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Abstract

Several information measures have been proposed and studied in the literature. One such
measure is extropy, a complementary dual function of entropy. Its meaning and related
aging notions have not yet been studied in great detail. In this paper, we first illustrate
that extropy information ranks the uniformity of a wide array of absolutely continuous
families. We then discuss several theoretical merits of extropy. We also provide a closed-
form expression of it for finite mixture distributions. Finally, the dynamic versions of
extropy are also discussed, specifically the residual extropy and past extropy measures.
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1. Introduction

The entropy measure of a probability distribution, as introduced in the pioneering work
of Shannon [25], has found key applications in numerous fields. In information theory, it
is used as a measure of uncertainty associated with a random phenomenon. If X is an
unknown but observable quantity with a finite discrete range of possible values {x1, . . . , xn}
with an associated probability mass function vector pn = (p1, . . . , pn), where pi = P(X = xi),
i = 1, . . . , n, such that

∑n
i=1 pi = 1, the Shannon entropy measure, denoted by H(X) = H(pn),

equals −∑n
i=1 pi log pi, where log (·) denotes the natural logarithm. As mentioned in [17], this

measure has a complementary dual, termed extropy, which is also a very useful notion. The
extropy measure, denoted by J(X) = J(pn), is defined as −∑n

i=1 (1 − pi) log (1 − pi) in the
discrete case. Just as for entropy, extropy can also be interpreted as a measure of the amount of
uncertainty associated with the distribution of X. It can be seen that the entropy and extropy of
a binary distribution are identical, but, for n ≥ 3, the entropy is greater than the extropy; see,
e.g., [17]. As with entropy, the maximum extropy distribution is also the uniform distribution,
and both measures are invariant with respect to permutations of their mass functions, while
they behave quite differently in their assessments of the refinement of a distribution.
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If X is an absolutely continuous non-negative random variable having probability density
function (PDF) f (x) with support S , the Shannon differential entropy is then defined as

H(X) = H(f ) = −
∫
S

f (x) log f (x) dx, (1.1)

provided the integral is finite with mean valueμ=E[X] and variance σ 2(X) = Var(X) =E[X −
μ]2. It is known that σ 2(X)<∞ implies that E(|X|)<∞, so H(X)<∞, but the converse is not
true. Also, H(X) can be finite when E(|X|) is not (e.g. the Cauchy distribution). It is important
to mention that information-theoretic methodologies are useful in many problems and so have
received considerable attention in the literature; see, for example, [6, 8, 9, 14, 26, 29] and the
references therein.

Shannon motivated the measure in (1.1) by arguing that refining the categories for a discrete
quantity X, with diminishing probabilities in each, yields this analogous definition in the limit.
This motivated [17] to introduce the dual notion of extropy for a continuous random variable.
As pointed out in [17], for large n the extropy measure can be approximated by

J(pn) ≈ 1 − �x

2

n∑
i=1

f 2(xi)�x,

where �x = (xn − x1)/(n − 1) for any specific n. Thus, the measure of differential extropy for
a continuous PDF can be well defined, via the limit of J(pn) as n increases, in the following
form:

J(X) = J(f ) = lim
�x→0

[J(pn) − 1]

�x
= −1

2

∫
S

f 2(x) dx. (1.2)

Another useful expression of it can be given in terms of the hazard rate and reversed hazard
rate functions. For an absolutely continuous non-negative random variable X with survival
function F(x) = 1 − F(x), and hazard rate and reversed hazard rate functions λ(x) = f (x)/F(x)
and τ (x) = f (x)/F(x), respectively, the extropy can be expressed as

J(f ) = −1

4
E12[λ(X)] = −1

4
E22[τ (X)], (1.3)

where E12 and E22 denote expectations with respect to the PDFs

f12(x) = 2f (x)F(x), x> 0, (1.4)

f22(x) = 2f (x)F(x), x> 0, (1.5)

respectively. The densities in (1.4) and (1.5) are in fact the densities of minima and maxima of
two independent and identically distributed (i.i.d.) random variables [1]. Several properties and
statistical applications of the extropy in (1.2) were discussed in [17]. Moreover, [28] studied
relations between extropy and variational distance, and determined the distribution that attains
the minimum or maximum extropy among all distributions within a given variation distance
from any given probability distribution. Qiu and Jia in [22] explored the residual extropy prop-
erties of order statistics and record values, while [21] proposed two estimators of extropy and
used them to develop goodness-of-fit tests for the standard uniform distribution. In the present
work, we carry out a detailed study of extropy and its various properties, including its dynamic
versions.
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The rest of this paper is organized as follows. In Section 2 we describe some preliminary
details on information divergence, and equilibrium and weighted distribution, and also men-
tion some well-known distributional orders that are most pertinent for all the results developed
here. In Section 3, some differences and similarities between entropy, extropy, and variance
are pointed out, and they are then applied to a wide family of distributions. In Section 4, char-
acterizations based on maximum extropy and minimum relative extropy criteria for probability
models based on moment constraints are presented. In Section 5, monotonicity properties of
the dynamic residual and past extropies are established. Finally, some concluding remarks are
provided in Section 6.

2. Preliminaries

We briefly describe here information divergence, and equilibrium and weighted distribu-
tions, and then mention some well-known distributional orders that are essential for all the
subsequent developments. Throughout, X and Y will denote non-negative random variables
with absolutely continuous cumulative distribution functions (CDFs) F(x) and G(x), survival
functions F(x) = 1 − F(x) and G(x) = 1 − G(x), and PDFs f (x) and g(x), respectively. When
the considered random variables are not non-negative, it will be mentioned explicitly.

2.1. Information divergence

The Kullback–Leibler (KL) discrimination information between two densities f and g is
defined as

K(f : g) = d(f ||g) =
∫
S

log
f (x)

g(x)
dF(x) ≥ 0, (2.1)

provided the integral is finite, and it requires f to be absolutely continuous with respect to g.
This condition is necessary, but not sufficient, for the finiteness of (2.1). The equality holds in
(2.1) if and only if f (x) = g(x) almost everywhere. The KL discrimination information between
any distribution with a PDF f and the uniform PDF f � on a common bounded support S is given
by [8]

d(f ||f �) = H(f �) − H(f ) ≥ 0, (2.2)

where H(f �) = log ‖S‖, with ‖S‖ denoting the size of the support ‖S‖. We recall that X is
smaller than Y in the entropy order (denoted by X ≤e Y) if and only if H(X) ≤ H(Y). From
(2.2), for two distributions with PDFs f and g on a common bounded ‖S‖, X ≤e Y if and only
if d(f ||f �) ≥ d(g||f �). The case of unbounded ‖S‖ can be interpreted similarly in terms of (2.2).

A natural problem of interest is to determine a distribution, within a class of probability
distributions �= {f }, that minimizes d(f ||g) for a given g, referred to as the reference dis-
tribution. The classical minimum discrimination information (MDI) formulation is defined in
terms of moment constraints: �=�θ , defined by all distributions with Ef [Tj(X)] = θj <∞,
j = 1, . . . , J, where θj is a constant and Tj(x) is a measurable statistic. For this problem, the
MDI theorem [16] gives the form of the MDI PDF f �(x) ∈�θ , a formula for the MDI function
d(f ||g), and a formula for the recovery of moment constraint parameters. With a single moment
constraint, for example, the MDI theorem concerning minf d(f ||g) subject to Ef [T(X)] = θ ,∫∞

0 f (x) dx = 1, gives the solution as f �(x) = g(x)CλeτT(x), where τ > 0 is the Lagrange multi-
plier and Cλ is a normalizing constant. For further applications of the MDI model, see [4, 5]
and the references therein.
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2.2. Equilibrium distribution

Recall that the limiting distribution of the excess time (or the forward recurrence time)
in a renewal process (or in shock models) results in the so-called equilibrium distribution.
Let {Xn}n∈N be a sequence of independent non-negative random variables representing inter-
arrival times between shocks. Further, suppose these random variables have an identical
CDF F(t), with finite mean μ. Also, let X1 have a possibly different CDF F1(t), with finite
mean μ1 =E[X1]. Both distribution functions F1(t) and F(t) are non-degenerate at t = 0, i.e.
F1(0) = F(0) = 0. For Sn =∑n

i=1 Xi, n ∈N, with S0 ≡ 0, let N(t) = max{n : Sn ≤ t} represent
the number of renewals during (0, t]. Let γ (t) be the excess time in a stochastic process or
residual lifetime at time t, i.e. γ (t) = SN(t)+1 − t. From the elementary renewal theorem, the
distribution of the equilibrium random variable X̃e is known to be

F̃e(x) = lim
t→∞ P[γ (t) ≤ x] = 1

μ

∫ x

0
F(u) du, x> 0,

and the corresponding PDF is f̃e(x) = F(x)/μ, x> 0 [19]. The equilibrium distribution is the
asymptotic distribution of the time since the last renewal at time t and the waiting time until
the next renewal.

Weighted distributions have found many applications; see, for example, [20] and the
references therein. For a variable X with PDF f and a non-negative real function w, let

f w(x) = w(x)f (x)

E[w(X)]
, x> 0,

be the PDF of the associated weighted random variable Xw, provided E[w(X)] is positive and
finite. Note that the equilibrium random variable Xe is a weighted random variable obtained
from X with w(x) = 1/λ(x), where λ is the failure rate function of X.

2.3. Stochastic orders

Aging notions and stochastic orders, as discussed in [24], have found several important
uses in many disciplines. We mention below some key aging concepts and stochastic orders,
which are most pertinent for the developments here. Throughout, the terms ‘increasing’ and
‘decreasing’ are used in a non-strict sense.

Let X have the hazard rate and reversed hazard rate functions λX(x) = f (x)/F(x) and
τX(x) = f (x)/F(x), respectively. Similarly, let Y have the hazard rate and reversed hazard rate
functions λY (x) = g(x)/G(x) and τY (x) = g(x)/G(x), respectively. Then, in the present work,
we use the following notions: the decreasing reversed failure rate (DRFR) property; the
increasing/decreasing failure rate (IFR/DFR) properties; the usual stochastic order (denoted
by X ≤st Y); hazard rate order (denoted by X ≤hr Y); dispersive order (denoted by X ≤d Y);
convex order (denoted by X ≤cx Y). For their informal definitions and properties, we refer the
readers to [24]. In Table 1, we present the implications of these orders in terms of random
variables X and Y .

3. Results on extropy

Differential entropy is a measure of the disparity of the PDF f (x) from the uniform dis-
tribution. Indeed, it measures uncertainty in the sense of the utility of using f (x) in place of
the ultimate uncertainty of the uniform distribution [10]. Variance measures the average of
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TABLE 1. Distributional orders and their implications.

Distributional order Notation Implications [condition]

Stochastic order X ≤st Y X ≤e Y [if Y is DFR]
Dispersive order X ≤d Y X ≤e Y and X ≤st Y
Convex order X ≤cx Y X ≤e Y [if g is log-concave]
Hazard rate order X ≤hr Y X ≤st Y

X ≤d Y [if X or Y is DFR].

distances of outcomes of a probability distribution from its mean. Because extropy is a com-
plementary dual of entropy, it is also a measure of the disparity of the PDF f (x) from the
uniform distribution. Even though entropy, extropy, and variance are all measures of disper-
sion and uncertainty, the lack of a simple relationship between orderings of a distribution by
the three measures arises from some substantial and subtle differences. For example, the dif-
ferential entropy of random variable X takes values in [−∞,∞], while extropy takes values in
[−∞, 0). Moreover, J(f )<H(f ) due to the fact that 2x log x< x2 for all x> 0.

In terms of mathematical properties, both entropy and extropy are non-negative in the
discrete case. Moreover, in this case, H(p) and J(p) are invariant under one-to-one transfor-
mations of X. In the continuous case, neither the entropy nor the extropy is invariant under
one-to-one transformations of X. Let φ(·) : R �→R be a one-to-one function and Y = φ(X). It
is known that H(Y) = H(X) −E[log Jφ(Y)] [8], where Jφ(Y) = |dφ−1(Y)/dY| is the Jacobian
of the transformation. As fY (y) = fX(φ−1(y))|1/(φ′(φ−1(y)))|, we readily find that

J(Y) = −1

2

∫ ∞

0
f 2
Y (y) dy = −1

2

∫ ∞

0
f 2
X (φ−1(y))

[
1

φ′(φ−1(y))

]2

dy

= −1

2

∫ ∞

0

f 2
X (u)

φ′(u)
du

= J(X) − 1

2
E

[(
1

φ′(X)
− 1

)
f (X)

]
.

However, there is no such direct relationship with the standard deviation. Furthermore, for any
a> 0 and b ∈R,

H(aX + b) = H(X) + log a,

σ (aX + b) = aσ (X),

J(aX + b) = 1

a
J(X),

which means that they are all position-free but scale-dependent. The following theorem extends
the impact of scale on the extropy of a random variable to more general transformations. This
result is similar to [7, Theorem 1] for the differential entropy and variance, and we therefore
do not present its proof. First, we recall that X is smaller than Y in the extropy order (denoted
by X ≤ex Y) if and only if J(X) ≤ J(Y).
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Theorem 3.1. Let X be a random variable with PDF f(x), and Y = φ(X), where φ : (0,∞) →
(0,∞) is a function with a continuous derivative φ′(x) in the support of X such that E(Y2)<∞.
If |φ′(x)| ≥ 1 for all x in the support of X, then X ≤ex Y.

It is known that the Shannon entropy of the sum of two independent random variables is
larger than both their individual entropies. In a similar manner, the following theorem presents
the corresponding result for extropy.

Theorem 3.2. If X and Y are two absolutely continuous independent random variables, then
J(X + Y) ≥ max{J(X), J(Y)}.

Proof. Let X and Y be two absolutely continuous independent random variables with CDFs
F and G, and PDFs f and g, respectively. Then, using the convolution formula and setting
Z = X + Y , we immediately obtain

fZ(z) =
∫ ∞

−∞
g(y)f (z − y) dy =EY [f (z − Y)], z ∈R.

Now, applying Jensen’s inequality for the convex function x2 to this result, we get (EY [f (z −
Y)])2 ≤EY [f 2(z − Y)], z ∈R. Then, by integrating both sides of this inequality with respect to
z from −∞ to ∞, we obtain

J(X + Y) ≥ −1

2

∫ ∞

−∞

∫ ∞

−∞
g(y)f 2(z − y) dy dz

= −1

2

∫ ∞

−∞

∫ ∞

−∞
g(y)f 2(u) du dy (letting u = z − y)

= J(X).

The proof is completed by using similar arguments for the random variable Y . �

We recall that the two-dimensional version of the Shannon differential entropy in (1.1)
is H(X, Y) = −E[log f (X, Y)]. If X and Y are independent, then it is evident that H(X, Y) =
H(X) + H(Y). However, extropy has a distinctly different property in this regard. Indeed, defin-
ing the two-dimensional version of the differential extropy in (1.2) as J(X, Y) = − 1

2E[f (X, Y)],
if X and Y are independent, then J(X, Y) = −2J(X)J(Y).

In analogy to (2.1), the relative extropy in a density f (·) relative to g(·) is defined as [17]

dc(f ||g) = 1

2

∫
S

[f (x) − g(x)]2 dx ≥ 0,

provided the integral is finite. The equality holds if and only if f (x) = g(x) almost everywhere.
The relative extropy can then be represented as

dc(f ||g) = 2J(f , g) − J(f ) − J(g), (3.1)

where J(f , g) = − 1
2E[f (Y)] = − 1

2E[g(X)] is the inaccuracy measure of f with respect to
g or vice versa. As pointed out in [17], the relative extropy between any distribution
with a PDF f and the uniform PDF f � on a common bounded support S is given by
dc(f ||f �) = J(f �) − J(f ) ≥ 0, where J(f �) = −1/(2‖S‖). So, by this result, for two distribu-
tions with PDFs f and g on a common bounded ‖S‖, we have X ≤ex Y if and only if
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dc(f ||f �) ≥ dc(g||f �). The case of unbounded ‖S‖ can be interpreted in a similar manner. We
now present some implications of the stochastic and convex orderings for two distributions by
means of extropy.

Theorem 3.3. Let X and Y be two non-negative random variables with PDFs f(x) and g(x),
respectively. If X ≤st Y and Y is DFR, then X ≤ex Y.

Proof. Let Y be DFR with X ≤st Y . Thus, we have∫ ∞

0
g2(x) dx ≤

∫ ∞

0
f (x)g(x) dx ≤

( ∫ ∞

0
g2(x) dx

) 1
2
( ∫ ∞

0
f 2(x) dx

) 1
2

. (3.2)

The first inequality in (3.2) is obtained by noting that X ≤st Y implies EX[g(X)]>EY [g(Y)] as
g is a decreasing function because Y is DFR. The second inequality is obtained by using the
Cauchy–Schwarz inequality. Making use of (1.2) and (3.2), we obtain the required result. �

The following theorem gives implications of the convex order under some condition for the
same ordering of the two models by extropy.

Theorem 3.4. Under the conditions of Theorem 3.3, if X ≤cx Y and g(x) is a concave function,
then X ≤ex Y.

Proof. From the non-negativity of relative extropy in (3.1), we get

J(f ) + J(g) ≤ 2J(f , g). (3.3)

Let g(x) be a concave function, so −g(x) is a convex function. By applying the definition of
convex order, the assumption X ≤cx Y implies that

2J(f , g) = −
∫ ∞

0
f (x)g(x) dx ≤ −

∫ ∞

0
g2(x) dx = 2J(g). (3.4)

Then, from (3.4) and (3.3), the desired result follows. �

For convenience, we present in Table 2 the expressions for extropy, entropy, and standard
deviation of some common distributions.

3.1. Extropy of finite mixture distributions

The entropy of mixture distributions has been studied by many authors, including
[12, 23, 27]. Here, we derive a closed-form expression for the extropy of finite mixture dis-
tributions. Let Xi, i = 1, . . . , n, be a collection of n absolutely continuous independent random
variables. Further, let fi(·) be the PDF of Xi and P = (p1, . . . , pn) be the mixing probabilities.
Then, the PDF of a finite mixture random variable Xp is given by

fp(x) =
n∑

i=1

pifi(x), x ∈R, (3.5)

where
∑n

i=1 pi = 1, pi ≥ 0. Using the algebraic identity(
n∑

i=1

ai

)2

=
n∑

i=1

a2
i + 2

∑∑
i<j

aiaj,
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TABLE 2. Extropy, entropy, and standard deviation of some common distributions.

Family and PDF
J(X) σ (X) H(X)

Normal(α, β) f (x) = 1/(β
√

2π ) exp{−(1/(2β2))(x − α)2} x ∈R, β > 0, α ∈R

− 1

4β
√
π

β log β + 1
2 log (2πe)

Gumbel(α, β) f (x) = (1/β) exp {−(x − α)/β − exp {−(x − α)/β}} x ∈R, β > 0, α ∈R

− 1

8β

πβ√
6

log β + 1 + γ †

Laplace(α, β) f (x) = (1/2β) exp{−(|x − α|)/β} x ∈R, β > 0, α ∈R

− 1

8β

√
2β log β + log (2e)

Uniform(α, β) f (x) = 1/(β − α) α < x<β

− 1

2(β − α)

β − α√
12

log (β − α)

Gamma(α, β) f (x) = 1/(β�(α))(x/β)α−1e−x/β x ≥ 0, α > 0, β > 0

− �
(
α − 1

2

)
4β

√
π�(α)

, α > 1
2 β

√
α log β + log �(α) + (1 − α)ψ(α) + α

Weibull(α, β) f (x) = (α/β)(x/β)α−1e−(x/β)α x ≥ 0, α > 0, β > 0

−α21/α�(2 − (1/α))

8β
, α > 1

2 β
√
�(1 + 2/α) − �2(1 + 1/α) log (β/α) + ((α− 1)γ )/α + 1†
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TABLE 2. Continued.

Family and PDF
J(X) σ (X) H(X)

Beta(α, β) f (x) = (1/B(α, β))xα−1(1 − x)β−1 0 ≤ x ≤ 1, α > 0, β > 0

−B(2α − 1, 2β − 1)

2B2(α, β)
, α, β > 1

2

√
αβ

(α+ β + 1)(α+ β)2
log B(α, β) − (α− 1)ϕ1(α) − (β − 1)ϕ2(β)∗

Generalized Pareto(α, β) f (x) = (1/β)(1 + (αx/β))−(1/α)−1 x ≥ 0 if α > 0; x + (β/α) ≤ 0 if α ≤ 0

−1 − β2/α(α + β)−(2/α)−1

2(α + 2)

β

(1 − α)
√

1 − 2α
, α < 1

2 log β + α + 1

†γ = 0.5773 . . .
∗ϕ1(α) =ψ(α) −ψ(α + β), ϕ2(β) =ψ(β) −ψ(α+ β)
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from (1.2) and (3.5) we readily get

J(fp) =
n∑

i=1

p2
i J(fi) + 2

∑∑
i<j

pipjJ(fi, fj), (3.6)

where J(fi, fj) = − 1
2E[fi(Xj)] is the inaccuracy measure of fi with respect to fj. It is evident that

the expression in (3.6) is easy to compute, but there is no such expression for the entropy. Thus,
this seems to be one advantage of extropy over entropy. We now present the following example
as an illustration of the above result.

Example 3.1. Let fm = 0.5[N(μ, σ 2) + N(−μ, σ 2)] denote a mixed Gaussian distribution. It
is clear that this distribution is obtained by just splitting a Gaussian distribution N(0, σ 2) into
two parts, centering one half about +μ and the other half about −μ, and consequently has a
mean of zero and variance σ 2

m = σ 2 +μ2. In this case, [18] provided an analytical expression
for signal entropy in situations when the corrupting noise source is mixed Gaussian, since a
mixed Gaussian distribution is often considered as a noise model in many signal processing
applications. From (3.6), J(fm) = 0.25{J(f1) + J(f2)} + 0.5J(f1, f2), and in this case it can be
shown that

J(f1) = J(f2) = − 1

4
√
πσ 2

, J(f1, f2) = − 1

4
√
πσ 2

e−μ2/σ 2
.

Thus, we obtain

J(fm) = − 1

8
√
πσ 2

{
1 + e−μ2/σ 2}

,

which can be seen as an increasing function of σ 2. Figure 1 shows J(fm) as a function of σ 2

with respect to various values of μ. The plots show that J(fm) is increasing with respect to both
σ 2 and μ.

4. Characterizations based on maximum extropy

The maximum entropy (ME) principle is an extension of Laplace’s principle of insuffi-
cient reason for assigning probabilities. Both principles stipulate distributing the probability
uniformly when the only available information is the support of the distribution S . When addi-
tional information is available, the ME principle stipulates distributing the probability close to
the uniform distribution while preserving the relevant information. In a similar vein, the max-
imum extropy (MEX) can be regarded as an extension of Laplace’s principle of insufficient
reason for assigning probabilities. Let us consider the moment class of distributions

�θ = {f : E[Tj(X)] = θj <∞, j = 0, 1, . . . , J}, (4.1)

where the Tj(x) are integrable with respect to f and T0(x) = θ0 = 1 is the normalizing factor.
Then, the objective is to find f � that maximizes J(f ) subject to a set of moment constraints
defined in (4.1).

Theorem 4.1. Let�θ be as defined in (4.1), with Tj(x), j = 1, . . . , J, being integrable functions
with respect to f and T0(x) = θ0 = 1 being the normalizing factor. Then, MEX is attained by the
distribution with PDF
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FIGURE 1. The extropy of mixture distribution J(fm) as a function of σ 2 given in Example 3.1.

f �(x) = arg max
f ∈�θ

J(f ) =
J∑

j=0

λjTj(x), (4.2)

where (λ0, λ1, . . . , λJ) are Lagrange multipliers such that λ0 = 0 when S is unbounded.

Proof. The aim is to maximize J(f ) = − 1
2

∫∞
0 f 2(x) dx subject to the constraints∫

S Tj(x)f (x) dx = θj, j = 0, 1, . . . , J, where S may be bounded or unbounded, the Tj(x) are
integrable with respect to g, and T0(x) = θ0 = 1 is the normalizing factor. The requirement is
then equivalent to maximizing∫

S

⎛⎝−1

2
f 2(x) + λ0f (x) +

J∑
j=1

λjTj(x)f (x)

⎞⎠ dx,

where (λ0, λ1, . . . , λJ) are Lagrange multipliers such that λ0 = 0 when S is unbounded. The
Lagrangian is similar to the ME problem in terms of f , so taking derivatives gives the solution
as in (4.2) [13]. Because the function − 1

2 x2, x> 0, is concave, the solution is unique. �

Theorem 4.1 readily provides the following characterizations of some well-known distribu-
tions.

Corollary 4.1.

(i) The uniform distribution in [0, 1] is the MEX model in the class of distributions with no
constraint.

(ii) A distribution with PDF f (x) = 2(2 − 3θ ) + 6(2θ − 1)x, 0< x< 1, is the MEX model in
the class of distributions with finite expectation, E(X) = θ .
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(iii) The exponential distribution with PDF f (x) = λe−λx, x ≥ 0, is the MEX model in the
class of distributions with finite moment E(e−λX) = 1.

(iv) The Weibull distribution with PDF f (x) = αλxα−1e−λxα , x ≥ 0, α > 0, is the MEX model
in the class of distributions with finite moment E(e−λXα ) = 1.

(v) A distribution with PDF f (x) = e−x(3 − 2x), x> 0, is the MEX model in the class of
distributions with finite moments E(e−X) =E(Xe−X) = 1.

Corollary 4.1 leads us to derive the equilibrium distribution model as a MEX model as
follows.

Theorem 4.2. The solution to the constrained maximization problem

max
f

J(f ) subject to E[F(X)] = 1,
∫ ∞

0
f (x) dx = 1 (4.3)

is the equilibrium distribution of the renewal time with PDF f �(x) = f̃e(x), x> 0.

Proof. For an unbounded random variable, Theorem 4.1 gives the solution to (4.3) as f �(x) =
λ1F(x), where λ−1

1 = ∫∞
0 F(x) dx =μ. Thus, f �(x) is the PDF of the equilibrium distribution

for the renewal time. �

Let us assume that ψ(x) is an increasing differentiable function with ψ ′(x) = φ(x) ≥ 0.
Denote by X̃φ the weighted version of X̃e with PDF

f̃φ(x) = φ(x)F(x)

E[ψ(X)]
(4.4)

for x> 0, where E[ψ(X)] = ∫
S φ(x)F(x) dx, provided it exists. The following theorem then

generalizes Theorem 4.2.

Theorem 4.3. The solution to the constrained maximization problem

max
f

J(f ) subject to E[φ(X)F(X)] = θφ,

∫
S

f (x) dx = 1

is the weighted version of X̃φ with PDF f �(x) = f̃φ(x), x ∈ S , in (4.4).

Proof. The proof is similar to that of Theorem 4.2 and is therefore omitted for the sake of
brevity. �

Note that when φ(x) ≡ 1, Theorem 4.3 reduces to Theorem 4.2. Moreover, the PDF f �(x) =
2xF(X)/E[X2], x ∈ S , is the MEX model in the class of distributions with φ(x) = x.

In an analogous manner, we can consider the minimum relative extropy (MREX). In this
case, we seek the distribution in a class of probability distributions �= {f } that minimizes
dc(f ||g) for a given g, called the reference distribution, in terms of moment constraints. In this
regard, we have the following theorem.

Theorem 4.4. Let �θ be as defined in (4.1), with Tj(x), j = 1, 2, . . . , J, being integrable func-
tions with respect to f and T0(x) = θ0 = 1 being the normalizing factor. Then, MEX is attained
by the distribution with PDF
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f �(x) = arg min
f ∈�θ

dc(f ||g) = g(x) −
J∑

j=0

λjTj(x), (4.5)

where (λ0, λ1, . . . , λJ) are Lagrangian multipliers such that λ0 = 0 when S is unbounded.

Proof. The aim is to minimize dc(f ||g) = 1
2

∫
S [f (x) − g(x)]2 dx subject to the constraints∫

S Tj(x)f (x) dx = θj, j = 0, 1, . . . , J, where S may be bounded or unbounded, the Tj(x) are
integrable with respect to g, and T0(x) = θ0 = 1 is the normalizing factor. The requirement is
then equivalent to minimizing

∫
S ψ(x) dx, where

ψ(x) = 1

2
f 2(x) + 1

2
g2(x) − f (x)g(x) + λ0f (x) +

J∑
j=1

λjTj(x)f (x),

such that (λ0, λ1, . . . , λJ) are Lagrangian multipliers and λ0 = 0 when S is unbounded. The
Lagrangian is similar to the MEX problem in terms of f , so taking the derivatives gives the
solution as in (4.5). Because the function 1

2 x2, x> 0, is convex, the solution is unique. �

5. Results on residual and past extropy

Let X be a non-negative random variable representing the lifetime of a unit, and let t ≥ 0
denote its current age. Then, our interest now is the residual lifetime St = {x : x> t}. At age
t, the PDF of the residual lifetime, Xt = [X − t | X ≥ t], is f (x; t) = f (x)/F(t), x ≥ t> 0. In this
situation, the residual extropy is given by [21]

J(X; t) = −1

2

∫
St

f 2(x; t) dx = −1

2

∫ ∞

t

[
f (x)

F(t)

]2

dx = −1

2
Et[f (X; t)], (5.1)

where Et is the expectation with respect to the residual density f (x; t). The residual extropy
takes values in [−∞, 0) and it identifies with the extropy of [X | X > t]. Another useful
expression can be given as

J(X; t) = −1

4
E12,t[λ(X)], (5.2)

where E12,t is the expectation with respect to the residual density of f12(x) as defined in (1.4).
The question of whether J(X; t) characterizes the lifetime distribution is answered partially

in the following theorem.

Theorem 5.1. Let X be a non-negative random variable with CDF F which is differentiable
and has a continuous PDF f over St. If f(x) is strictly decreasing over St, then J(X; t) uniquely
determines F.

Proof. As f (x) is strictly decreasing over St, we obtain

Et[f (X; t)]<λX(t). (5.3)

Now, let us consider two random variables X and Y and suppose that J(X; t) = J(Y; t), i.e.∫ ∞

t

[
f (x)

F(t)

]2

dx =
∫ ∞

t

[
g(x)

G(t)

]2

dx for all t ∈ St.
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Taking derivatives on both sides with respect to t we get

λ2
X(t) − 2λX(t)Et[f (X; t)] = λ2

Y (t) − 2λY (t)Et[g(Y; t)].

Now, suppose there exists a t� ∈ St such that λY (t�) �= λX(t�). Rearranging the terms and letting
Et�[f (X; t�)] =Et�[g(Y; t�)], we obtain

λ2
Y (t�) − λ2

X(t�) = 2[λY (t) − λX(t�)]Et[f (X; t�)] for all t� ∈ St,

or equivalently

λY (t�) + λX(t�) = 2Et[f (X; t�)] for all t� ∈ St. (5.4)

Without loss of generality, let λY (t�)>λX(t�). Then, using (5.4), we obtain Et�[ft�(X)]>
λX(t�), which is a contradiction to the condition in (5.3). For the case when λY (t�)<λX(t�),
the contradiction is obtained in terms of Et�[gt�(Y)]>λY (t�), which completes the proof of the
theorem. �

It is important to mention that the above theorem is applicable to a large class of distribu-
tions that include monotone densities [4]. The following theorem relates the dynamic extropy
and hazard rate orderings.

Theorem 5.2. Let X and Y be two non-negative continuous random variables having CDFs F
and G, PDFs f and g, and hazard rate functions λX and λY , respectively. If X ≤hr Y and either
X or Y is DFR, then J(X; t) ≤ J(Y; t).

Proof. Let Xt and Yt denote the residual lifetime variables with densities ft and gt, respec-
tively. The condition X ≤hr Y implies that X12,t ≤ Y12,t in the usual stochastic order, where X12

and Y12 have survival functions F
2
(x) and G

2
(x), respectively. If we assume that X is DFR, then

E12,t[λX(X)] ≥E12,t[λX(Y)] ≥E12,t[λY (Y)]. From (5.2), we get J(X; t) ≤ J(Y; t). If Y is DFR,
then, using a similar argument, we again obtain J(X; t) ≤ J(Y; t). Hence, the theorem. �

Example 5.1. Let X be an absolutely continuous non-negative random variable with PDF f (x)
and survival function F(x). Further, let 0 ≡ X0 ≤ X1 ≤ X2 ≤ · · · denote the epoch times of a
non-homogeneous Poisson process (NHPP) with intensity function λ(x), x ≥ 0, where X1 has
the same distribution as X. Let Tn = Xn − Xn−1, n ∈N, denote the length of the nth inter-epoch
interval (or inter-occurrence time). Denoting by Fn(x) the survival function of Xn, n ∈N, we
have [2]

Fn(x) = F(x)
n−1∑
k=0

�k(x)

k! , x ≥ 0.

From [24, Example 1.B.13], it is known that Tn ≤hr Tn+1. On the other hand, for all n ≥ 1,
if X is DFR then Tn is DFR due to [11, Theorem 5]. As a result, Theorem 5.2 implies that
J(Tn; t) ≤ J(Tn+1;t).

We now propose two new classes of life distributions by combining the notions of extropy
and aging.

Definition 5.1. Let X be an absolutely continuous random variable with PDF f . Then, we
say that X has increasing/decreasing dynamic extropy (IDEX/DDEX) if J(X; t) is increas-
ing/decreasing.
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Roughly speaking, if a unit has a CDF that belongs to the class of DDEX, then as the unit
ages, the conditional probability density function becomes more informative. The following
theorem gives a relationship between these classes and the well-known increasing (decreasing)
failure rate classes of life distributions.

Theorem 5.3. For an absolutely continuous random variable X with PDF f, if X is IFR (DFR),
then X is DDEX (IDEX).

Proof. We prove it for IFR; the DFR case can be handled in an analogous manner. Suppose
X is IFR; then, from (5.2), for t> 0 we get

J′(X; t) = λ12(t)

4

[
λ(t) −

∫ ∞

t
λ(x)

f12(x)

F12(t)
dx

]
≤ λ12(t)

4
[λ(t) − λ(t)] = 0,

where λ12(t) is the hazard rate function of X12. From this, we see that J(X; t) is decreasing in t,
i.e. X is DDEX. �

Another important class of life distributions is the class of increasing failure rate in aver-
age (IFRA) distributions. Recall that X is IFRA if H(x)/x is increasing in x, where H(x) =
− log F(x) denotes the cumulative hazard function. The following example shows that there is
no relationship between the proposed class and the IFRA class of life distributions.

Example 5.2. Consider the random variable X with survival function

F(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 if 0 ≤ t< 2,

e2−t if 2 ≤ t< 3,

e−1 if 3 ≤ t< 4,

e7−2t if t ≥ 4.

Figure 2 presents the residual extropy and the function H(t)/t, from which we observe that X
is not an IFRA distribution. Moreover, it is easy to verify that, in this case,

J(X; t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1

4
(e2t−6 + 1) if 2 ≤ t< 3,

−1

2
if t ≥ 3.

The plot of the residual extropy in Fig. 2 shows that the random variable X is DDEX. This
example also shows that DDEX does not imply the IFR property.

The connection between the extropy residual life functions of two random variables and the
proportional hazard model is explored in the following theorem.

Theorem 5.4. Let X and Y be two absolutely continuous non-negative random variables with
survival functions F(t) and G(t), and hazard rate functions λX(t) and λY (t), respectively.
Further, let θ (t) be a non-negative increasing function such that λY (t) = θ (t)λX(t), t> 0, and
0 ≤ θ (t) ≤ 1. Then, if J(X; t) is a decreasing function of t, J(Y; t) is also decreasing in t,
provided limt→∞ (G(t)/F(t))<∞.
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FIGURE 2. The residual extropy (left panel) and the ratio of the hazard function with respect to t (right

panel) given in Example 5.2.

Proof. From (5.2), J(Y; t) is decreasing in t if and only if E12,t[λY (Y)] is increasing in t. Let
us set m1(t) =E12,t[λX(X)] and m2(t) =E12,t[λY (Y)]. Then, because m′

1(t) = λX
12(t)[m1(t) −

λX(t)] and m′
2(t) = λY

12(t)[m2(t) − λY (t)], m2(t) is increasing in t if m2(t) ≥ λY (t) = θ (t)λX(t),
which holds if m2(t) ≥ θ (t)m1(t), t> 0. Define the function ϕ(t) as

ϕ(t) = G12(t)[θ (t)m1(t) − m2(t)].

We now prove that ϕ(t) ≤ 0. Differentiating ϕ(t) with respect to t and then performing some
algebraic manipulations, we obtain

ϕ′(t) = −g12(t)(θ (t)m1(t) − m2(t)) + G12(t){θ ′(t)m1(t) + θ (t)m′
1(t) − m′

2(t)}
= −g12(t)(θ (t)m1(t) − m2(t))

+ G12(t){θ ′(t)m1(t) + 2θ (t)λX(t)(m1(t) − λX(t)) − 2λY (t)(m2(t) − λY (t))}
= G12(t){θ ′(t)m1(t) + 2θ (t)λX(t)m1(t) − 2θ (t)λ2

X(t) − 2θ (t)λY (t)m1(t) + 2θ (t)λX(t)λY (t)}
= G12(t){θ ′(t)m1(t) + 2θ (t)(m1(t) − λX(t))(λX(t) − λY (t))}.

From the assumptions that θ (t) and m1(t) are increasing in t, we get ϕ′(t)> 0, i.e. ϕ(t) is
increasing in t. Now, as limt→∞ (G(t)/F(t))<∞, we get

lim
t→∞ ϕ(t) = lim

t→∞

{(
G(t)

F(t)

)2 ∫ ∞

t
θ (t)λX(x)f12(x) dx

}
− lim

t→∞

{ ∫ ∞

t
λY (x)g12(x) dx

}
= 0.

Hence, ϕ(t) ≤ 0 for any t, i.e. m1(t) ≤ m2(t), which completes the proof of the theorem. �

Consider a parallel system with n units having lifetimes X1, . . . , Xn, which are i.i.d.
absolutely continuous random variables with CDF F(x). The corresponding system lifetime
is Xn:n = max{X1, . . . , Xn}, whose CDF is Fn:n(x) := P(Xn:n ≤ x) = [F(x)]n, x ≥ 0. Then, we
have the following theorem, which gives the closure property of DDEX distributions under the
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formation of parallel systems. Its proof is similar to that of [3, Theorem 2.3], so we do not
present it here.

Theorem 5.5. Let X1, . . . , Xn be a set of i.i.d. random variables with CDF F, PDF f, hazard
rate function λ, and decreasing residual extropy J(X; t). If J(Xn:n;t) denotes the residual extropy
of the nth-order statistic among X1, . . . , Xn, then J(Xn:n; t) is also decreasing.

Let X be a non-negative random variable representing the lifetime of a unit, and t ≥ 0 denote
its current age. It is then of interest to examine the inactivity time of the item with support
S[t] = {x : x ≤ t}. At age t, the PDF of the inactivity time, X[t] = [t − X | X ≤ t], is given by
f (x; [t]) = f (x)/F(t), 0< x ≤ t. Then, the past extropy is defined as

J̃(X; [t]) = −1

2

∫
S[t]

f 2(x; [t]) dx = −1

2

∫ t

0

[
f (x)

F(t)

]2

dx = −1

2
E[t][f (X; [t])],

where E[t] is the expectation with respect to the inactivity density, f (x; [t]). In analogy with
(5.1), the past extropy also takes values in [−∞, 0) and it identifies with the extropy of [X |
X ≤ t]; see, e.g., [15]. By using (1.3), another useful expression for it can be given as

J̃(X; [t]) = −1

4
E22,t[τ (X)], (5.5)

where E22,t is the expectation with respect to the inactivity density of f22(x) defined in (1.5).
We now propose a new class of life distributions based on the notion of past extropy.

Definition 5.2. We say that X has increasing past extropy (IPEX) if J̃(X; [t]) is increasing in
t> 0.

The expression in (5.5) is useful in examining the behavior of past extropy in terms of the
behavior of the reversed failure rate, as done in the following theorem.

Theorem 5.6. For an absolutely continuous non-negative random variable X with PDF f, if X
is DRFR, then X is IPEX.

Proof. If X is DRFR, then τ (t) is decreasing in t, so

J̃′(X; [t]) = τ12(t)

4

[ ∫ t

0
τ (x)

f22(x)

F22(t)
dx − τ (t)

]
≥ τ12(t)

4
{τ (t) − τ (t)} = 0,

where τ22(t) is the reversed hazard rate function of X22. Hence, the theorem. �

The following example demonstrates the usefulness of Theorem 5.6 in recognizing some
IPEX distributions.

Example 5.3.

(i) Let X be an exponential random variable with PDF f (x) = λe−λx for x> 0, λ> 0. The
RFR function of X is τ (x) = λ[1 − e−λx]−1. We can easily check that τ (x) is decreasing
in x, and so, according to Theorem 5.6, X is IPEX.

(ii) Let X have an inverse Weibull distribution with CDF F(x) = exp[−(1/σx)λ], x> 0,
σ, λ > 0. The RFR function is τ (x) = λσ−λx−(1+λ), which is decreasing in x. Hence,
X is IPEX.
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Theorem 5.7. Let X and Y be two absolutely continuous non-negative random variables with
reversed hazard rate functions τX(t) and τY (t), respectively. Further, let θ (t) be a non-negative
increasing function such that τY (t) = θ (t)τX(t), t> 0, and 0 ≤ θ (t) ≤ 1. Then, if J̃(X; [t]) is a
decreasing function of t, J̃(Y; [t]) is also decreasing in t, provided limt→0 (G(t)/F(t))<∞.

Note that this theorem connects the past extropy of two random variables to the known
proportional reversed hazard rates model.

6. Concluding remarks

Many information measures have been studied in the literature. For instance, entropy func-
tions are used to measure the uncertainty in a random variable. If these entropy functions
are applied to residual lifetime or past lifetime (or inactivity time) variables, then we obtain
dynamic measures of uncertainty that can measure the aging process. We have provided sev-
eral results on extropy, which is a complementary dual function of entropy. Some similarities
between entropy, extropy, and variance have been discussed. In spite of some agreements
between these measures, there are some notable differences as well. For example, many well-
known families of distributions have been characterized as the unique maximum entropy and
extropy solutions, while no such characterization is available in terms of variance. It needs to
be mentioned that there is no universal relationship between entropy, extropy, and variance
orderings of distributions. One advantage of extropy as compared to other measures is that it
yields an expression for finite mixture distributions, while no such expression is available for
closed-form entropy and variance measures. We have shown that extropy information ranks
uniformity of a wide variety of absolutely continuous distributions. We have then elaborated
on some theoretical merits of extropy and presented several results about the associated char-
acterizations and also its dynamic versions. The most important advantage of extropy is that it
is easy to compute, and it will therefore be of great interest to explore its important potential
applications in developing goodness-of-fit tests and inferential methods.
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