far, we have constructed some subdirect products, viz. those of the form
(B, C; ¢), of a band B and a completely simple semigroup C (second paragraph
of Notation 9.4). In the case that C = G is a group, [15, Theorem 4.3] asserts
that all regular semigroups which are subdirect products of B and G, contained
in B X G, can be so constructed. Hence we restrict our attention to the sub-
direct products of the form (B, G; ¢). We have also constructed certain kind of
congruence on a subdirect product S, which we may now take to be equal to
(B, G; ¢). The next result asserts that all congruences on (B, G; ¢) can be so
constructed. For the special case at hand, we may rephrase the definition of
p(t.0,) as follows.

9.7 Notation. Let S = (B, G; ¢) be a regular semigroup subdirect product of
a band B and a group G. Let £ be a congruence on B. For every x ¢ (B/£)/n,
let x0 be a normal subgroup of ®, and assume that x = y implies x6 C y6
(see Notation 9.4). Define a relation p = pz.¢ on S by

(e,8)p (fih) ife&fand gh' € efFn™0.

Note that the equivalence of definitions in Notations 9.4 and 9.7 is a con-
sequence of the fact that all semigroups in.¥ (%) and all ®, are subgroups of G,
and that in a group, we may speak of normal subgroups instead of congruences.
The main result of this section can now be established.

9.8 THEOREM. Every congruence on a regular semigroup (B, G; ¢) which is a

subdirect product of @ band B and a group G can be uniquely expressed in the
form p.s).

Proof. Let p be a congruence on S = (B, G; ¢). Define a relation ¢ on B by
etf if (e,1)p (f, 1)

where 1 denotes the identity of G. It is clear that £ is a congruence on B.

Let e, f € B be such that et* 5 fg¥, and (e, g), (f, g) € S. Then f £ fef and
thus (f, 1) p (fef, 1). Assume next that (e, g) p (¢, 1). Using (f, 1) p (fef, 1), we
obtain

(2 o (£, 1), 8) o (fef, ([, ) = (fef, 9)
(fv 1)(8, g)(fr 1) P(fv 1)(6, 1)(fr1)

= (fef, ) p (f,1),
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that is (f, g) p (f, 1). By symmetry, we conclude that

et* o fe+ implies ((e, g) p (e,1) & (f,2) o (£, 1)).
We may thus define a function 6 on (B/£)/n by

ek*r0 = {g € Gl(e, g) p (e, D}.

It is easy to verify that ef¥4+6 is a normal subgroup of ®,:*,* (see Notation 9.7).
Fore, f € B, assume that ef¥n¥ = fE*9* and let g € et*p*0. Then (e, g) p (¢, 1)
so that (ef, g) p (ef, 1), where

(ef)eFn* = (ekFn*) (fEFn*) = fe¥n*
and thus g € f&4*0. This shows that 8 inverts order.

Next let (e, g) p (f, k). Then (ef, gh=) p (f, 1) so that (ef, gh~') p (ef, 1) and
thus (f, 1) p (ef, 1). Further, (e, 1) p (ef, g='h) which implies (ef, 1) p (¢f, g='h),
and hence (e, 1) p (ef, 1). Consequently (e, 1) p (f, 1) which says that e & f.
Also (e, gh=!) p (ef, 1) with ety = ft¥n+¥ = (ef)&¥n¥F so that gh™! € etFn*h.

Conversely, let e £ f and gh™! € ef¥y¥6, where (e, g),(f, k) € S. Then
(e, 1) p (f, 1) and (e, gh™") p (f, 1) which evidently yields (e, g) p (f, k).

Therefore p = peey as required. Uniqueness of this representation is a
direct consequence of Lemma 9.6.

10, Construction of normal bands of groups. We have characterized
these semigroups, within €%, in Section 4 as those satisfying identity (5).
According to [14, IV.4.3], they can be alternatively characterized as strong
semilattices of completely simple semigroups. We will adopt here a construction
analogous to that discussed in the preceding section.

10.1 ProrosITION. If ¥ € ¥ (%) and V""" € ¥ (€S, then

V' NV =NV,
Proof. This follows directly from [8, §23, Theorem 3] and Proposition 7.3.
10.2 COROLLARY. N B Y = H (LS CS).

According to Proposition 7.3, we can think of a semigroup in ¥ %.% as a
subdirect product of a semilattice and a completely simple semigroup. Now
Corollary 10.2 indicates that we can obtain an isomorphic copy of each semi-
group in /%% by constructing all congruences on regular semigroups which
are subdirect product of a semilattice and a completely simple semigroup.
Lemma 9.5 provides some congruences on such subdirect products; we will see
below that there are no others. In this case, we can simplify somewhat the
notation introduced in 9.4 as follows.

10.3 Notation. Let S = (Y, C; ¢) be a regular semigroup subdirect product
of a semilattice ¥ and a completely simple semigroup C. Let £ be a congruence
on Y and let
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®, = {¢ € C|(a, c) €S where x = at¥}

and 6, be a congruence on ¥, Assumeé that if x = y then 6, C §,. Then
p = p(s6, is given by

(a,a) p (u,b) ifetfand ab,:* 0.

For the main result of this section, we will need the following auxiliary
statement.

10.4 Lemma. Let p be a congruence on a Rees malrix semigroup S =
M, G, M; P). If a,b € S are such that a p b, then aa=" p bb~1.

Proof. We let « = (2, g, u) and b = (j, &, v) and start with the special case
;= j. It is well known that we may assume that the sandwich matrix P is
normalized at ¢+ =j = 1€ M M I. Consequently, our hypothesis is that
(1, g, u) p (1, &, v). Let the identity of G be denoted by e. Multiplying on the
left by (1, g7%, 1), we obtain (1, e, u) p (1, g~', v). Now multiplying on the
right by (1, e, u), we get (1, e, u) p (1, g4, u). It follows that (1, g~'h, u) p
(1, g7k, v). Multiplying this on the left by (1, k=g, 1), we have (1, e, ) p
1,e,v).

Now ignoring the normalization, we have proved that if ¢ = j, then the
assertion of the lemma is valid, i.e., (z, g, u) p (2, &, v) implies (2, pi7Y, u) p
(, pyi7, v). Symmetrically we have that (i, g p)p (4, h, &) implies
(iv Pui—lv /") p (]v p#]'_lv #)-

We now consider the general case, i.e., we assume that (7, g, u) p (4, b, v).
Multiplying this on the left by (¢, p,~, u), we obtain (¢, g, u) p (¢, Pui *Puh, v)-
By the special case above, we have (7, p,~%, u) p (¢, .Y, v), and by the sym-
metric special case, we must have (¢, p,;~%, v) p (4, ,,7%, v). From the last two
relations, it follows that (2, pu.~%, ») o (4, ;7% v). This is equivalent to the
assertion of the lemma.

10.5 THEOREM. Every congruence on a regular semigroup (Y, C; ¢) which is a
subdarect product of a semilattice Y and o completely simple semigroup C can be
uniquely expressed in the form pcs.e,).

Proof. Let p be a congruence on S = (Y, C; ¢). Define a relation £ on ¥ by
atf if (a,a)p (aB, a), (B, b) p (aB, D)

for some a, b € C such that («, a), (8, 0) € S. Itis clear that ¢ is reflexive and
symmetric. With this notation, assume that « £ 8 and that 8 ¢ v with (8, b') p
(By,b") and (v, ¢) p (By, ¢). It follows that (B, ab’) p (afBy, ab’) which together
with (a, @) p (@B, @) yields (@, @) p (aBy, a) by [13, Theorem 3]. Multiplying the
last relation by (v, ¢) on the right, we obtain (ay, ac) p (@By, ac). In view of the
construction of S = (V, C; ¢) (see Notation 9.4), we have that (a,a) € S
implies (ay, a) € S. Now (ay, ac) p (aBy, ac) by [13, Theorem 3] implies that
(v, @) p (@Bv, a). The latter together with (e, a) p (@By, a) yields (@, a) p
(e, @). By symmetry, we conclude that also (v, ¢) p (ay, ¢), which shows that
£ is transitive, and is thus an equivalence relation.
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Continuing with the same notation, assume that « ¢ 8 and let v € Y. Then
(v,¢) € Sforsomec € S. We obtain (ay, ac) p (aBy, ac) and (8y, bc) p (aBy, bc)
which means that ay £ By. Consequently # is a congruence on Y. Following
Notation 10.3, we easily verify that ®,* is a regular subsemigroup of C for
every a € V. On each ®,:*, we define a relation 6,:* by

@b it (v,a) p (v, b) for some v £ a.

Let x = af*. It isclear thatd, is reflexive and symmetric. Let af,b and b6,c with
(v,a) p (v,b)and (8,0) p (3,¢), where v £ a, 6 £ a. It follows that y £ 8 so that by
the definition of £, there exists d € C such that (y,d) p (6, d). But then
(13, Theorem 3] implies that (v, a) p (¥, a). Analogously, we must have
(v,0) p (8,0), (8,0) p (78, ) and (5, ¢) o (¥4, c). Consequently

(v, a) p (v, a) p (v, &) p (¥8,0) p (8,0) p (5,¢) p (¥8, )

which proves that 6, is transitive.

Nextleta 6,0 with (8,a) p (8,0),B8¢a,and (v,c) € S. Hence (8v, ac) p (By, bc)
where By £ ay so that acly:*bc. One shows analogously that also cafley:*cb.
Since this is valid for all ¢ € ®,, we have shown that 6, is a congruence on .

Now let @, B8 € V¥ be such that « = 8, and let af,:*b. Lemma 10.4 implies
that aa=10,;*bb~! since 6,:* is a congruence on ®,;*, which being a regular
subsemigroup of C must be completely simple. Multiplying aa~6,:*bb~! by a
on the left, we have by the preceding paragraph that afs;*abb~! since @ = 8.
Similarly, multiplying af,:*b by bb=! on the right yields abb—16s:+b. By transi-
tivity, the conjunction of alg:*abb=! and abb='6s:*b gives abg:*b. Conse-
quently a = B implies that 6.+ C 65+

Let (o, a) p (8,0). Then («, a®) p (aB, ab) which in view of [13, Theorem 3]
implies that (a, a) p (@B, a). We analogously have (8, b) p (a8, b) which implies
that a £ 8. Furthermore,

(@B, a) p (a,a) p (B,0) p (@B, )
which shows that a 6,:* 0. Consequently (o, @) pi.6,) (8, 0). Conversely, let
(o, @) peeoy (B, 0). Then a £ B and ab:*b. It follows that (e, c¢) p (B, c),

B,d) p (@B, d), (v,a) p (v,0) forsome ¢, d € Cand v ¢ a. Since then also 8 £ «,
it follows easily from [13, Theorem 3] that

(a,a) p (aB, a) p (aBy,a) p (v,a) p (v,0) p (aBy,b) p (@B, b) p (B, D),
ie., (a,a)p (B,0).

We have proved that p = p( 4, ; the uniqueness of this representation is a
direct consequence of Lemma 9.6.

11. Construction of orthodox normal bands of groups. We have
characterized these semigroups in Section 5, within €, as those satisfying
identity (7). We have seen in Section 8 that sturdy semilattices of rectangular
groups can be characterized, again within ¥, as those semigroups satisfying
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implications (7) and (9), or alternatively (7), (8) and (11). A further relation-
ship between these two quasivarities is provided by the following statement.

11.1 ProroSITION. ONBYG = H (LS RG).

Proof. By Corollary 5.2, we have ONZYG =% v #Y, and by Proposi-
tion 8.2, XS RG =% N AY . The assertion of the proposition now follows
from Proposition 10.1.

11.2 COROLLARY. % v BB NG =H (W NN RE N D).

Proof. This follows from the proof of Proposition 11.1 and the fact that
RB N G =RBN G =RY.

Similarly as in the preceding section, we can use Proposition 11.1 to construct
all semigroups in ON'ZA % by constructing all congruences on semigroups in
FSRY. The latter can be thought of as regular semigroups subdirect
products of a semilattice and a rectangular group. This amounts to a special
case of the one considered in the preceding section. However, we can be much
more explicit here. We start with a construction of subdirect products under
consideration given in [14, 1V.5.5].

11.3 ProposiTiON. Let YV, L, R, G be a semilattice, a left zero semigroup, a right
zero semigroup, and a group, respectively. Let ¢y : ¥ — S (X)) be a full inclusion
inverting mapping for X = L, R, G. Then

S={(,l,7rg € YXLXRXG|Eapy,r€ apg, g € ads}

15 a regular semigroup which is a subdirect of ¥ X L X R X G. Conversely, every
regular semigroup which is a subdirect product of ¥ X L X R X G can be so
constructed.

In fact, according to [14, 1V.5.4], L X R X G has no proper subdirect
products, so that subdirect products in Proposition 11.3 coincide with the
subdirect products of ¥ X (L X R X G), where we consider only regular
semigroups.

11.4 THEOREM. Let S be as in 11.3. Let £ be a congruence on Y and let
®, = {(l,r,g) € L XRXG|(e,1,7,g) €S where x = at*}.

Then ®, = L, X R, X G, for some § # L, C L, § = R, C R and some sub-

groups G, of G. For every x € Y/E, let 60, and 0,% be equivalence relations on L,

and Ry, respectively, and let N, be a normal subgroup of G,. Assume that x = y

implies 6,% C 6,%,0,% C 6,%, N, C N,. Define a relation p = pe.6,%,0,% s OY
(a) lv 7, g)p(alrl,yr,)g/) lf aEB,lﬁLag*l',TBR,,E*T', gg’—l E Nai*-

Then p 1s a congruence on S. Conversely, every congruence on S admits a unique
representation of the form pe.o,% 6,% ny)-
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Proof. Adopting the notation of the first part of the theorem, we first remark
that &, is a regular subsemigroup of L X R X G. Hence ®, is a subdirect
product of its projections L., R, and G, in L, R and G, respectively. According
to [14, IV.54], L, X R, X G, has no proper subdirect products, so we must
have ¢, = L, X R, X G, where G, is a subgroup of G. In L, and R,, every
equivalence relation is a congruence; and in G,, a normal subgroup induces a
congruence in the usual way. It is now clear that 6, defined on L, X R, X G, by

r,g)0, (U, 7, ) if 16,201, r0,%r, gg1 € N,

From this and the form of p in the statement of the theorem, we conclude that p
has the general form introduced in Notation 9.4 and is thus a congruence on S
by Lemma 9.5.

In order to prove the converse, we first denote the congruence 6, defined
above by (6,%, 6,%, N,). Next let p by any congruence on S. Then p = pt.0,
for unique ¢ and 6, according to Theorem 10.5. It is proved in [12] that every
0, can uniquely written in the form (6,%, 6,%, N,) where 6,%, 6,% and N, are as
in the statement of the theorem. This establishes the converse.

is a congruence on L, X R, X G,. Furthermore, if x = y then clearly 6, C 9,.

12. Properties of congruences. We have defined the congruences p,g,) on
(B, C; ¢) and congruences p¢: ) on (B, G; ¢) in Section 9. We have then shown
in Sections 9-11 that in the special cases of subdirect products of a band and a
group, a semilattice and a completely simple semigroup, and a combination
thereof, all congruences are of this type. In view of the results proved in the
first part of the paper, the homomorphic images give all orthodox bands of
groups, all normal bands of groups, and all orthodox normal bands of groups,
respectively. We will show below that for this latter purpose, we may take ¢ to
be the equality relation, thereby simplifying the construction of semigroups in

OBG , NBYG and ONAB G . 1t is convenient to first introduce the following
12.1. Notation. With the symbolism of Notations 9.4 and 9.7, let
(B, C; ¢, & 02) = (B, C; )/ pe 60,
(B,G; ¢, 0) = (B,G; ¢)/pes.0-
Let « denote the equality relation on any set.

12.2 ProposITION. (B, C, ¢, &,0,) = (B/¢, C, ¢/, 1, 8,) where esFn*¢’ = P+, *
for all e € B.

Proof. First recall from Notation 9.4 that
P, = Ulfrrolettn* = ferrt].

Let a,b € et¥p¥¢’. Then a € e'nFo, b € ¢'n¥¢ for some ¢, ¢’ such that
et¥Fn* = 'EFpF = e’ EFy*. Since (¢'¢’)n¥ =< e'9* and (¢'¢’")n* = e'/nF, we have
(e'e )n+p D e'n*pand (¢’ )n*op D ¢'n*¢. Consequently a, b € (¢’e’’)y¥¢ which
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implies ab € (¢'¢’")n*p, where (¢'¢’")EFn* = ef*y*. But then b € efFy*¢’, which
proves that ef*n*¢’ is a subsemigroup of C.

A similar argument can be used to prove that ef*n+¢’ is a regular semigroup,
so that et¥g¥¢’ € % (C). Again, a similar type of argument shows that ¢’ is an
inclusion inverting function and is full. Therefore (B/¢, C;¢') is a regular
semigroup subdirect product of B/¢ and C.

Recall from Notation 9.4 that 6, is a congruence on ®, for all x € (B/£)/x.
Hence the quintuple (B/¢, C; ¢, t, 8,) is meaningful. Letting p = p.e,) and
o' = pu.s,, we define a function x on (B, C; ¢, &, 6,) by

x : (e, 0)p* — (e&F, c)p'™.
First note that
(e, 0)p* = (f,d)p* = (¢, c)p(f,d) = ekf chu%*d
S ettt = fEF c 0% *d
which shows that x is an isomorphism of (B, C; ¢, £, 8,) onto (B/¢, C; ¢/, «, 6,).

This proposition shows that in order to construct all semigroups in OZ Y
NBYG and ONBY from the corresponding subdirect products, we can take
¢ = « Such congruences have a simpler form as follows:

(e,a) pcony (fi0) = e=f,ab,%0
and for C = G, a group,
(e,8) pcoy (f,h) & e = [, gh™ € en™.
A further reduction concerns C instead of B, and can be formulated thus

12.3 ProrositioN. (B, C; ¢, 1, 0,) = (B, C/7; ¢', +, 8,)) where © is any con-
gruence on C contained in

Nzemb: \J 1, ente’ = enFor®, an* 0., br* & @ 0,.,%0D.

Proof. 1t is routine to verify that ¢’ satisfies all the requirements for deter-
mining a regular semigroup (B, C/w; ¢’) which is a subdirect product of the
band B and the completely simple semigroup C/w. Letting p = p(..s,) and
o' = p(..6,1y, we define x on (B, C; ¢, ¢, 8,) by

x : (e, c)p* — (e, cr¥)p'*.
Noting that
(e, c)p™ = (f,d)p* < (e, 0)p(f,d) = e = [ cln*d
Se = f cn* b, drt < (e, cn¥)p (f, dn)
& (e, cn®)p’™* = (f, dn¥)p'*,

we deduce that x is the required isomorphism.
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Combining Propositions 12.2 and 12.3, we obtain

12.4 COROLLARY. (B, C; ¢, £, 8,) = (B/E, C/m; ¢, 1, 8,') where 7 © N {6,]x €
(B/&)/n} \J v 1s a congruence on C, for suttable ¢’ and 8,.

12.5 CorOLLARY. (B, G; ¢, £,0) = (B/t, G/N; ¢, 1,0") where N & () qep eE 0¥0
is a normal subgroup of G, for suitable ¢’ and 6’.

Even with (B, C; ¢, &, 6,) or (B, G; ¢, & 6) reduced as in Propositions 12.4
and 12.5, isomorphisms of (B, C; ¢, & 6,) and (B, C’; ¢/, ¥, 6,’) and of
(B, G;¢,¢ ¢) and (B, G'; ¢, ¥, 0), respectively, still do not seem to admit a
sufficiently simple form. Recall that a congruence p on any semigroup S is
idempotent-separating if for any e, f € Eg, e p f implies ¢ = f. We show next

12.6 PrROPOSITION. The congruence p: o,y 1s idempotent separating if and only if
£ and all 6, are idempotent separating.

Proof. Let pt.0,) be idempotent separating. Let e, f € B be such that e £ f.
Then (e, a), (f,b) € S for some a,b € C, where S = (B, C; ¢). Since ef < e,
we have en*¢ C (ef)n¥¢ and thus (ef, a) € S. Further (ef, aa=') € S since S is
completely regular. It follows that (e, aa=') p(t.0,) (ef, aa~') which by hypo-
thesis implies that e = ef. By symmetry, we conclude that f = ef and hence
e = f. Thus £ = ¢ and is thus, trivially, idempotent separating.

Next let #, v € E. be such that u 6, v for some x € B/y. It follows that
(e, u), (f,v) € Sforsomee, f € Bsuch thatx = en* = fy*. Similarly as above,
we conclude that (ef, u), (ef, v) € Sand thus (ef, u) ps.6,) (ef, v) since uf(.p,*v.
The hypothesis implies that # = v, which proves that 6, is idempotent sepa-
rating.

The proof of the converse is trivial.

It is clear that a congruence £ on a band is idempotent separating if and only
if it is the equality relation. On the other hand, each 6, being defined on a
completely simple semigroup ®,, we have that 6, is idempotent-separating if
and only if 6, is contained in the .#-relation on ®,, by a well-known result
concerning regular semigroups.

12.7 CorROLLARY. Every orthodox band of groups is an idempotent-separating
homomorphic image of o subdirect product of a band and « group (i.e., the con-
gruence induced by this homomorphism 1s idempotent-separating).

Proof. This follows from Corollary 9.3, Theorem 9.8, Proposition 12.2 and
Proposition 12.6.

As a special case, we have the following result of McAlister [10].

12.8 COROLLARY. Every semilattice of groups is an idempotent-separating homo-
morphic tmage of a subdirect product of « band and a group.
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13. Problems. A solution of the following problems would further clarify
the structure of the lattices as well of the completely regular semigroups under
study.

1. What is the join of the varities OZ Y v N X G? 1t coincides with the
join 4 v €. In terms of identities

[x? = x] v [aa~! = (aba) (aba)~] = [?].
An upper bound for these varieties is Z % -bands of groups.

2. The same question for the join of the quasivarieties ##%9 V S S €S .
It coincides with the join & V €.¥.

3. Find the lattice ¥ (€.%) (resp. Z(¥.%)) of varieties (resp. quasi-
varieties) of completely simple semigroups.

4. Construct the lattice 2(Z) of all quasivarieties of bands.
5. Construct the lattices ¥ (4 v €.%) and 2(Z V €.¥).

6. Can the quintuples (B, C; ¢, &, 6,), defined in Notation 12.1, be so chosen

that a simple isomorphism criterion can be established for them?
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