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Abstract. Rotation has two main qualitative effects on the structure 
of a star: it distorts the shape and it reduces the total luminosity. 
The luminosity depends only on the total angular momentum but 
the shape, and so the observable properties, depends on the internal 
distribution of angular momentum. The expected distribution, even 
for main-sequence stars, is an unsolved problem. Redistribution of 
angular momentum can occur as a result of large-scale circulation 
currents, instabilities and magnetic stresses and there may be no 
steady state. If shear instabilities are dominant, then stars may 
rotate nearly uniformly. Studies of non-radial oscillations might 
perhaps eventually lead to a direct probing of the internal angular 
momentum distribution by the methods now being used to study the 
internal rotation of the Sun. Differential rotation near the surface 
would probably give rise to turbulent motions, which could generate 
the mechanical energy flux which seems to be a necessary input to 
the winds in hot stars. 

INTRODUCTION 
Interest in rotating stars began with Galileo's discovery of the Sun's 

rotation, revealed by the motion of sunspots (1612), but it was some three hundred 
years before Schlesinger (1910) showed that other stars also rotate. The observer 
measures the rotation speed of a star by the broadening of the spectral lines, 
usually interpreting the Doppler half-width in terms of a projected equatorial 
rotation speed v sinz, where i is the angle of inclination between the rotation axis 
and the line of sight. For real stars, the quantity v is only approximately related 
to the linear rotation speed at the equator, re (Collins 1986). 

Theoretically, the main effect of rotation is to distort a star from being spherically 
symmetric to being axially symmetric and a more useful theoretical measure of 
the rotation speed is a, the ratio of the centrifugal force to gravity, measured at 
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the surface equator. For a star of mass M, equatorial angular velocity f2e and 
equatorial radius Re, a = Of R^/GM. This quantity is a measure of the distortion 
from spherical symmetry and is observable, at least in principle. In terms of a, 
most stars are very slowly rotating; the Sun has a ~ 2 * 10~5 and even the Crab 
pulsar, with a rotation period of 30 ms, has a ~ 3 - 10~3. For this reason, the 
classical theory of stellar structure and evolution, in which stars are taken to be 
spherically symmetrical, has been very successful in describing the behaviour of 
the majority of stars. 

Be stars are exceptional in having a ~ O( l ) . Although this does not mean that 
they will spontaneously throw off a ring of material, as was once imagined, it does 
mean that rotational effects are not just a perturbation but may have a significant 
effect on the internal structure and dynamics of Be stars. We must therefore 
understand the general effects of rotation on stellar structure if we are fully to 
understand Be stars. 

The theory of stellar rotation began as a mathematical problem that attracted 
many able mathematicians (Maclaurin, Jacobi, Darwin, etc.). The classical work 
on rotating liquids has been surveyed and extended by Chandrasekhar (1969); 
although real stars are not liquids, this work is still of relevance to problems in 
cosmogony, in particular the fission theory of binary stars (cf. Lebovitz 1975), and 
has been reviewed by Lebovitz (1967, 1979) and by Durisen & Tohline (1985). I 
shall not discuss it here. 

The most useful single reference work on rotating stellar interiors is the book by 
Tassoul (1978), which gives a remarkably complete survey of the field up to 1976, 
with a few later references. Other useful reviews include Mestel (1965) on 
meridional circulation, Strit tmatter (1969) on general theoretical developments, 
Fricke & Kippenhahn (1972) on the evolution of rotating stars (see also my review 
in the present volume), Acheson (1978) on instabilities and Moss & Smith (1981) 
on most aspects of stellar rotation and magnetic stars. In this article I shall 
concentrate on the effects of rotation on the internal structure of a star, relating 
the results wherever possible to the specific problem of the Be stars. I shall 
therefore consider only stars with a convective core and a radiative envelope (i.e. 
with M > 1.5M0). 

THE MAXIMUM VALUE OF a 
Although Be stars rotate rapidly, none is observed to have a = 1 

and in fact the maximum observed value of a is about 0.8 (cf. Slettebak 1976 and 
this volume). Does this mean that no Be star rotates at its critical velocity? 
Theoretically, it is obvious that a < 1 and I expect that most people believe that 
a m M = 1. However, it turns out that that is only true if fl is a constant or 
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increases from pole to equator (fip < fie). If ttp > fie) then amBX < 1. For example 
(see Appendix), amax ~ 0.7 for the case fi = fip(l — 0.2a;)2, which corresponds to 
fip ~ 1.5fie. Thus if we had a star for which we deduced using a — 1 that 
"vcrit" = 550kms _ 1 then the actual maximum observable rotation speed would be 
Vmax — (0 .7) 1 / 2 550kms _ 1 ~ 460kms" 1 : a large effect. Although this result 
depends on using the Roche approximation for the gravitational potential, I 
expect it to be qualitatively correct. 

What are the consequences of this? I believe that there are two deductions that 
we can make from the observed rotation speeds. 

First, the fact that (v sini)mBX(observed) < ucrit(
a — 1) now has two possible 

interpretations: either Be stars are not rotating at their maximum possible speeds 
(the usual interpretation) or Be stars do not rotate uniformly (and have fip > fie). 
Of course, both may be true, and we certainly cannot distinguish the possibilities 
from Doppler half-widths alone. 

Second, it is clear that 

> (vsini)2
max(observed) 

and so the maximum observed v sini puts some constraints on the degree of 
differential rotation. I have not attempted to apply this constraint in detail, but 
the fact that at least some stars seem to have a > 0.7 (Slettebak 1976) suggests 
from my example that fip < 1.5fie. 

THE STRUCTURE EQUATIONS FOR ROTATING STARS 
Because the effect of rotation is to transform a star from being 

spherically-symmetric to being symmetric about the rotation axis, it is 
mathematically convenient to use a cylindrical polar coordinate system (u>, <f>, z). 
The equations of stellar structure become vector rather than scalar and we must 
include the time derivatives because, as we shall see, it is not clear that there is a 
unique steady solution of the kind that exists for spherical stellar models. 

We first write down the (w, z) components of the equation of motion, neglecting 
viscous and magnetic forces: 

v + ( v . V ) v | - V P = V H ! 1 ! w (1) 
at p 

where V is the total velocity of stellar material and we have written 

V = v + fiu>t (2) 
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where t is a unit vector in the <j> direction and $7 is the angular velocity at distance 
<1> from the rotation axis, v is then the velocity in meridian planes, i.e. in planes 
through the rotation axis, and is often referred to as the meridian or meridional 
velocity. P, p and $ are pressure, density and gravitational potential respectively 
and are functions of u> and z. Because of axial symmetry, none of the terms in 
equation (1) has a <j) component and so the <j> component of the equation of 
motion consists simply of an unbalanced Coriolis force, which can be written as 

(v.V)ftw2 = 0. (3) 

We shall return to the interpretation of this equation later. 

If there are no internal motions other than rotation, and we assume a steady 
state, then equation (1) simplifies to 

- V P = V<^ + fi2w. (4) 
P 

This is the generalisation of the usual hydrostatic equation 
(l/p)(dP/dr) = — GM/r2 for spherical stars. The gravitational potential is now 
given by Poisson's equation: 

V 2 * = -4nGp (5) 

which is much more complicated than the spherical equivalent, dM/dr — 4nr2p, 
and is particularly awkward to solve for highly-distorted stars. 

If (and only if) ft is a function only of <I>, the centrifugal force can be expressed as 
the gradient of a potential and (4) simplifies still further to 

V P = p V * (6) 

where * = $ + W and 

W I" Sl2u>du>. (7) 
Jo 

For uniform rotation, W = ifi2u>2. Equation (6) implies that P (and so p) is a 
function only of *P and so surfaces of constant $ play the same role in rotating 
stars as spheres do in non-rotating ones — they are the natural coordinate 
surfaces. Because these surfaces only exist when $7 = fi(<*>), such rotation laws 
have a special importance in the theory of rotating stars. Since the force is 
conservative, the rotation laws are often referred to as conservative also. We shall 
see below that conservative rotation laws are not only mathematically convenient 
but also stable, at least against axisymmetric perturbations. 
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The other important equation is the equation of energy balance. In a radiative 
zone and in the absence of motions, the familiar equation dL/dr = 4irr2pc takes 
the form 

divF = pe (8) 

where F is the radiative flux and e is the rate of nuclear energy generation. In Be 
stars, e can be neglected in radiative zones, since all the nuclear energy generation 
takes place in the convective core. Then (8) generalises to 

7 

P - ( v . V ) l n ( P / p 7 ) = - d i v F (9) 

in the presence of motions, where 7 is the ratio of specific heats. Physically, this 
equation says that energy balance is partly maintained by the advection of 
entropy by the velocity field. In general, large-scale motions are required to 
maintain energy balance in a rotating star, essentially because rotation introduces 
an extra function H(r) into the equations (Baker & Kippenhahn 1959). 

In the absence of internal motions other than rotation, the equations of stellar 
structure are similar in form to those for non-rotating models, the main 
complication being the solution of Poisson's equation for the non-spherically-
symmetric gravitational field. Models of slowly-rotating polytropes were 
constructed as early as 1933 by Chandrasekhar, but the treatment of the large 
distortions produced by rapid rotation needed to await the development of 
computers (e.g. James 1964). All such calculations require a rapid and accurate 
solution of Poisson's equation and early methods worked better for polytropes 
than for real stars; it was particularly troublesome to construct models of 
low-mass main-sequence stars, which have a strong central density concentration. 
One way around that difficulty is to construct approximate, pseudo-spherical 
(one-dimensional) models. The most useful such technique was devised by 
Kippenhahn & Thomas (1970) and also used by Papaloizou & Whelan (1973). In 
the latter formulation the force balance equations are written: 

, dP GM , dM , „ 
h y =~P 2-•+/*, , =WPU- (10) 

dr\ rjz drf 

Here 77 is a length, constant on a surface of constant total potential ^ (e.g. r; 
might be the polar radius of the ^-surface). The / , are correction factors, 
depending only on the geometry of the potential surfaces. The approximation 
consists of evaluating these three correction factors using the Roche 
approximation for the gravitational potential, so that: 

*=GM
 + w. (ii) 

r 
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This avoids solving the two-dimensional form of Poisson's equation. Although this 
method gives satisfactory results for uniform rotation, it becomes increasingly 
inaccurate as the degree of differential rotation is increased. 

For studies of the effects of extreme differential rotation, there is no alternative to 
a full two-dimensional numerical calculation. The method of Kippenhahn & 
Thomas (1970) and Papaloizou & Whelan (1973) can be extended to two 
dimensions by iterating to improve the approximation for \£. If the Roche 
approximation is used as a first step, the resulting density distribution can be used 
to calculate a new approximation to the gravitational potential which can then be 
used to evaluate the correction factors in the next iteration. This is essentially the 
basis of the self-consistent field (SCF) method devised earlier by Ostriker & Mark 
(1968), in which the equilibrium equations and Poisson's equation are solved 
alternately. Unfortunately this iterative scheme fails to converge even for a 
non-rotating model if the mass is less than about 9M& (Clement 1978). The SCF 
calculations were therefore restricted to stars earlier than about B2 on the main 
sequence. More recent calculations solve Poisson's equation simultaneously with 
the equilibrium equations (e.g. Clement 1978, 1979; Eriguchi & Muller 1985a, b; 
Muller & Eriguchi 1985) and these techniques seem to be able to cope with almost 
any density distribution, although expensive in computer time even using Fast 
Fourier Transforms to solve Poisson's equation (Clement 1986, Appendix). This 
makes it difficult to use full two-dimensional calculations to study stellar 
evolution, although Zorec (private communication; see also Zorec et al., this 
volume) is developing a two-dimensional code which should enable evolutionary 
calculations to be made. 

We now turn to some of the results of numerical calculations. 

EFFECTS OF ROTATION ON OVERALL STRUCTURE 
The most obvious effect of rotation on a star is that the star is 

flattened; for uniform (solid-body) rotation, its equatorial radius increases and its 
polar radius decreases. For uniform rotation, the calculations of Papaloizou & 
Whelan (1973) using the Roche approximation gave polar radius changes of less 
than 3% but equatorial radius changes of up to 50%, the maximum occurring 
when a = 1. It is this distortion of shape that is of most importance for the 
observable consequences of rotation (Collins & Smith 1985) but its direct effects 
on the internal structure are small because of the small fraction of the stellar mass 
that is involved in the surface distortion. Unfortunately, even the effects of 
uniform rotation are somewhat uncertain; no exact two-dimensional calculations 
of uniformly-rotating stars appear to have been published, but Clement's work 
(1979) on the behaviour of stellar properties with the ratio of total rotational 
energy to gravitational energy for various degrees of differential rotation suggests 
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that the changes in polar radius may be larger and those in equatorial radius 
smaller than given by the approximate calculations, even though the Roche 
approximation is adequate for determining the central conditions. This needs to 
be checked by new calculations. 

The central conditions in a star are determined by the weight of the overlying 
layers. In a rotating star, the main effect of the centrifugal force is to reduce the 
effective gravity and the central conditions mimic those in a non-rotating star of 
lower mass. That is, the density is higher and the temperature and luminosity are 
lower than if the star were not rotating. This was realised in 1923 by Milne and 
has been quantitatively confirmed for uniformly rotating stellar models by many 
authors (e.g. Sackmann 1970, Papaloizou & Whelan 1973). For the 
upper-main-sequence stars with which we are concerned here, the maximum 
effects for uniform rotation are quite small, giving a decrease in luminosity of 
5-10% at the maximum rotation speed. 

For differentially-rotating models, the situation is more complicated, the central 
pressure and temperature lying off the P — T relation for non-rotating stars by an 
amount that depends in detail on the rotation speed and on the degree of 
differential rotation. Fortunately, there is a simplifying feature; at least for 
high-mass models (> 15M@) (Bodenheimer 1971, Fig. 5) and probably also for 
low-mass models (Tuominen 1972, Fig. 5; Clement 1979, Fig. 1), the changes in 
central temperature and density and in luminosity for a star of a given mass 
depend only on the total angular momentum J of the star and not on its 
distribution. For stars of different mass M, the ratio of the luminosity to that of a 
non-rotating star of the same mass varies approximately as J/M2 (Tuominen 1972, 
Fig. 6). If the angular velocity increases inwards, much more angular momentum 
can be stored in a differentially-rotating model than in a uniformly-rotating model 
with the same value of a and so rotation can have much larger effects — the 
luminosity may decrease by a factor of four or more (e.g. Clement 1979). For both 
uniform and non-uniform rotation, the fractional change in luminosity increases 
roughly as the square of the angular velocity. In the case of differential rotation, 
the limit is set not by a = 1 but by stability considerations; the rotational energy 
must be less than about 10% of the gravitational energy if the star is to be 
secularly stable (Clement 1979). All these results are for conservative rotation 
laws but are probably qualitatively the same for non-conservative laws. 

Although we shall not be much concerned here with the shapes of rotating stars, 
it is worth noting that the shapes of differentially-rotating stars may be very 
different from those of uniformly-rotating stars, at least for the case of angular 
velocity increasing inwards. In the limit in which centrifugal force balanced 
gravity throughout the star (cf. Frank 1979), the star would resemble a toroid. 
Such structures may be relevant as models of thick accretion discs, although they 
are probably unstable (Papaloizou & Pringle 1984, 1985). Realistic models with a 
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significant internal pressure gradient may still show a deep 'dimple' in the polar 
regions and the equatorial radius may even be less than for the non-rotating star 
of the same mass. The polar radius changes can be up to 50% and the ratio 
i? e / i?p may be as much as 3 or 4. The contrast between such models and the 
familiar picture of a uniformly-rotating star can be seen by comparing Fig. 4 of 
Bodenheimer (1971) with Fig. 1 of Sackmann & Anand (1970). Even more 
extreme pictures can be found in the papers by Eriguchi & Muller (1985a, b), but 
such high degrees of differential rotation are unlikely to be present in real stars. 

THE ANGULAR MOMENTUM DISTRIBUTION 
Since the effects of rotation are much larger if the angular velocity 

increases inward than if it is uniform, an important question is: what do we 
expect the internal angular momentum distribution to be in stars? Unfortunately, 
as we shall see, there is no very satisfactory answer to that question, either from 
theory or from observation. 

I shall consider first the theoretical constraints, restricting myself mainly to 
radiative regions without magnetic fields. 

Meridional circulation 
The first theoretical difficulty is that any arbitrarily imposed 

angular momentum distribution (AMD for short) will inevitably change with time 
as a result of large-scale motions which redistribute angular momentum. These 
motions arise in a region where radiation is the dominant mode of energy transfer 
because rotation distorts the temperature surfaces away from spheres and 
radiative equilibrium (equation (8)) no longer holds: for a given fluid element, the 
heat loss by radiation no longer balances the inflow of heat by radiation and the 
element either heats up or cools down with respect to its surroundings. Buoyancy 
forces then lead to a slow, large-scale axisymmetric circulation in meridional 
planes which restores thermal equilibrium (equation (9)). Molecular and radiative 
viscosity are negligible for stellar material (the typical viscous timescale is orders 
of magnitude longer than the Hubble time) and so fluid elements conserve angular 
momentum (equation (3)). The circulation therefore gradually alters the AMD, on 
a circulation timescale rc;rc of order TKH7«> where TKH (= GM2/RL) is the 
Kelvin-Helmholtz or thermal timescale. 

The breakdown of radiative equilibrium was first pointed out by von Zeipel (1924) 
for uniformly rotating stars and the consequent meridional circulation was 
discussed by Vogt (1925) and Eddington (1925, 1929). The first correct estimate 
of the circulation velocities was given by Sweet (1950). Other early work was 
reviewed by Mestel (1965) and there is a good physical discussion in 
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Schwarzschild's book (1958). It was recognised by Baker & Kippenhahn (1959) 
that circulation currents would arise quite generally for nearly all rotation laws, 
essentially because the imposition of a particular AMD puts an extra 
mathematical condition on the equations of stellar structure which is not in 
general compatible with the condition of radiative equilibrium. Roxburgh (1966, 
appendix) showed explicitly that there must be circulation for all conservative 
AMDs (those for which angular momentum is a function only of distance from the 
rotation axis). 

Possible steady states 
If circulation is constantly changing the AMD, is any steady state 

possible? In the absence of constraints, only two types of steady state can be 
imagined. In the first of these, we impose radiative equilibrium, in which case 
there is no circulation, and ask what (necessarily non-uniform and 
non-conservative) rotation law is required by that condition. This begs the 
question of whether an arbitrary initial AMD will evolve to a circulation-free 
state, but for a given mass of star there is a well-defined family of solutions, 
depending only on what boundary condition is adopted for fl (Clement 1969). 
Marks & Clement (1971) have argued for a particular boundary condition (but see 
Smith 1971b) and the corresponding unique solution was calculated by Harris & 
Clement (1971). The angular velocity increases inwards by a modest factor, but 
the constant angular velocity surfaces are not simple and, as we shall see, the 
AMD is unstable. 

The other conceivable steady state is one in which the angular momentum is 
constant on streamlines of the circulation, so the circulation does not change the 
AMD. No such models have been constructed, but the following simple argument 
(Flanders 1941) shows that the only solutions are either trivial or unstable. Since 
the circulation streamlines must be closed, the pattern of streamlines of an 
axisymmetric circulation must be a nested set of loops in any meridional plane. 
The angular momentum per unit mass is flui2 and must in particular be constant 
on the largest loop, which must, by symmetry, run up the rotation axis, u) = 0. 
Then either flu;2 = constant everywhere = 0 and so fl = 0 off the axis (the trivial 
solution), or flu2 varies from one streamline to the next. Because the streamlines 
are nested about some point, h = flu>2 must then have a maximum or minimum 
somewhere in the interior and so there must be regions where dh/duj < 0. This 
violates Rayleigh's criterion (1920) for the stability of a rotating incompressible 
liquid and we shall see that it also implies instability for the compressible fluid of 
a star. 
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Stability considerations 
The question of the stability of stellar AMDs is a complicated one, 

which is not completely settled. It is clear that there are certain rotation laws that 
are unstable, but the growth rates and the non-linear development of the 
instabilities remain a matter of debate. All I can do here is to try to summarise 
what is known and to indicate what are the unsettled questions. 

Axisymmetric perturbations are the simplest and for that case there are firm 
results (cf. Moss & Smith 1981). The first results were obtained for adiabatic 
perturbations by Solberg (1936) and H0iland (1939) and are discussed fully in the 
comprehensive article by Wasiutynski (1946). A stellar rotation law is stable 
against adiabatic, axisymmetric disturbances if and only if 

1 dh2 „ 
--,-„Z- - g e f f - V 5 > 0 

and (12) 

\dw dz dz dw J 

where h = flu>2 is the specific angular momentum, w is the distance from the 
rotation axis, geff = g + fi2u> is the sum of gravity and centrifugal force, 
s = ( I /7) \n{P/p1) is related to the specific entropy and z is a unit vector parallel 
to the rotation axis. These conditions are a generalisation to a rotating star of the 
familiar Schwarzschild criterion for convection, which can be written 

geff.V* > 0. (13) 

That the conditions are both necessary and sufficient has been shown by Eliassen 
& Kleinschmidt (1957) and independently by Fricke & Smith (1971). Wasiutynski 
gave a simple geometrical interpretation, which shows that there is an unstable 
range of directions (towards the rotation axis, between geff and Vs ) for the 
angular momentum vector V/12 (cf. Moss & Smith 1981, Fig. 10). A simple 
extension of Randers ' (1941) argument quoted above shows that for a steady state 
with angular momentum constant on closed streamlines, there must be some 
regions where V/12 points into the unstable range of directions. That steady state 
is therefore unstable on a dynamical timescale. 

The circulation-free steady states can also be shown to be unstable if we consider 
more general perturbations. If the perturbations are adiabatic, buoyancy forces 
tend to stabilise motions in a radiative region. However, if we make a very slow 
perturbation, on a heat-leakage timescale, a displaced element has time to reach 
thermal equilibrium with its surroundings and so is no longer buoyant. A 
compressible fluid therefore behaves on a thermal timescale in a similar way to a 
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liquid. A local stability analysis by Goldreich & Schubert (1967) and by Fricke 
(1967, 1968) (see also Smith & Fricke 1975) showed that the conditions 

dh2/dw > 0, dh2/dz = 0 (14) 

are necessary for stability against axisymmetric perturbations (it has not proved 
possible so far to decide whether they are sufficient). The first of these is identical 
to Rayleigh's criterion (1920) (when it is violated, exchanging neighbouring rings 
of material lowers the total energy if the rings conserve angular momentum) and 
the second is equivalent to the Taylor-Proudman theorem for an incompressible 
fluid (Greenspan 1968). Geometrically, the conditions are much more restrictive 
than the Solberg-H0iland conditions: angular momentum must be constant on 
cylinders parallel to the rotation axis and must not increase inward. That is 
sufficient to rule out all the circulation-free models. 

However, the above discussion has only skimmed the surface of the very complex 
range of possible instabilities. A full discussion of the stability of rotation laws 
requires consideration of at least the following: 

Thermal stratification (buoyancy forces) 
(frequency: N$ = - ( V r a d - V^)g/Hp 

> 0 in radiatively stable regions) 
Angular momentum gradient 

(frequency: Nf, = (1 /'u3)(dh2/' dQ)) 
Molecular weight gradient 

(frequency: N2 = —g(dln/j,/dr) 
> 0 as a result of nuclear evolution. 

N2 is very small except near the edge of the convective core.) 
Magnetic fields 

(frequency: N£ = B2/f.i0pr2 << iV| in general) 
Diffusion of: 

heat (diffusivity K J ) 
angular momentum (diffusivity v = viscosity) 
molecular weight (diffusivity K^) 
magnetic field (diffusivity i] = resistivity) 
In general, «T > > T] > > v ~ K^. 

Shear flows 
(both parallel and perpendicular to gravity) 

Axisymmetric and non-axisymmetric perturbations 
Baroclinic effects 

(these arise when surfaces of constant T and constant P are not 
coincident and so either Q ^ Q(u>) or there is a //-gradient or both). 

Combining these considerations clearly gives rise to an enormous range of 
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possibilities which I cannot hope to summarise here and which are in any case not 
completely understood. Detailed discussion can be found in many papers in the 
astrophysical and fluid dynamical literature, of which the following is a small 
selection that I have found particularly useful: Acheson (1978), Knobloch (1982), 
Knobloch & Spruit (1982, 1983), Spruit et al. (1983), Spruit & Knobloch (1984), 
Zahn (1983, 1984). References to earlier work can be found in these papers and/or 
in Moss & Smith (1981). 

Leaving aside magnetic fields (which are carefully discussed by Acheson 1978), I 
shall at tempt to give a brief overview of what I see as the main recent results that 
are relevant to Be stars, putting the Solberg-H0iland and Goldreich-Schubert-
Fricke (GSF) instabilities already discussed into a more general context. 

Stability in the absence of diffusion 
Neglecting all forms of diffusion, there are three instabilities to be 

considered, all of which grow on a dynamical timescale. 

The Solberg-H0iland instability will occur if 

N% + N$<0 (15) 

and/or the geometrical condition illustrated in Fig. 10 of Moss & Smith (1981) is 
satisfied. The N% term represents the stabilising effect of buoyancy. Since there is 
no buoyancy stabilisation along constant pressure surfaces, a necessary condition 
for dynamical stability is 

dh2 

> 0 (16) 
P—const. 

Buoyancy also acts to stabilise shear flow instabilities and a vertical shear (which I 
shall represent for simplicity as a radial gradient.) is stable so long as the 
Richardson criterion 

r ^ ) ' < 4 * » (17) 

is satisfied. Horizontal shear is unaffected by gravity and so a sufficient condition 
for the stability of horizontal shear flow is that 
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where \x is the cosine of the co-latitude. This is a generalisation of the condition 
for plane shear flow that the shear profile should contain no inflection points. 

If pressure and entropy surfaces do not coincide (which means either a 
non-conservative rotation law or a molecular weight gradient, or both), 
non-axisymmetric motions in a direction between these surfaces release energy if 
they are of sufficiently long wavelength. Roughly speaking, that will be true only 
if fi ~ Nj, which occurs for fl ~ fJcrit, i.e. for very rapid rotation, or for N? <C 1: 
near convection zone boundaries, where V = VB(j. Because many of the usual 
approximations break down for rapid rotation and near convection zones, it is 
difficult to give a more precise discussion of this baroclinic instability. 

A recent paper by Fujimoto (1986) has used a global analysis for a Boussinesq 
fluid to find sufficient conditions for stability that are a combination of a 
generalised Richardson condition and a geometrical condition that relates both to 
the variation of ft along equal pressure and equal density surfaces and to the 
degree of baroclinicity. The two conditions can be satisfied simultaneously only for 
uniform rotation, and so uniform rotation is sufficient (but not necessary) for 
stability against adiabatic, non-axisymmetric perturbations, i.e. against an 
instability growing on a dynamical timescale. This suggests, but does not prove, 
that departures from uniform rotation in real stars are small. 

Effects of diffusion 
If a star is stable against instabilities that grow on a dynamical 

timescale, then we must ask whether there are other instabilities with slower 
growth rates. The relevant timescales are now those of the various possible 
diffusion processes. I shall discuss briefly three classes of instability that arise as a 
result of diffusion. 

As discussed earlier, thermal diffusion removes the stabilising influence of 
buoyancy and so the Solberg-H0iland conditions (12) are replaced by the more 
restrictive GSF conditions (14) which require conservative rotation with angular 
momentum increasing outwards. However, viscous diffusion relaxes these 
conditions again, giving instability if 

, 1 dh2 v , 
Nl = —z—< N2 

or (19) 

V 5eff d\xih2\ v oPff v 1 
> dz ) KT Cl2u> Kt o-

This is an example of what fluid dynamicists call a double diffusive instability 
(Turner 1973). Because of an analogy in incompressible fluids containing salt and 
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temperature gradients, in which the instability is observed to grow in the form of 
long 'fingers' of salty fluid, the GSF instability is sometimes referred to as the 
'salt-finger' instability and the instability may initially produce long streamers of 
constant angular momentum before they are broken up by shearing. Since 
— ~ 10~6 for stars, the stabilising effect of viscosity is small except for slow 
rotation (a ~ 10~6, e.g. the Sun). For Be stars the standard GSF conditions are 
hardly changed. 

If there is a molecular weight gradient, it can have a much more important 
stabilising effect, essentially by producing an effective buoyancy force that diffuses 
away only on the slow viscous timescale. The first equation in (19) gains a term 
and there is instability if 

N*<~—N%-—N*. (20) 

Since «;M ~ v, a small ^-gradient is sufficient to stabilise and may permit a 
significant vertical shear near the boundary of the convective core in Be stars. 

In the presence of diffusion, two completely new instabilities can arise. The first is 
a triply diffusive instability, which results from an interplay between «x, v and /cM. 
In general, such an instability occurs if the destabilising agent (in this case an 
unstable angular momentum gradient) has a diffusivity (v) intermediate between 
those of the two stabilising agents (here, temperature and molecular weight 
gradients). (In a related magnetic instability (Appendix to Acheson 1978), the 
destabilising agent is magnetic buoyancy while the stabilising agents are the 
angular momentum and temperature gradients.) Like the GSF instability, it is 
suppressed by quite a small molecular weight gradient. The other new instability 
is a double diffusive instability whose analogue is the thermohaline convection 
that occurs if a layer of water in which the salt concentration increases downwards 
is heated from below (Turner 1973). It sets in as an oscillation of growing 
amplitude at frequency N?. It occurs in baroclinic configurations (which in the 
presence of molecular weight gradients may not require non-conservative rotation), 
where motions in directions between the pressure and temperature surfaces find a 
stabilising angular momentum gradient but a destabilising temperature gradient. 
The unstable motions are axisymmetric and so the instability is known as the 
axisymmetric baroclinic cSffusive (ABCD) instability. Because it requires a large 
molecular weight gradient to suppress it (N^ ~ Nj), Spruit et al. (1983) have 
suggested that the ABCD instability is important for mixing in the radiative 
interior of the Sun and would lead to a significant, angular velocity gradient 
(fic/fi s ~ 20); helioseismological data do not support such a large gradient (Duvall 
et al. 1984), although the results are highly uncertain for r < 0.3iZ@. 

In rapidly rotating stars (S7/f2cr;t > 10~2) these diffusive instabilities are less 
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important, because the dominant role is played by shear flow and baroclinic 
instabilities. The effect of diffusion on the shear flow instabilities is rather 
uncertain, because turbulence is involved. 

For horizontal shear, the typical horizontal scale is of the order of the stellar 
radius and so the appropriate Reynolds number is 

n p 2 
Re ~ * > Rf' (~ 103); (21) 

the small viscosity guarantees strong turbulence. However, the small viscosity also 
means that the growth time for the turbulence, rgrowth — J? , / " , is much greater 
than the stellar lifetime and so an infinitesimal perturbation will not grow fast 
enough for turbulent mixing of angular momentum along a pressure surface to be 
important. Sufficient conditions for stability are then equations (16) and (18), 
which are fairly unrestrictive. However, there are so many possible disturbances, 
arising for example from other instabilities, that it is quite likely that turbulence 
is either induced by finite amplitude perturbations or left over as 'fossil 
turbulence', having been generated by some other instability (e.g. a retreating 
convection zone or a vertical shear instability). Once any turbulence is present, it 
acts to produce an effective 'turbulent viscosity' many times larger than the 
molecular viscosity. This dramatically speeds up the growth rate of the viscous 
instability and causes a rapid smoothing out of the horizontal shear, leading to an 
angular velocity which is almost constant along a pressure surface, as first 
suggested by Zahn (1974, 1975). Once generated, the turbulence will decay only 
very slowly as a result of molecular viscous and thermal diffusion and so turbulent 
motions are likely to persist, with particularly large amplitude in the low-density 
surface layers. However, this discussion is certainly not rigorous, and Kippenhahn 
& Thomas (1981) have argued that the horizontal fi distribution depends on the 
history of the star and need not be uniform. 

The stability condition for vertical shear is also essentially unaffected by diffusion 
if only infinitesimal perturbations are considered. Again, however, finite amplitude 
perturbations in the form of turbulence give a quite different result, essentially by 
accelerating the destruction by thermal diffusion of buoyancy stabilisation. 
Following Zahn (1974), instability will occur if 

a n x 2 

r — I > —RtT,tN$ ~ lO-'Nj. (22) 
or J Kf 

(cf. 4iV| in the absence of diffusion). However, a /x-gradient can be stabilising and 
allow a larger vertical shear (cf. Spruit et al. 1983, equation (2)). 

Timescales for the redistribution of angular momentum by these turbulent shear 
instabilities are rver ~ i?£rlt/ | rdft/dr | (Zahn 1975) and (if the effective Reynolds 
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number is equal to the critical value) Thor ~ Rlnt/ft. Both are much shorter than 
the circulation timescale, TKH/O, and so probably determine the rotation law; they 
may well also suppress the circulation. 

Deductions 
To try to draw any conclusions from this superficial discussion of a 

very complex problem is rather hazardous. However, I shall risk a few sweeping 
remarks, suitably hedged about with cautions. 

If shear instabilities are dominant (and it is a large if), and if there is not a 
significant molecular weight gradient, then a possible rotation law seems to be 

ft ~ constant on pressure surfaces 

and (23) 

r^L < IO-3/2TVT ~ ^ . 
dr r 30 

This corresponds to only a 3% departure from uniform rotation if fJsurf ~ ficrit (a 
larger departure for slower rotation), which may be consistent with Fujimoto's 
(1986) result. Since magnetic fields also tend to maintain uniform rotation 
(essentially because they resist stretching and twisting), the best conjecture for 
main-sequence stars may be that 

ft ~ uniform. (24) 

This would mean that Be star precursors were uniformly-rotating main sequence 
stars. Evolution may change this, so that observed Be stars do not have ft 
uniform, but I would expect ft still to be constant on pressure surfaces, since the 
redistribution timescale is very short. 

Now come the cautions. First, ft constant on pressure surfaces requires there to 
have been some initial turbulence or other similar finite-amplitude disturbance. 
Otherwise, constant angular momentum on pressure surfaces may be a better 
guess (cf. Kippenhahn & Thomas 1981), or other instabilities may dominate, 
giving a more complicated and uncertain picture. However, if Fujimoto's (1986) 
sufficient condition is anywhere near being also necessary, then uniform rotation is 
a good approximation regardless of how it is achieved. 

Second, I have not discussed magnetic effects in any detail and my remarks about 
them tending to give uniform rotation are purely heuristic. However, recent 
arguments by Mestel & Weiss (1986) tend to confirm my conclusions, unless the 
magnetic field is extremely weak. 
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Third, I have not discussed at all the rotation law in the convective core. This is 
usually assumed to rotate like a solid body, but there are arguments (Tayler 1973) 
for believing that constant angular momentum is a better approximation than 
constant angular velocity. If so, the core could be quite distorted and affect the 
surface shape. 

Fourth, there are no accurate numerical models with ft constant on pressure 
surfaces, and even for uniform rotation there are no published models of real stars 
with a proper solution of Poisson's equation. 

Since the theoretical understanding of the likely rotation law within stars is so 
unsatisfactory, can anything be said from observations? 

OBSERVATIONAL CONSTRAINTS 
Although rotation has clearly observable effects on a number of 

stellar properties, the changes in these effects as a result of different rotation laws 
are second-order and not easy to detect. There are several possible approaches, 
none of which has yet been successful. 

Because rotation affects both the luminosity and the shape of a star, the 
magnitude and colour of a rotating star depend on the rotation speed and the 
inclination of the rotation axis to the line of sight and so rotation produces a 
spread in the colour-magnitude diagram of a star cluster (Collins 1970, Moss & 
Smith 1981). The amount of the spread for a given observed range of rotation 
speeds depends on the internal rotation law, since strong differential rotation 
corresponds to a larger total angular momentum than does uniform rotation at 
the same surface rotation speed. However, it is not possible uniquely to determine 
the rotation law from the observations, even in principle (Collins & Smith 1985), 
and in practice the observational uncertainties are in any case too great for any 
very useful constraints to be applied (e.g. Smith 1971a). The best one can do is to 
rule out extreme differential rotation (Peacock & Smith 1986): ftp < 4J7e. 

Most measurements of rotation speeds come from Doppler half-widths, which are 
a fairly crude measure of the line profile. In principle, if the rotation speed varies 
over a stellar surface that variation should be reflected in the detailed shape of a 
spectral line and so careful analysis of line profiles should be able to reveal the 
surface differential rotation, though of course they can say nothing about the 
internal distribution of ft. Attempts to determine differential rotation from line 
profiles have been made by Stoeckley and his collaborators (Stoeckley 1968, 
Stoeckley et al. 1984, Stoeckley & Buscombe 1986) and in the Fourier domain by 
Gray (1977, 1982). Their results are not conclusive, but Gray suggests that any 
departure from uniform angular velocity is not large, which is consistent with 
what the theoretical studies suggest. Stoeckley & Buscombe (1986) claim 
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differential rotation with fip/Oe up to about 1.6 but do not discuss the effect of 
turbulence on their line profiles. 

A completely different approach is to ask what the differential rotation is on the 
surface of Jupiter, one of the very few rapidly rotating gaseous bodies 
(fi ~ ficrit/3) for which we can actually study the surface in detail. The belts, seen 
clearly also on Saturn, suggest a pattern dominated by shear flows, which may be 
some support for shear flow instabilities being the dominant factor in rotating 
stars. Perhaps more significantly, the pole-equator difference in angular velocity 
for Jupiter is only a few per cent, again consistent with what theory suggests for 
stars. 

Ultimately, we should like to be able to 'observe' what is happening inside stars. 
Until very recently, this seemed an unrealisable goal. However, with the advent of 
helioseismology (Deubner & Gough 1984, Gough 1986), it is now becoming 
possible to probe the Sun's internal structure by examining the frequencies of 
hundreds of acoustic (p-mode) oscillations of different spherical harmonic degree / 
and resonant mode number n (see Gough 1985 for a clear non-technical 
discussion). Although these modes are observed at the surface, and the modes of 
high l/n are largely confined to the surface layers, it is known from theory that 
lower-degree modes penetrate throughout the Sun and their frequencies depend on 
the density distribution within the Sun (more directly, on the sound speed). It is 
therefore possible to invert the oscillation data to obtain the run of sound speed 
within the Sun and fairly good agreement has been obtained with the theoretical 
results from standard solar models (Christensen-Dalsgaard et al 1985). The 
necessary oscillation data can be obtained from spatially unresolved whole-disc 
Doppler data and so in principle can also be obtained for other stars. Such data 
are beginning to be obtained (Gough 1985, 1986, Guenther & Demarque 1986). 
For the Sun, the further step has been taken of measuring the rotational frequency 
splitting of the oscillations. Detailed spatially-resolved observations (Duvall & 
Harvey 1984) have been used to deduce the solar rotation as a function of depth 
(Duvall et al. 1984) and of latitude (Brown 1985). Except within 0.3^©, where 
the uncertainties become large and it is not clear whether to believe the apparent 
sharp increase in il towards the centre (Libbrecht 1986), the results are consistent 
with uniform rotation, with the latitudinal variation in $7 smaller in the radiative 
interior than at the surface. It is not possible to make spatially-resolved 
measurements for other stars, but some information can in principle be obtained 
from whole-disc measurements (Dziembowski 1984) and this technique holds out 
great hope for the future of stellar rotation. 

CONCLUSIONS 
Despite a great deal of work on large-scale circulation and 
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instabilities, there is still no clear theoretical expectation for the angular 
momentum distribution inside stars. However, the best guess at the moment 
seems to be uniform rotation, or very mild differential rotation with angular 
velocity constant on pressure surfaces. 

There are too many uncertainties in interpreting observational data for there to be 
any direct observational constraints yet available, but all the existing data are 
consistent with uniform or nearly uniform rotation. Within the next ten years, 
asteroseismology may give us a direct determination of the run of angular velocity 
within a star other than the Sun. 

If stars do rotate uniformly, the effect on the total luminosity is small, less than 
10%. However, the spread in observed luminosity and colour is larger, because of 
the shape distortion, and can have significant effects on colour-magnitude 
diagrams. 

Although there are many models of rotating stars, very few are accurate in the 
sense that Poisson's equation is properly solved and there are no models of 
rapidly-rotating stars with non-conservative rotation laws. Surprisingly, there also 
seem to be no realistic models of uniformly-rotating stars for which Poisson's 
equation is fully solved. 

Finally, if shear flow instabilities dominate the redistribution of angular 
momentum inside stars, and there is associated turbulence, the turbulent motions 
in the surface layers might act in a way analogous to the solar convection zone and 
be a source for at least some of the mechanical energy flux that seems to be 
needed to explain the hot winds observed in Be and related stars. 
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APPENDIX: am a x 

If we make the Roche approximation for the gravitational potential, 
then: 

GM /•* 2 - , . 
r Jo 

GM 

Then, since I(y) = 0 at the pole, 

, say, where y = cl>/i?e 
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1 1 

R~< 

1 + w w 

which we can re-write as 
= 1 + Xx3 

mm where x = Rc/Rp, A = j M
F J ( l ) , and 1(1) depends on the internal rotation law. 

The possible solutions of this cubic can be visualised by sketching the graphs of 
the functions x and 1 + Ax3 and looking for the intersections. In general there are 
three, of which the one of interest is the smaller positive solution. It is clear from 
a sketch (exercise for the reader!) that for large enough A there is no positive root 
and that the maximum value of A for which a root exists occurs when the straight 
line is a tangent to the curve, that is when: 

dx 

i.e. 3Aa 

( l + A.T3) 

2 * 
1 or x = —-. 

3A 

Substituting this value of x into the cubic gives: 

( l /3A) 1 / 2 = 1 + A(1/3A)3/2 

which yields the maximum values of A and x: 

Hence we find 

4/27, 3/2. 

GM 

i i / a 

2 / (1 ) \% 

= 1 for uniform rotation 

< 1 for f2e < SV 

REFERENCES 
Acheson, D.J. (1978). Phil. Trans. R. Soc , A289, 459-500. 
Baker, N. & Kippenhahn, R. (1959). Z. Astrophys., 48, 140-54. 
Bodenheimer, P. (1971). Astrophys. J., 167. 153-63. 
Brown, T.M. (1985). Nature, 317, 591-4. 

https://doi.org/10.1017/S0252921100116148 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100116148


Smith: Rotating Stellar Interiors 143 

Chandrasekhar, S. (1933). Mon. Not. R. astr. Soc , 93, 390-405. 
Chandrasekhar, S. (1969). Ellipsoidal Figures of Equilibrium. New Haven: Yale 

University Press. 
Christensen-Dalsgaard, J., Duvall, T.L. Jr, Gougli, D.O., Harvey, J.W. & Rhodes, 

E.J. Jr (1985). Nature, 315, 378-82. 
Clement, M.J. (1969). Astrophys. J., 156, 1051-68. 
Clement, M.J. (1978). Astrophys. J., 222, 967-75. 
Clement, M.J. (1979). Astrophys. J., 210, 230-42. 
Clement, M.J. (1986). Astrophys. J., 301, 185-203. 
Collins, G.W. II (1970). In Stellar Rotation, IAU Colloq. No. 4, ed. A. Slettebak, 

pp. 85-108. Dordrecht: D. Reidel. 
Collins, G.W. II (1986). In Physics of Be Stars, IAU Colloq. No. 92, 

ed. A. Slettebak (this volume). Cambridge: Cambridge University 
Press. 

Collins, G.W. II & Smith, R.C. (1985). Mon. Not. R. astr. Soc , 213, 519-52. 
Deubner, F.-L. & Gough, D.O. (1984). Ann. Rev. Astron. Astrophys., 22, 

593-619. 
Durisen, R.H. & Tohline, J.E. (1985). In Protostars and Planets II, 

eds D.C. Black & M.H. Matthews, pp. 534-75. Tucson: University 
of Arizona Press. 

Duvall, T.L. Jr, Dziembowski, W.A., Goode, P.R., Gough, D.O., Harvey, J.W. & 
Leibacher, J.W. (1984). Nature, 3JJ), 22-5. 

Duvall, T.L. Jr & Harvey, J.W. (1984). Nature, 3_10, 19-22. 
Dziembowski, W. (1984). Adv. Space Res., 4, 143-50. 
Eddington, A.S. (1925). Observatory, 48, 73-5. 
Eddington, A.S. (1929). Mon. Not. R. astr. Soc , 90, 54-8. 
Eliassen, A. & Kleinschmidt, E. (1957). Handb. Phys., 48, 1-154. 
Eriguchi, Y. & Muller, E. (1985a). Astron. Astrophys., 146, 260-68. 
Eriguchi, Y. & Muller, E. (1985b). Astron. Astrophys., 147, 161-68. 
Frank, J. (1979). Mon. Not. R. astr. Soc , 187, 883-904. 
Fricke, K. (1967). Doctoral Dissertation, Goettingen. 
Fricke, K. (1968). Z. Astrophys., 68, 317-44. 

Fricke, K.J. & Kippenhahn, R. (1972). Ann. Rev. Astron. Astrophys., 10, 45-72. 
Fricke, K.J. & Smith, R.C. (1971). Astron. Astrophys., 15, 329-31. 
Fujimoto, M.Y. (1986). Astron. Astrophys., submitted (Preprint MPA 246, 

Max-Planck-Institut fur Physik und Astrophysik, Garching, July 
1986). 

Galileo Galilei (1612). Letters on Sunspots. English translation by Stillman Drake 
(1957) in Discoveries and Opinions of Galileo. New York: Doubleday 
Anchor Books. 

Goldreich, P. & Schubert, G. (1967). Astrophys. J., 150, 571-87. 
Gough, D.O. (1985). Nature, News and Views, 3_14, 14-5. 

https://doi.org/10.1017/S0252921100116148 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100116148


144 Smith: Rotating Stellar Interiors 

Gough, D.O. (1986). In Highlights of Astronomy, 7, ed. J.-P. Swings, pp. 283-93. 
Dordrecht: D. Reidel. 

Gray, D.F. (1977). Astrophys. J., 211, 198-206. 
Gray, D.F. (1982). Astrophys. J., 258, 201-8. 
Greenspan, H.P. (1968). The Theory of Rotating Fluids. Cambridge: Cambridge 

University Press. 
Guenther, D.B. k Demarque, P. (1986). Astrophys. J., 301, 207-12. 
Harris, W.E. & Clement, M.J. (1971). Astrophys. J., 167, 321-5. 
H0iland, E. (1939). Archiv. Math. Naturvidensk., 46, Nr 5, 1-69. 
James, R.A. (1964). Astrophys. J., 140, 552-82. 
Kippenhahn, R. k Thomas, H.-C. (1970). In Stellar Rotation, IAU Colloq. No. 4, 

ed A. Slettebak, pp. 20-9. Dordrecht: D. Reidel. 
Kippenhahn, R. k Thomas, H.-C. (1981). In Fundamental Problems in the 

Theory of Stellar Evolution, IAU Symp. No. 93, eds D.Q. Lamb, 
D.N. Schramm k D. Sugimoto, pp. 237-56. Dordrecht: D. Reidel. 

Knobloch, E. (1982). Geophys. Astrophys. Fluid Dynamics, 22, 133-58. 
Knobloch, E. & Spruit, H.C. (1982). Astron. Astrophys., 113, 261-8. 
Knobloch, E. k Spruit, H.C. (1983). Astron. Astrophys., 125, 59-68. 
Lebovitz, N.R. (1967). Ann. Rev. Astron. Astrophys., 5, 465-80. 
Lebovitz, N.R. (1975). In Problems of Stellar Hydrodynamics, Liege Colloq. 19, 

Mem. Soc. R. Sciences Liege, 6' Serie, 8, 47-53. 
Lebovitz, N.R. (1979). Ann. Rev. Fluid Mech., U , 229-46. 
Libbrecht, K.G. (1986). Nature, 319, 753-5. 
Marks, D.W. k Clement, M.J. (1971). Astrophys. J. Lett., 166, L27-9. 
Mestel, L. (1965). In Stellar Structure, ed. L. Aller k D.B. McLaughlin, pp. 

465-97. Chicago: University of Chicago Press. 
Mestel, L. k Weiss, N.O. (1986). Mon. Not. R. astr. Soc , submitted. 
Milne, E.A. (1923). Mon. Not. R. astr. Soc , 83, 118-47. 
Moss, D. k Smith, R.C. (1981). Rep. Prog. Phys., 44, 831-91. 
Muller, E. k Eriguchi, Y. (1985). Astron. Astrophys., 152, 325-35. 
Ostriker, J .P. k Mark, J.W.-K. (1968). Astrophys. J., 151, 1075-88. 
Papaloizou, J. k Pringle, J.E. (1984). Mon. Not. R. astr. Soc , 208, 721-50. 
Papaloizou, J. k Pringle, J .E. (1985). Mon. Not. R. astr. Soc , 213, 799-820. 
Papaloizou, J.C.B. k Whelan, J.A.J. (1973). Mon. Not. R. astr. Soc , 164, 1-10. 
Peacock, T. k Smith, R.C. (1986). Observatory, submitted. 
Randers, G. (1941). Astrophys. J., 94, 109-23. 
Rayleigh, Lord (1920). Scientific Papers, 6, 447-53. 
Roxburgh, I.W. (1966). Mon. Not. R. astr. Soc , 132, 201-15. 
Sackmann, I.-J. (1970). Astron. Astrophys., 8, 76-84. 
Sackmann, I.-J. k Anand, S.P.S. (1970). Astrophys. J., 162, 105-24. 
Schlesinger, F. (1910). Publ. Allegheny Observatory, 1, 123-34. 

https://doi.org/10.1017/S0252921100116148 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100116148


Smith: Rotating Stellar Interiors 145 

Schwarzschild, M. (1958). Structure and Evolution of the Stars. Princeton: 
Princeton University Press. 

Slettebak, A. (1976). In Be and Shell Stars, IAU Symp. No. 70, ed. A. Slettebak, 
pp. 123-36. Dordrecht: D. Reidel. 

Smith, R.C. (1971a). Mon. Not. R. astr. Soc , 151, 463-83. 
Smith, R.C. (1971b). Mon. Not. R. astr. Soc , 153, 33P-35P. 
Smith, R.C. & Fricke, K.J. (1975). Mon. Not. R. astr. Soc , 172, 577-84. 
Solberg, H. (1936). Proces-Verbaux Ass. Meteor., UGGI, Mem. et Disc , 2, 66-82. 
Spruit, H.C., Knobloch, E. & Roxburgh, I.W. (1983). Nature, 304, 520-2. 
Spruit, H.C. & Knobloch, E. (1984). Astron. Astrophys., 132, 89-96. 
Stoeckley, T.R. (1968). Mon. Not. R. astr. Soc , 140, 121-39. 
Stoeckley, T.R., Carroll, R.W. & Miller, R.D. (1984). Mon. Not. R. astr. Soc , 

208, 459 and Microfiche MN208/1. 
Stoeckley, T.R. & Buscombe, W. (1986). Mon. Not. R. astr. Soc , to appear. 
Strittmatter, P.A. (1969). Ann. Rev. Astron. Astrophys., 7, 665-84. 
Sweet, P.A. (1950). Mon. Not. R. astr. Soc , U 0 , 548-58. 
Tassoul, J.-L. (1978). Theory of Rotating Stars. Princeton: Princeton University 

Press. 
Tayler, R.J. (1973). Mon. Not. R. astr. Soc , 165, 39-52. 
Tuominen, I.V. (1972). Ann. Acad. Sci. Fennicae, Ser. A, VI Physica, No. 392. 
Turner, J.S. (1973). Buoyancy Effects in Fluids. Cambridge: 

Cambridge University Press. 
Vogt, H. (1925). Astron. Nachr., No. 5342, 223, 229-32. 
von Zeipel, H. (1924). Mon. Not. R. astr. Soc , 84, 665-83. 
Wasiutynski, J. (1946). Astrophys. Norvegica, 4, 1-497. 
Zahn, J.-P. (1974). In Stellar Instability and Evolution, IAU Symp. No. 59, 

eds P. Ledoux, A. Noels & A.W. Rodgers, pp. 185-95. Dordrecht: 
D. Reidel. 

Zahn, J.-P. (1975). In Problems of Stellar Hydrodynamics, Liege Colloq. No. 19, 
Mem. Soc. R. Sci. Liege, 6e Ser., 8, 31-4. 

Zahn, J.-P. (1983). In Astrophysical Processes in Upper Main Sequence Stars, 
13th Saas-Fee Advanced Course, eds. A. Maeder & B. Hauck, 
pp. 255-329. Sauverny: Geneva Observatory. 

Zahn, J.-P. (1984). In Theoretical Problems in Stellar Stability and Oscillations, 
Liege Colloq. No. 25, eds. A. Noels & M. Gabriel, pp. 407-418. 
Cointe-Ougree: Universite de Liege. 

Erratum 
The argument in the Appendix is incorrect (T.R. Stoeckley, private 

communication). Section 2 of the paper (The Maximum Value of a) should 
therefore be ignored. 
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DISCUSSION FOLLOWING SMITH 

Zorec: 
In our calculations of models of differentially rotating stars, we have used the 

Clement's method to solve the Poisson's equation. As in this method the mass of the 
star is a solution of the problem, we have used some general laws concerning the differ
entially rotat ing stars, to reduce the number of iterations needed to obtain a model for a 
given mass and a given deformation parameter (deformation parameter = rotational ki
netic energy/gravitational potential energy). Using this procedure, we are preparing now 
the calculation of the evolution of stars in cylindrical differential rotation. 

Smith: 
It would be very useful to have evolutionary calculations with accurate models. 

Marlborough: 
I believe Tassoul has claimed tha t circulation velocities go to zero at the surface 

of a rotat ing star. Can you comment on the possible relevance of this? 

Smith: 
The circulation velocities can be made to go zero at the surface by a proper 

t reatment of the viscous boundary layer, as shown by B.L. Smith, or by a suitable choice 
of the rotation law. If shear flow instabilities dominate, the circulation does not in any 
case play a significant role in determining the rotation law. However, Tassoul finds that a 
turbulent viscosity is necessary for a self-consistent model, so even zero circulation velocities 
may not imply zero observed velocities - turbulence may be seen at the surface. 

Under hill: 
You argue tha t there may be a large source of mechanical energy in the subpho-

tospheric layers of a s tar and you speculate tha t this energy may be a source for the heat 
observed by means of "hot winds". There must be some method of coupling the energy 
from "below" to far "above" in the stellar mantle. Do you have any candidates for the 
method and any idea of its efficiency? 

Smith: 
I have no definite candidate, but would expect magnetic fields to be involved, 

perhaps via magneto-acoustic waves. Since we do not yet fully understand the mechanism 
of coronal heating in the sun, I think we can only argue tha t the mechanism for Be stars is 
likely to be related to tha t for the sun, and try to understand tha t first. 

Collins: 
If turbulence is established in the outer layers, wouldn't the speeds be so large as 

to be seen in line profiles? 

Smith: 
Tha t is certainly possible. But the uncertainties in the theory of the turbulence 

generated by shear flow instabilities make it hard to estimate reliably the turbulent veloci
ties. It may be bet ter to use observed limits on turbulent velocities to constrain the shear 
flow models. The main expectation is for velocities which make the turbulent Reynolds 
number of the order of the critical Reynolds number. 
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