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UNIFORM ASYMPTOTIC SMOOTHNESS OF NORMS

T. LEWIS, J, WHITFIELD AND V. ZIZLER

We study a notion of smoothness of a norm on a Banach space X

which generalizes the notion of uniform differentiability and

is formulated in terms of unicity of Hahn Banach extensions of

functionals on block subspaces of a fixed Schauder basis S in

X . Variants of this notion have already been used in

estimating moduli of convexity in some spaces or in fixed point

theory. We show that the notion can also be used in studying

the convergence of expansions coefficient of elements of X
*

along the dual basis S

It often happens that in using the notion of uniform smoothness of a

norm on a Banach space X one does not actually need its full strength.

This is why many variants of it have arisen and been studied (see for

example [3], [4], [7], [JO]). To consider the notion studied in this note

let us suppose that S = {a^,^} ' ̂  = I'2'*-- i s a Schauder basis in a

Banach space X (h, are biorthogonal functions associated with the

basis). If a; = £ h* (x)x, then

supp x = {k,h-,{x) ? 0} .

Let us recall that i t is easy to check that a norm on a Banach space X

with Schauder basis 5 is uniformly smooth (that is uniformly Frechet
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d i f f e r en t i ab l e ) i f and only i f given a sequence f i d of norm one

elements of the dual space X for which there are some z e. X ,

supP zn < - with | | / n | | ep{z^ + 1 , \\fn-gj 8p{z^ - 0 we must have

II ,fn-;7nll •* ° • The notion studied in th i s note a r i ses i f we replace the

ep (a ) by block subspaces sp{x,,x~,...,av } (see Definition 1 ) . Since

n

the norm on a space X i s often constructed in (nice) terms of a given

Schauder bas is in X , the c la s s of such spaces i s qui te wide (see

Propos i t ion 2) . On the other hand var ian t s of th i s notion are known to be

usefu l i n Renorming theory (see CIS] where they were apparently considered

for the f i r s t time in the l i t e r a t u r e ) , in fixed point theory ( [8 ] , [5]) or

in es t imat ing moduli of convexity in some spaces ( [ I ] , [ 2 ] , [ 6 ] ) . In t h i s

note we study connections of t h i s notion with other geometrical p roper t ies

of the space (Propositions 2,3) and show tha t i t can also be used in

studying the convergence of expansion coeff icients of the elements of the
* *

dual space X along the dual basis 5 ( resul ts of Orlicz-Kadec-Figiel-

P i s i e r type) . We encountered th is notion in our attempt to find a nice

cha rac t e r i za t ion of dual spaces which can be given an equivalent loca l ly

uniformly convex norm.
We wi l l use the following notation throughout: B.. , S, (B^,S.) wi l l

denote the closed un i t b a l l and sphere in X{X ) respect ive ly . We wi l l

consider in X i t s usual dual supremum norm. If 5 = t ^ ' ^ r . ^ ' & = 1/2,.

i s a Schauder bas i s of X , then the bas is project ions are

n
P x ~ 1 hh(x) x7 , and we define T = I - P , D = P 1 - P where I

Yl -t ^ K K Yl 71 H Tl'rX Yl

stands for the identity operator in X . Their dual projections are
* * *

denoted by P , 1' , D respectively. If S - {x,,h-A is a basis of
fir it 7l K. K.

* *

X , then the bas ic sequence formed by h-, e X i s denoted by S . I f
*

f e X and n e N {N denotes the s e t of a l l na tura l numbers) , then

U/J (ft/i ) denote the norm of the r e s t r i c t i o n of / to the space

P X{TX) respec t ive ly , tha t i s the norms of the r e s t r i c t i o n s in
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(P X)* ((T X)*) , where P^tT^X) are provided with the norm from X .

Variants of the following definit ion were considered in [75] , [S] ,

CH, [2 ] , [ 6 ] .

DEFINITION 1. Let X be a Banach space with a Schauder basis

S = {a;j,»'li,} i ^ = 1#2 , . . . . We say tha t X i s uniformly asymptotically

smooth along the basis S(UASAS) i f for every e > 0 ,

6(e) = inf{l-o£±2|ln , f , g e 5* , n e N , Bf-grQ^ = o , \f-& > e}

i s pos i t ive . We wil l need the following elementary

PROPOSITION 1. Let X be a Banach space with a Schauder basis

S = {#7,.!^} j k = 1 ,2 , . . . . Then the following properties are

equivalent.

(i) X is UASAS.

(i i) For every e > 0 ,

61(e) = inf{max(B/-^nw , 1-D/J^) , f , g e B[ , n e N , IIf-gi > e}

i s positive.

( i i i ) J / / o r some fn,g e. X , {f } bounded and some k e N

lira 20/n02 + 2D^i2 - \fn+q\\ = 0

• n n

then
lim »/n-^B = 0 .
n

Proof. (i) =» ( i i ) . If X does not satisfy ( i i ) , then there is

e > 0 and sequence f , g e B. and k e N with

n n n n n

Denote then by h
n = fn ~ 9n restricted to Pfe X and le t

n
h = Pv h' e. X . Finally, l e t X = max (I a +h 1,1) and f = X f
n K n n sn n J n n n
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- 1 , , i 111 n ^ „ *
q< = X ( < ? + « ) . T h e n l i m t in II = 0 , l i m X = 1 , f , g ' £ B . ,n n n n n n n n n l

Of ' -g 'O 2: f- f o r n > nn and 11/'II, »• 1 , II / ' -g II v = 0 .
W W 2 U Yl K Yl Yl K

So, AT then i s not UASAS.

( i i ) =* ( i i i ) . I f ( i i i ) does not hold, then there are e > 0 , k e N

and fn , gn e X , C/n> bounded with ^ fn~gj * e ,

lim 211/ II2 + 20 ̂  H2 - 0 / +g »2 = 0 and lim 0 / -g 0 = 0 .
Yl Yl Yt Yl K. ft Yt K.n n

U s i n g t h e t r i a n g l e i n e q u a l i t y , we t h e n h a v e

2 0 / I I 2
 + 20 g I I 2 - lfn*gll = 2 0 / I I 2 + 20 a I I 2 - 1 1 / - + g I I 2

+ 2 ( 0 / H 2 - H / D,2 ) + 2 ( 0 , 7 0 2 - ( l a 0 2 )Jn Jn k K yn yn kn n

s <ll4ll*-°^llfc)2 + 2(l%l|2-"4flk)

n n n

n

Since {/ } i s bounded, suppose (without loss of generality) that

lim 0/^0 = 1.

Then we have subsequently:

B4"fe -*l ' lffnh * 1 ' ^J * 1 •
Jl K. Ft K. 71

n n
Thus, letting

we have

' e S i c / ' ' ^ - ^ ' S I f o r n>n0 ' lfn-3nlk

1 • Therefore (ii) does not hold for % .
2
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( i i i ) =» ( i ) . If X i s not UASAS, then there are e > 0 , fn ,
*

g e. B and k e N such t h a t

I f - o I , = 0 , D f • 0, -> 1 , 0 f -g 0 > e .
n n

Then obviously 1 > 0 / 0 > Of 0, = 0g> 0 < II g- II < 1 and therefore

2l l f II2 + 20 o II2 - 11/ +q II,2 = 2 l l f II2 + 2H<j II2 - 40 f II,2 •> 0 .

F u r t h e r m o r e , O f - o f l , = 0 , I f - q 1 S E . T h e r e f o r e ( i i i ) d o e s n o t h o l d .
n

To place the notion studied here into the (large) family of i t s

relatives, let us first recall a notion introduced by Huff in [9] and

proved to be useful in the fixed point theory in [5], where a w

modification of i t was formulated.

DEFINITION 2. (Huff) X is said to have uniformly W Kadec-Klee

property {UW KK) if for every e > 0 there exists a 6 > 0 such that if

{ 4 } c 5 1 ' n = 1 ' 2 ' - - - ' *fn~fm ~ E f O r n * m

and

* *
l i m f = f i n t h e W t o p o l o g y o f X ,

f
then

B/11 < 1 - 6 .

The following definition is related for example to [6], [2].

DEFINITION 3. Let X be a Banach space with a Schauder basis

5 = {xv-h-u) , k = 1,2,... . We shall say that X is uniformly smooth

along the basis S (USAS) if

' '«**» + ' V V - 2

whenever z e S, c X , t e if , I t I + 0 are such that for every n ,

max{supp z } < min{supp t } .

Furthermore, US wi l l denote a uniformly smooth space, tha t i s the space
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whose norm is uniformly Frechet differentiable on the unit sphere.

PROPOSITION 2. Let X be a Banaoh space with a Schauder basis

5 = ix*,h,} , k = 1,2,... . Then

(i) X is US => X is USAS => X is UASAS =» X* is UW*KK => the

norm and w convergence of sequences on the unit sphere of X coincide.

(ii) If X = a with its usual unit vector basis, then X is USAS

with 6 (e) = j .

( i i i ) If X - Si , p £ (1.,°°) with its usual unit vector basis, then

6 (e) = 1 - (l - ty) )^ , where q is a dual index to p , that is

Proof, (i) The f i rs t implication is obvious, the fourth can be found in

[9] , so i t remains to show that the second and third implications are true.

If X i s USAS, then for every e > 0 there exists a & > 0 such that if

x , t e X, x e Sji 11*11 ^ 6 and max{supp x} < min{supp t] , then

+ Wx-tW < 2 + ell til .

We show tha t X i s then UASAS.

Let K be the basis constant of S , that i s K = sup{HP II , n e N} .
* *

Then, g i v e n e > 0 and / , g e. B <= X and k e. N wi th 11/ II, -»• 1
n n 1 n n Kn

11/ -g II. -*• 0 , we show that s tar t ing with some n , 11/ -g II < 2e(l+JO .
Yl Yl K. U Yl Yl

To do so, choose a 6 > 0 from USAS as above in this proof. Furthermore

choose z e (P, X) n 5. such that f (x ) -*• 1 . Then max{supp z } < k
Yl K. X. Yl Tit Yl Yl

n
and g (z ) -»• 1 . Moreover, i f t e X , \\t II = S , min{supp t } > k ,

then by the property of 6 from USAS,

and therefore
for n > nQ . Thus

lim sup
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Since

lim sup lfn-9n
i
k = 0

we have

lim sup *fn-gj S lim sup Op* ( f ^ ) 0 + lim sup I (I-P* )

< X lim sup >/n-ffn'fc + d+X)lim sup »/„-

To show tha t the th i rd implication in (i) i s t r ue , suppose tha t X i s
* * *

UASAS but does not possess UW KK . The fact tha t X i s not UW KK

means tha t there i s an e > 0 such tha t for every n e N there i s a

sequence
{/£} , k = 1,2, . . . with I i j - / J l & e for k * I

a n d w i t h U * l i m / } = f 1 e x i s t i n g a n d 0 / " l l > i _ I . L e t &•• = &•, ( e ) ,
It n

1where 6.(e) i s as in Proposition 1 ( i i ) . Choose n > -r— , ne N and fix

i t . Moreover choose and fix an m e N so tha t II j II > 1 - •=— . Then i f

k i s large enough, we have from W lim f= 7 tha t

Then since n > -j— , by the def ini t ion of 6 we have

D/^-/"ll < e for k,i > kQ ; a contradict ion.

( i i ) Observe that i f X = cQ and 5 i s the usual uni t vector basis

in X and i f z,t e X, llzll = 1 , 0 til < 1 , max{supp z} < min{supp £} , then

Ds+tll + Iz-tO - 2 = 0 .

The evaluation of 6(e) for this case will follow from the proof of (iii).

(iii) First observe that

\

6(E) > 1 - ( l - | ^
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For otherwise we would have for some f,g e B , H/-£?H S e and / = g

1_

some P̂ X that 1 - II fi < 1 - [l-{j)q)q . This would mean thaton

and therefore

Then,

-n

1 1
9 , 9 + ( g l ^

I I
i - 1 1 / 1 1 £ ) < ? ) < ? = ( 2 ( l J

= 2q (1-11/11̂ ) < 2 9 . (|)? = e^ , a contradiction

1_

Therefore 6(e) a 1 - [l-(j)q)q .

1_

On the other hand, pu t t ing / = ( ( 1 - ( | ) ^ ) ^ , e ^ e ^ . . . , ) ,

g' = ((l-(j)q)q , - e 1 , - e 2 , . . . where e^ > 0 and \ z\ = (j)q , we have

11/11 = I?! = 1 , l / -^ = E , 11/111 = (l-(f)<7j<7 , 0 / -^ ! = 0 .

Therefore 6(e) < 1 - \J.-{j)qJq . The following remarks compared with [9]

are helpful in showing that none of the implications in Proposition 2 (i)

have their true converse.

REMARK 1. Consider X = R with i t s usual maximum norm and le t

5 = {x = (1,0,0) , x2 = (0,0,1) , X = (0,1,1)} . By an easy geometrical

argument i t follows that i f f% , f2 e X* , \f^ = H/2H = 1 with f± = f2
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on sp{x ,x } , then f = f . The same applies to spix } . From this

and a compactness argument it follows that X is UASAS with respect to the

basis S . However the norm of X is not different!able at x. + x^ with

respect to the direction x , so X is not USAS.

REMARK 2. I2 is UASAS with respect to the usual unit vector basis

but not UASAS with respect to the basis S = {(1,1),(1,0)} .

REMARK 3. A simple example of a 3-dimensional ball (a truncated

octahedron) shows that the space need not be UASAS if all of its basic

vectors (usual unit vectors here) are points of Frechet smoothness.

REMARK 4. If X = R3 with its usual maximum norm, then X is UASAS

with respect to the basis S = {(1,0,0), (1,0,1), (0,1,0)} and (1,0,1)

is not a point of smoothness of the norm.

We will finish by showing some of the applications of the notion of

UASAS.

*

First, let us mention that the notion of UW KK has already been used

by D. van Dulst and B. Sims in [5] in the fixed theory of nonexpansive

mappings. Namely they proved a result which has the following Corollary

(for terminology see [5]).

PROPOSITION 3. (D. van Dulst and B. Sims). If X is UW*KK , then

Chebyehev centres with respect to w -compact convex sets are nonempty

compact and convex.

We will now discuss estimations on the speed of convergence of
* *

expansions of elements of X along the dual basis S for a UASAS space

X , in terms of its modulus. The first part of Proposition 4 gives (via

Bishop-Phelps theorem) a qualitative form to a well-known fact that a

monotone basis S of a space X (that is, all HP̂ D < 1) for which the
* *

norm and W convergence of sequences on the unit sphere of X coincide,
* *

is necessarily shrinking, that is S is the basis of X . The second

part concerns a version of a Kadec result that for an unconditionally

convergent series I 2. in a uniformly convex space X , 7 6(3.) < <° ,

where 6 denotes the modulus of convexity of X ([//], [2], [6], 1161).

PROPOSITION 4. Let S be a monotone Schauder basis in an UASAS space

X . Then

https://doi.org/10.1017/S0004972700004032 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700004032


466 T. Lewis, J . Whi t f ie ld and V. Z i z l e r

(i) If f e Sy <= x attains its norm at z e. S c X , then for

every n e N ,

(where I' = I - P' ) .

(ii) If f e S* t X* , then

(where Dn = T?n^-l?n ) .

Proof. The proof of (i) i s similar to tha t of M.I. Kadec for the main

Theorem in [77] and the proof of ( i i ) i s an adjustment of the proof of

T. F i g i e l [6] or G. P i s i e r ( [76] , Proposition 2 .1 ) .

(i) Given such an f e £ c X , z e S, c X and n e. N, observe that

the elements / and / - T f = Pnf both l i e in the un i t b a l l S 1 c X ,

are equal on P X and their distance is "^Z" • Furthermore observe that

because of the monotonicity of S ,

(P X) n B1 = Pn(XnB1) .

T h u s we h a v e

l / l n = s u P { | / ( y ) | , ye {PnX)nBx = s u p { | f ( P ^ ) | , yeBj

= IIP*/H > (P*/)2 =. (f-T*nf)z = 1 - f{Tnz) > 1 - l\Tnz\\ .

Hence by definition of 6(e) ,

6(ii:r*/ii) < II r zii .

For the proof of (ii) we will need the following variant of the result of
Figiel ([6]).

LEMMA 1. If X is an UASAS space with respect to a monotone basis S
and 6(e) is as in Definition 1 , then

is a nondecreasing function on e e (0,2] .

Proof. The proof i s similar to that given for Figiel ' s result in
[74], p.66. Let f , g.eB^ be such that for some Me N and e > 0
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= 0
n ' ~

Let n e (0,e) .

Denote by d = Pnf = Png . Observe that Ml < 1 (use UASAS of X ) .

First suppose that d ̂  0 . Then consider the halfline Od originating at

the origin 0 . Let e be the intersection of Od with the unit sphere
* *

Si c X . Now choose on the halflines fa and go points /' and g'

respectively so that f'g' is parallel to fg and ^f'-g'^ = 1 .

Suppose that d does not lie on the line fg . Then consider the

plane p which passes through f'g' and is parallel to the plane going

through / , g and d . Let d' be the intersection of p and Oe .

Then f'd' is parallel to fd and g'd' is parallel to gd . Since

Pnif-g) = 0 , this means that P^ (f'-g') = 0 and therefore

V ' = Pnd< = d' •

Similarly P g' = d' .

Using similar triangles and monotonicity of the basis S we have

1 _ Il£±2j|n l - ||p*f|| l _ ||p*f! -3-
2 Yl . 71 CIO

e .11/-? II

There is no difficulty in adapting the arguments above to the case

where d = 0 (take an arbitrary a e P X c S.) or where d lies on the

line fg (the picture then becomes two dimensional).

Taking infimum over all f , g and n as above in the formula on the

left hand side of the series of inequalities, we get that

6(e) s 6(n)
e n

Having Lemma 1 proved we can finish the proof of Proposition 6 (ii) by
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following that of Figiel ([6]) or Pis ier ([76], proof of Proposition 2.1):

* *
Fix an f £ S c- X . Notice that from the monotonicity of the basis

S we have that for every n e N, 1 > IIP fll > Ip /ll . since

V Pn+lf * *
—r and —T both l i e in the uni t ba l l S c X and are equal on
IIP n/U HP ,/«

n+lJ n+lJ

P X , we have by def ini t ion of 6(e) , by the monotonicity of basis and by

the monotonicity of tha t

6(»Z?*/0) OD*/II P* f + p*f P*fpf
£-11 =nUP* /ll IIP* fll 2 Up* fll "" IIP" ,/S

n+i n+i n+1 n+1

Multiplying, we get

^ Mln*-fll ^ < Bt , _ n i

n+lJ n

and finally, summing,

HP* n/1l - HP*fll ,
n+lJ nJ
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