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Abstract

We present a method for automatic inference of conditions on the initial states of a program
that guarantee that the safety assertions in the program are not violated. Constrained Horn
clauses (CHCs) are used to model the program and assertions in a uniform way, and we use
standard abstract interpretations to derive an over-approximation of the set of unsafe initial
states. The precondition then is the constraint corresponding to the complement of that set,
under-approximating the set of safe initial states. This idea of complementation is not new,
but previous attempts to exploit it have suffered from the loss of precision. Here we develop
an iterative specialisation algorithm to give more precise, and in some cases optimal safety
conditions. The algorithm combines existing transformations, namely constraint specialisation,
partial evaluation and a trace elimination transformation. The last two of these transformations
perform polyvariant specialisation, leading to disjunctive constraints which improve precision.
The algorithm is implemented and tested on a benchmark suite of programs from the literature
in precondition inference and software verification competitions.

KEYWORDS: Precondition inference, backwards analysis, abstract interpretation, refinement,
program specialisation, program transformation.

1 Introduction

Given a program with properties required to hold at specific program points, precondition
analysis derives the conditions on the initial states ensuring that the properties hold.
This has important applications in program verification, symbolic execution, program
understanding and debugging. While forward abstract interpretation approximates the
set of reachable states of a program, backward abstract interpretation approximates the
set of states that can reach some target state. Both forward and backward analyses
may produce over- or under-approximations, and forward and backward analysis may
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profitably be combined (Cousot and Cousot 1992; Cousot et al. 2011; Bakhirkin and
Monniaux 2017).

Most approaches that apply backward analysis, possibly in conjunction with forward
analysis, use over-approximations, and as a result derive necessary pre-conditions. Less
attention has been given to under-approximating backwards analyses, with the goal of
finding sufficient pre-conditions. However, it is natural to try to derive guarantees of
safe behaviour of a program. Often we would like to know which initial states must be
safe, in the sense that no computation starting from such a state can possibly reach
a specified error state, that is, we desire to find (non-trivial) sufficient conditions for
safety.

If analysis uses an abstract domain which is complemented, duality enables sufficient
conditions to be derived from necessary conditions and vice versa. However, comple-
mented abstract domains are very rare, and approximation of a complement tends to
introduce considerable lack of precision. The under-approximating backward abstract
interpretation of Howe et al. (2004) utilises the fact that the abstract domain Pos is
pseudo-complemented (Marriott and Søndergaard 1993), but pseudo-complementation
too is very rare. Moy (2008) presents a method for deriving sufficient preconditions
(for use with a theorem prover), employing weakest-precondition reasoning and forward
abstract interpretation to attempt to generalise conditions at loop heads. Bakhirkin et al.
(2014) observe that there may be an advantage in generalising an abstract complement
operation to (abstract) logical subtraction, as this can improve opportunities to find a
tighter approximation of a set of states.

Miné (2012a) infers sufficient conditions for safety, not by instantiating a generic
mechanism for complementation, but by designing all required purpose-built backward
transfer functions. He does this for three numeric abstract domains: intervals, octagons
and convex polyhedra—a substantial effort, as the purpose-built operations, including
widening, can be rather intricate.

We share Miné’s goal but use program transformation and over-approximating ab-
stract interpretation over a Horn clause program representation. This allows us to apply
a range of established tools and techniques beyond abstract interpretation, including
query-answer transformation, partial evaluation and abstraction refinement. We offer an
iterative approach that successively specialises a program. The approach of iteratively
specialising a program represented as Horn clauses has also been pursued by De Angelis
et al. (2014) in order to verify program properties. Their techniques also incorporate for-
ward and backward propagation of constraints, but rather than explicitly using abstract
interpretation, their specialisation algorithm involves a special constraint generalisation
method.

We shall use the example in Figure 1 to demonstrate our approach. The left side shows
a C program fragment, and the right its constrained Horn clause (CHC) representation.
CHCs can be obtained from an imperative program (containing assertions) using various
approaches (Peralta et al. 1998; Grebenshchikov et al. 2012; Gurfinkel et al. 2015; De
Angelis et al. 2017). The set of CHCs is not necessarily intended as an executable logic
program; in Figure 1 the predicates capture the reachable states of the computation. For
example, while(1, 0) is true if the while statement is reached with a = 1 and b = 0. The
predicate false represents an error state. Henceforth whenever we refer to a program,
we refer to its CHC version.
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int a, b;
if (a ≤ 100)
a = 100 − a;

else a = a− 100;
while (a ≥ 1)
{a = a− 1; b = b− 2; }

assert(b �= 0);

c1. init(A, B) ← true.
c2. if(A, B) ← A0 ≤ 100, A = 100− A0, init(A0, B).
c3. if(A, B) ← A0 ≥ 101, A = A0 − 100, init(A0, B).
c4. while(A, B) ← if(A, B).
c5. while(A, B) ← A0 ≥ 1, A = A0 − 1, B = B0 − 2,

while(A0, B0).
c6. false ← A ≤ 0, B = 0, while(A, B).

Fig. 1. Running example: (left) original program, (right) translation to CHCs

For the given program, we want to ensure that b is non-zero after the loop. The goal
is to derive initial conditions on a and b, sufficient to ensure that the assertion is never
violated. The practical use of the conditions is to reject unsafe initial states before running
the program. We note that the assertion will not be violated provided the following three
conditions are met: (i) if a = 100 then b �= 0, (ii) if a < 100 then 2a �= 200− b and (iii) if
a > 100 then 2a �= 200 + b. The conjunction of these three conditions, or equivalently
b �= |2a − 200|, ensures that the assertion is never violated. Automating the required
reasoning is challenging because: (i) the desired result is a disjunctive constraint over
expressions that need an expressive domain; (ii) the disjuncts cannot be represented as
intervals, octagons or difference bound matrices (Miné 2006); (iii) information has to
be propagated forwards and backwards because we lose information on b and a in the
forward and in the backward direction respectively. In what follows, we show how to
derive the conditions automatically.

The key contribution of this paper is a framework for deriving sufficient preconditions
without a need to calculate weakest preconditions or rely on abstract domains with
special properties or intricate transfer functions. This is achieved through a combination
of program transformation and abstract interpretation, with the derived preconditions
being successively refined through iterated transformation.

After Section 2’s preliminaries, we discuss, in Section 3.1, the required transformation
techniques. Section 3.2 gives iterative refinement algorithms that derive successively
better (weaker) preconditions. Section 4 is an account of experimental evaluation, demon-
strating practical feasibility of the technique. Section 5 concludes.

2 Preliminaries

An atomic formula, or simply atom, is a formula p(x) where p is a predicate symbol and
x a tuple of arguments. A constrained Horn clause (CHC) is a first-order predicate logic
formula of the form ∀x0 . . .xk(p1(x1) ∧ . . . ∧ pk(xk) ∧ φ → p0(x0)), where φ is a finite
conjunction of quantifier-free constraints on variables xi with respect to some constraint
theory T, pi(xi) are atoms, p0(x0) is the head of the clause and p1(x1)∧ . . .∧ pk(xk)∧ φ

is the body. Following the conventions of Constraint Logic Programming (CLP), such a
clause is written as p0(x0) ← φ, p1(x1), . . . , pk(xk). For concrete examples of CHCs we
use Prolog-like syntax and typewriter font, with capital letters for variable names and
linear arithmetic constraints built with predicates ≤,≥, <,>,=.
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An Integrity constraint is a special kind of clause whose head is the predicate false.
A constrained fact is a clause of the form p0(x0) ← φ. A set of CHCs is also called a
program.

Figure 1 (right) contains an example of a set of constrained Horn clauses. The first
five clauses define the behaviour of the program in Figure 1 (left) and the last clause
represents a property of the program (that the variable B is non-zero after executing the
program) expressed as an integrity constraint.

CHC semantics. The semantics of CHCs is obtained using standard concepts from pred-
icate logic semantics. An interpretation assigns to each predicate a relation over the
domain of the constraint theory T. The predicate false is always interpreted as false.
We assume that T is equipped with a decision procedure and a projection operator, and
that it is closed under negation. We use notation φ|V to represent the constraint formulae
φ projected onto variables V .

An interpretation satisfies a set of formulas if each formula in the set evaluates to true
in the interpretation in the standard way. In particular, a model of a set of CHCs is an
interpretation in which each clause evaluates to true. A set of CHCs P is consistent if
and only if it has a model. Otherwise it is inconsistent.

When modelling safety properties of systems using CHCs, the consistency of a set of
CHCs corresponds to safety of the system. Thus we also refer to CHCs as being safe or
unsafe when they are consistent or inconsistent respectively.

AND-trees and trace trees. Derivations for CHCs are represented by AND-trees. The
following definitions are adapted from Gallagher and Lafave (1996).

An AND-tree for a set of CHCs is a tree whose nodes are labelled as follows.

1. each non-leaf node corresponds to a clause (with variables suitably renamed) of the
form A ← φ,A1, . . . , Ak and is labelled by the atom A and φ, and has children labelled
by A1, . . . , Ak;

2. each leaf node corresponds to a clause of the form A ← φ (with variables suitably
renamed) and is labelled by the atom A and φ; and

3. each node is labelled with the clause identifier of the corresponding clause.

Of particular interest are AND-trees with their roots labelled by the atom false; these
are called counterexamples. A trace tree is the result of removing all node labels from
an AND-tree apart from the clause identifiers. Given an AND-tree t, constr(t) represents
the conjunction of the constraints in its node labels. The tree t is feasible if and only
constr(t) is satisfiable over T. We also represent a conjunction of constraints as a set of
constraints, for example, a = 0 ∧ b ≥ 1 as {a = 0, b ≥ 1}.

Definition 1
For an atom p(x) and a set of CHCs P we write P 	T p(x) if there exists a feasible
AND-tree with root labelled by p(x).

The soundness and completeness of derivation trees (Jaffar et al. 1998) implies that P
is inconsistent if and only if P 	T false.

https://doi.org/10.1017/S1471068418000091 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000091


An iterative approach to precondition inference using CHCs 557

c6: false,
A ≤ 0 ∧ B = 0

c4: while(A,B),
true

c2: if(A,B),
A ≤ 100∧

A = 100 − C

c1: init(C,B),
true

On the right is an AND-tree corresponding to the derivations of
false using the clauses c6 followed by c4, c2 and c1 from the
program in Figure 1 (right).

Definition 2 (Initial clauses and nodes)
Let P be a set of CHCs, with a distinguished predicate pI in P

which we call the initial predicate. The constrained facts {(pI(x) ←
θ) | (pI(x) ← θ) ∈ P} are called the initial clauses of P . Let t be
an AND-tree for P . A node labelled by an identifier of the clause
pI(x) ← θ is an initial node of t. We extend the term “initial
predicate” and use the symbol pI to refer also to renamed versions
of the initial predicate that arise during clause transformations.

3 Precondition Inference

This section describes an approach to precondition generation. We
limit our attention to sets of clauses for which every AND-tree for false (whether feasible
or infeasible) has at least one initial node. Although it is not decidable for an arbitrary
set of CHCs P whether every derivation of false uses the initial predicate, the above
condition on AND-trees can be checked syntactically from the predicate dependency
graph for P .

Definition 3 (Safe precondition)
Let P be a set of CHCs. Let φ be a constraint over T, and let P ′ be the set of clauses
obtained from P by replacing the initial clauses {(pI(x) ← θi) | 1 ≤ i ≤ k} by {(pI(x) ←
θi ∧ φ) | 1 ≤ i ≤ k}. Then φ is a safe precondition for P if P ′ �	T false.

Thus a safe precondition is a constraint that, when conjoined with the constraints on
the initial predicate, is sufficient to block derivations of false (given that we assume
clauses for which pI is essential for any derivation of false).

Ideally we would like to find the most general, or weakest safe precondition. It is not
computable in general, so we aim to find a condition that is as weak as possible. The
constraint false is always a safe precondition, albeit an uninteresting one. On the other
hand, if P �	T false then any constraint, including true, is a safe precondition for P .

We first show how a safe precondition can be derived from a set of clauses.

Definition 4 (Safe precondition presafe(P ) extracted from a set P of clauses)
Let P be a set of clauses. The safe precondition presafe(P ) is defined as:

presafe(P ) = ¬
∨

{θ | (pI(x) ← θ) ∈ P}.

presafe(P ) is clearly a safe precondition for P since for each initial clause pI(x) ← θ the
conjunction presafe(P ) ∧ θ is false. This precondition trivially blocks any derivation of
false since we assume that every derivation of false uses an initial clause. We next
show how to construct a sequence P0, P1, . . . , Pm where P = P0 and each element of the
sequence is more specialised with respect to derivations of false, and as a consequence,
the constraints in the initial clauses are stronger. Applying Definition 4 to Pm thus yields
a weaker safe precondition for P .
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3.1 Specialisation of Clauses

Definition 5 (Specialisation transformation)
Let P be a set of clauses, and let A be an atom. We write P =⇒A P ′ for a specialisation
transformation of P with respect to A, yielding a set of clauses P ′, such that the following
holds.

• P 	T A if and only if P ′ 	T A; and
• if (pI(x) ← θ) ∈ P then there exists an initial clause (pI(x) ← φ) ∈ P ′ such that
|=T φ → θ.

Note that a specialisation requires not only that derivations of A are preserved, but also
that the initial clauses are preserved and possibly strengthened.

Lemma 1
Let P =⇒false P ′ be a specialisation transformation with respect to false. Then |=T

presafe(P ) → presafe(P ′).

Proof
This follows immediately from Definitions 4 and 5.

We now present specific transformations for CHCs that satisfy Definition 5. Applying
these transformations enables the derivation of more precise safe preconditions. These
are adapted from established techniques from the literature on CLP and Horn clause
verification and analysis.

3.1.1 Specialising CHCs by Partial Evaluation (PE)

Partial evaluation (Jones et al. 1993) is a transformation that specialises a program with
respect to a given input. The “input” for partial evaluation of a set of CHCs P is a
(set of) constrained atom(s) A ← θ. The result of partial evaluation is a set of CHCs
P ′ preserving the derivations of every instance of A that satisfies θ, that is, P ′ 	 Aφ if
and only if P 	 Aφ whenever T |= θφ. The partial evaluation algorithm described here
is an instantiation of the “basic algorithm” for partial evaluation of logic programs in
Gallagher (1993).

The basic algorithm can be presented as the computation of the limit of the increasing
sequence S0, S1, S2, . . ., where S0 is the set of input constrained atoms and for i ≥ 0,
Si+1 = S0 ∪ abstractΨ(unfoldP (Si)). The “unfolding rule” unfoldP and the abstraction
operation abstractΨ are parameters of the algorithm. For the algorithm used in this paper,
the unfolding rule unfoldP (S) takes a set of constrained facts S, and “partially evaluates”
each element of S, using the following procedure. For each (p(x) ← θ) ∈ S, first construct
the set of clauses p(x) ← ψ′ ∧ B′ where p(x) ← ψ ∧ B is a clause in P , and ψ′ ∧ B′

is obtained by unfolding ψ ∧ θ ∧ B by selecting atoms so long as they are deterministic
(atoms defined by a single clause) and is not a call to an initial predicate or a recursive
predicate, and ψ′ is satisfiable in T. Unfolding with this rule is guaranteed to terminate;
unfoldP (S) returns the set of constrained facts q(y) ← ψ′|y where q(y) is an atom in B′.
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The abstraction operation abstractΨ ensures that the sequence S0, S1, . . . has a finite
limit. It performs property-based abstraction (Graf and Säıdi 1997) of a set of constrained
facts with respect to a finite set of properties Ψ (also a finite set of constrained facts).
Then abstractΨ(S) is defined as follows.

abstractΨ(S) = {repΨ(p(x) ← θ) | (p(x) ← θ) ∈ S}, where
repΨ(p(x) ← θ) = p(x) ←

∧
{ψ | (p(x) ← ψ) ∈ Ψ,T ∧ θ |= ψ}

The effect of abstractΨ(S) is to generalise each q(y) ← θ ∈ S to q(y) ← ψ, where ψ

is the conjunction of properties in Ψ that are implied by θ. Thus only a finite number
of “versions” of q(y) can be generated, ensuring that the size of the sets Si is finite (at
most 2|Ψ|). The larger Ψ is, the more versions can be produced. More versions could cause
overhead without necessarily giving more specialisation; for example, several essentially
identical definitions of predicates could be produced. Thus it is important to choose Ψ
taking into account both precision and efficiency.

In the implemented algorithm, Ψ consists of the following constrained facts, generated
from each clause p(x) ← φ, p1(x1), . . . , pn(xn) ∈ P .

• For 1 ≤ i ≤ n, pi(xi) ← φ|xi
and for each z ∈ xi, pi(xi) ← φ|{z}.

• p(x) ← φ|x and for each z ∈ x, p(x) ← φ|{z}.

The first set of constrained facts distinguishes different call contexts, while the second
set distinguishes answers. Constraints on individual variables are extracted. This choice
of Ψ was found by experiment to be a good compromise between precision and efficiency,
but further experiment and analysis is needed.

Each Si in the sequence gives rise to a set of clauses renameunfoldΨ,P (Si), which applies
the unfolding rule to each element of Si and renames the predicates in the resulting
clauses according to the different versions produced by abstractΨ. The predicate false

is not renamed. The result returned by partial evaluation is renameunfoldΨ,P (Sk), where
Sk is the limit of the sequence.

Example 1
Consider the partial evaluation of the clauses in Figure 1. S0 = {false ← true} and Ψ
consists of the following nine constrained facts extracted from the clauses as explained
above:⎧⎨

⎩
if(A, B) ← A ≥ 0. if(A, B) ← A ≥ 1. init(A, B) ← A ≤ 100.

init(A, B) ← A ≥ 101. while(A, B) ← A ≥ 0. while(A, B) ← A ≥ 1.

while(A, B) ← A ≤ 0 ∧ B = 0. while(A, B) ← A ≤ 0. while(A, B) ← B = 0.

⎫⎬
⎭

Partial evaluation of the clauses generates the clauses R0, R1, . . . and sets of constrained
facts S0, S1, . . . as shown in Figure 2.

Note that three versions of the init predicate are generated (from the new constrained
facts generated in steps 3 and 4), each having different constraints. As we will see in the
next section, this allows the extraction of more precise preconditions for safety of the
clauses than could be obtained from the original clauses.

Lemma 2
Partial evaluation using the procedure described above is a specialisation transformation
(Definition 5).
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i Si Ri = renameunfoldΨ,P (Si)
0 S0 = {false ← true} R0 = {false ← A ≤ 0, B = 0, while 7(A, B).}

1
S1 = S0 ∪

{while(A, B) ← A ≤ 0, B = 0.}

R1 = R0 ∪
{while 7(A, B) ← A ≤ 0, B = 0, if 6(A, B).

while 7(A, B) ← A = 0, B = 0,

C = 1, D = 2, while 5(C, D).}

2

S2 = S1 ∪
{while(A, B) ← A ≥ 1.

if(A, B) ← true.}

R2 = R1 ∪ {while 5(A, B) ← A ≥ 1, if 2(A, B).

while 5(A, B) ← A ≥ 1, C− A = 1, D− B = 2,

while 5(C, D).

if 6(A, B) ← A ≥ 0, A + C = 100, init 4(C, B).

if 6(A, B) ← A ≥ 1, C− A = 100, init 3(C, B).}

3

S3 = S2 ∪ {if(A, B) ← A ≥ 1.

init(A, B) ← A ≥ 101.

init(A, B) ← A ≤ 100.}

R3 = R2 ∪
{if 2(A, B) ← A ≥ 1, A + C = 100, init 1(C, B).

if 2(A, B) ← A ≥ 1, C− A = 100, init 3(C, B).

init 4(A, B) ← A ≤ 100.

init 3(A, B) ← A ≥ 101.}

4
S4 = S3 ∪

{init(A, B) ← A ≤ 99.}
R4 = R3 ∪ {init 1(A, B) ← A ≤ 99.}

5 S5 = S4 R5 = R4

Fig. 2. Steps performed during the run of partial evaluation

false ← A ≥ 0, p(A,B).
p(A,B) ← C ≥ A, p(C,B).
p(A,B) ← A = B.

false ← A ≥ 0, B ≥ A, A ≥ 0, p(A,B).

p(A,B) ← C ≥ A, B ≥ C,C ≥ 0, p(C,B).
p(A,B) ← A = B, B ≥ A,A ≥ 0.

Fig. 3. Example program (left) and its constraint specialised version (right)

Proof
The algorithm satisfies the standard condition of partial evaluation that it preserves
derivations of the given goal atom. The strengthening of the initial clauses follows from
the fact that our unfolding rule does not unfold the initial predicate. Hence the result
contains the initial clauses from the original, with constraints possibly strengthened
by the call constraints in the algorithm. (If a clause is never called, its constraint is
strengthened to false).

The safe precondition of the partially evaluated clauses is ¬(A ≤ 99∨A ≤ 100∨A ≥ 101),
which is equivalent to false (over the integers). Thus partial evaluation has not improved
the safe precondition compared to the original clauses in Figure 1. However, the splitting
of the initial clauses enables a further specialisation, which is described next.

3.1.2 Transforming CHCs by Constraint Specialisation (CS)

Constraint specialisation is a transformation that strengthens the constraints in a set
of CHCs, while preserving derivations of a given atom. Consider the following simple
example in Figure 3 (left) that motivates the principles of the transformation.
Assume we wish to preserve derivations of false. The transformation in Figure 3 (right)
is a constraint specialisation with respect to false. The strengthened constraints are
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false ← A = 0, B = 0, while 7(A, B). while 7(A, B) ← A = 0, B = 0, if 6(A, B).
while 7(A, B) ← A = 0, B = 0, C = 1, D = 2, while 5(C, D).
if 6(A, B) ← A = 0, B = 0, C = 100, init 4(C, B).
while 5(A, B) ← A ≥ 1, 2A− B = 0, if 2(A, B).
while 5(A, B) ← A ≥ 1, 2A = B, C− A = 1, D− 2A = 2, while 5(C, D).
if 2(A, B) ← A ≥ 1, 2A = B, A + C = 100, init 1(C, B).
if 2(A, B) ← A ≥ 1, 2A = B, C− A = 100, init 3(C, B).
init 4(A, B) ← A = 100, B = 0.
init 3(A, B) ← A ≥ 101, 2A− B = 200.
init 1(A, B) ← A ≤ 99, 2A + B = 200.

Fig. 4. Constraint specialisation of the partially evaluated clauses in Figure 2

obtained by recursively propagating A ≥ 0 top-down from the goal false and A = B

bottom-up from the constrained fact. An invariant B ≥ A, A ≥ 0 for the derived answers
of the recursive predicate p(A,B) in derivations of false is computed and conjoined to
each call to p in the clauses (underlined in the clauses in Figure 3 (right)).

Definition 6 (Constraint specialisation)
A constraint specialisation of P with respect to a goal A is a transformation in which
each constraint φ in a clause of P is replaced by a constraint ψ where |=T ψ → φ, such
that the resulting set of clauses is a specialisation transformation (Definition 5) of P with
respect to A.

In our experiments, the combined top-down and bottom-up propagation of constraints
illustrated above is achieved by abstract interpretation over the domain of convex poly-
hedra applied to a query-answer transformed version of the set of CHCs. The method
is described in detail in Kafle and Gallagher (2017a). The result of applying constraint
specialisation to the output of partial evaluation of the running example is shown in
Figure 4. Note that the second clause for if 6 has been eliminated, since its constraint
was specialised to false.

The safe precondition derived after constraint specialisation from the initial clauses in
Figure 4 is

¬((A = 100 ∧ B = 0) ∨ (A ≤ 99 ∧ 2A + B = 200) ∨ (A ≥ 101 ∧ 2A− B = 200))

This simplifies (over the integers) to B �= |2A− 200|, which is the condition obtained in
Section 1 and is optimal (weakest).

3.1.3 Transforming CHCs by Trace Elimination (TE)

Let P be a set of CHCs and let t be an AND-tree for P . It is possible to construct a
set of clauses P ′ which preserves the set of AND-trees (modulo predicate renaming) of
P , apart from t. The transformation from P to P ′ is called trace elimination (of t). We
have previously described a technique for trace elimination (Kafle and Gallagher 2017b),
based on the difference operation on finite tree automata. In that work, trace elimination
played the role of a refinement operation, in which infeasible traces were removed from
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a set of CHCs in a counterexample-guided verification algorithm in the CEGAR style
(Clarke et al. 2003).

For the purpose of deriving safe preconditions of a set of clauses P , we apply trace
elimination to eliminate both infeasible and feasible AND-trees. AND-trees for false

are obtained naturally from transformations such as partial evaluation or constraint
specialisation. First consider the elimination of an infeasible AND-tree.

Lemma 3
Let P ′ be the result of eliminating an infeasible AND-tree t for false from P . Then
P =⇒false P

′.

Proof
All derivations of false are preserved, and the transformation generates only predicate-
renamed copies of the original clauses, hence the initial clauses are preserved.

So in this case we have |=T presafe(P ) → presafe(P ′). However, the elimination of a
feasible AND-tree t for false is not as straightforward. Nevertheless, we can still use
this transformation to derive safe preconditions, by the following lemma.

Lemma 4
Let P ′ be the result of eliminating a feasible AND-tree t for false from P . Let pI(x)
be the atom label of an initial node of t and let θ = constr(t)|x. Then presafe(P ) =
presafe(P ′) ∧ ¬θ.

Proof
¬θ is a sufficient condition, when conjoined with the body of the clause labelling the
initial node, to make t infeasible. All other derivations of false from P are preserved in
P ′. Hence the conjunction of ¬θ and presafe(P ′) is a safe precondition for P .

The usefulness of trace elimination is twofold. Firstly, it can cause splitting of the
initial predicates, resulting in disjunctive pre-conditions. Secondly, the elimination of a
feasible trace acts as a decomposition of the problem.

3.2 Inferring Weaker Preconditions

We can combine the various transformations to derive weaker preconditions, as shown in
the following two propositions.

Proposition 1
Let P = P0 and let the sequence P0, P1, . . . , Pm be a sequence such that Pi =⇒false Pi+1

(0 ≤ i < m). Then |=T presafe(P ) → presafe(Pm).

Proof
By induction on the length of the sequence, applying Lemma 1.

If we also eliminate feasible traces, then we have to keep track of the substitutions arising
from the eliminated trees.

Proposition 2
Let P = P0, ψ0 = true and let the sequence (P0, ψ0), (P1, ψ1), . . . , (Pm, ψm) be a sequence
of pairs where, for (0 ≤ i < m)
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false ← init(I, A, B, N), l(I, A, B, N).
l(I, A, B, N) ← I < N, l body(A, B, A1, B1), I1 = I + 1, l(I1, A1, B1, N).
l(I, A, B, N) ← I ≥ N, A + B > 3 ∗ N.
l(I, A, B, N) ← I ≥ N, A + B < 3 ∗ N.
l body(A0, B0, A1, B1) ← A1 = A0 + 1, B1 = B0 + 2.
l body(A0, B0, A1, B1) ← A1 = A0 + 2, B1 = B0 + 1.
init(I, A, B, N).

Fig. 5. Example requiring trace elimination

• either Pi =⇒false Pi+1 and ψi = ψi+1, or
• Pi+1 is obtained by eliminating a feasible trace t from Pi, and ψi+1 = ψi ∧ ¬θ,

where ¬θ is the constraint extracted from t, as in Lemma 4.

Then |=T presafe(P ) → (presafe(Pm) ∧ ψm).

Proof
By induction on the length of the sequence, applying Lemma 1 and Lemma 4.

Proposition 2 establishes the correctness of the algorithm used in Section 4, and any other
algorithm that applies partial evaluation, constraint specialisation and trace elimination
in any order. Proposition 1 is a special case of Proposition 2: if we do not eliminate any
feasible trees then ψm is true and so |=T presafe(P ) → presafe(Pm).

As we have shown, applying partial evaluation followed by constraint specialisation for
our running example was sufficient to derive the weakest safe precondition. However, in
more complex cases we need one or more iterations of these operations, possibly with
the elimination of feasible AND-trees as well. In Figure 5 we show an example taken
from Beyer et al. (2007) in which repeated application of partial evaluation followed by
constraint specialisation does not achieve a useful result, but where the elimination of
a single feasible AND-tree causes an optimal precondition to be generated. The optimal
precondition for this program is init(I, A, B, N) ← N ≤ I ∧ A + B = 3 ∗ N. To derive this,
one needs to propagate constraints from the third and the fourth clauses (constrained
facts corresponding to the predicate l) to the init clause. Since these constraints are
disjunctive (arising from two different clauses), the propagation should be able to split
the init predicate. PE can often perform splitting but not in this case since the recursive
predicate l is not unfolded, owing to the potential for a resulting blowup.

We now show how trace-elimination together with other transformations allows us
to derive this condition. Applying CS followed by PE to Figure 5 gives us the pro-
gram in Figure 6 (we have labelled the clauses for the purpose of presentation). If
we derive a precondition from this program, we will get trivial false. As a next step,
we search for a derivation (counterexample) violating safety. The trace tree
c1(c10,c2(c8,c5(c8,c5(c8,c5(c8,c6)))))) (using its term representation) is a fea-
sible counterexample. Then we remove this from the program in Figure 6 using the
automata-theoretic approach described by Kafle and Gallagher (2017b). In summary,
the approach consists of representing the program as well as the trace to be removed as
finite tree automata, performing automata difference and generating a new program from
the difference automaton. The new program is guaranteed not to contain the particular
trace any more.
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c1. false ← init(A, B, C, D), l 3(A, B, C, D).
c2. l 3(A, B, C, D) ← −C + F >= 1,−A + D > 0, C− F >= −2, A− E = −1,

B + C− F− G = −3, l body 2(B, C, G, F), l 1(E, G, F, D).
c3. l 3(A, B, C, D) ← B + C− 3 ∗ D > 0, A− D >= 0.
c4. l 3(A, B, C, D) ← −B− C + 3 ∗ D > 0, A− D >= 0.
c5. l 1(A, B, C, D) ← −C + F >= 1,−A + D > 0, C− F >= −2, A− E = −1,

B + C− F− G = −3, l body 2(B, C, G, F), l 1(E, G, F, D).
c6. l 1(A, B, C, D) ← B + C− 3 ∗ D > 0,−A + D > −1, A− D >= 0.
c7. l 1(A, B, C, D) ← −B− C + 3 ∗ D > 0,−A + D > −1, A− D >= 0.
c8. l body 2(A, B, C, D) ← A− C = −1, B− D = −2.
c9. l body 2(A, B, C, D) ← A− C = −2, B− D = −1.
c10. init(A, B, C, D).

Fig. 6. The constraint specialisation of the program in Figure 5

The removal causes the splitting of the predicate l, which the partial evaluation can
take advantage of in the next iteration. Re-application of PE followed by CS generates
the following clauses for init predicates (other clauses are not shown).

init 1(A, C, D, B) ← B > A.
init 2(A, C, D, B) ← A >= B, C + D > 3B.
init 3(A, C, D, B) ← A >= B, 3 ∗ B > C + D.

Then the derived safe precondition is:

init(A, C, D, B) ← ¬((B > A) ∨ (A ≥ B ∧ C + D > 3B) ∨ (A ≥ B ∧ 3 ∗ B > C + D)).

Simplifying the formula and mapping to the original variables, yields the following
formula as the final precondition

init(I, A, B, N) ← N ≤ I ∧ A + B = 3 ∗ N.

There is, however, a performance-precision trade-off when removing (in)feasible AND-
trees. Trace elimination helps derive precise preconditions at the cost of performance;
the Fischer protocol is an example of this. It requires 4 iterations of PE followed by CS
to generate the optimal precondition (obtained in ≈8 seconds), whereas these iterations
interleaved by trace elimination require only 3 iterations (but obtained in ≈35 seconds).

4 Experimental Evaluation

4.1 Benchmarks

We have experimented with three kinds of benchmarks.

1. Unsafe I : Examples that are known to be unsafe, where the initial states are over-
general. In such cases the aim of safe precondition generation is to find out whether
there is a useful subset of the initial states that is safe.

2. Unsafe II : Examples that are known to be unsafe, where the initial state is a coun-
terexample state from which false can be derived. In this case it is pointless to try
to find a safe subset as above, so we remove the given constraint on the initial state,
and then try to derive a non-trivial safe precondition.
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3. Safe: Examples that are safe for given initial states. In such cases, our aim is to try
to weaken the conditions on the initial states. This is done by removing the given
constraints from the initial states and then deriving safe preconditions. If we can
generate safe preconditions that are more general than the original constraints then
we have generalised the program without losing safety.

For the experiments, we collected a set of 241 (188 safe/53 unsafe) programs from a
variety of sources. Most are from the repositories of state-of-the-art software verification
tools such as DAGGER1 (Gulavani et al. 2008), TRACER2 (Jaffar et al. 2012), InvGen3

(Gupta and Rybalchenko 2009), and from the TACAS 2013 Software Verification Com-
petition (Beyer 2013, Control flow and Loops categories).4 Other examples are from
the literature on precondition generation, backwards analysis and parameter synthesis
(Bakhirkin et al. 2014; Miné 2012a; Miné 2012b; Moy 2008; Bakhirkin and Monniaux
2017; Cassez et al. 2017) and manually translated to CHCs. These benchmarks are
designed to demonstrate/test the strengths/usability of different tools and methods
proposed to solve software verification, parameter synthesis and precondition generation
problems and contain up to approximately 500 lines of code. Finally there are examples
crafted by us; these are simple but non-trivial examples whose optimal precondition can
be derived manually.

4.2 Implementation

We implemented an algorithm that builds a sequence as defined in Proposition 2, of
length 3n + 2 (n ≥ 0), iteratively applying the transformations pe (partial evaluation),
cs (constraint specialisation) and te (trace elimination). The safe precondition for P is
presafe(cs ◦ pe ◦ (te ◦ cs ◦ pe)n(P )) (n ≥ 0). This particular sequence of transformations
is based on the rationale that constraint specialisation is most effective when performed
just after partial evaluation, which propagates constraints and introduces new versions
of predicates. Trace elimination is more expensive and is performed only after the first
iteration. In future work we will experiment with other strategies, especially to limit the
application of te. The implementation is based on components from the Rahft verifier
(Kafle et al. 2016). This accepts CHCs (over the background theory of linear arithmetic)
as input and returns a Boolean combination of linear constraints in terms of the initial
state variables as a precondition. The tool is written in Ciao Prolog (Hermenegildo et al.
2012) and uses Yices 2.2 (Dutertre 2014) and the Parma Polyhedra Library (Bagnara
et al. 2008) for constraint manipulation. The experiments were carried out on a MacBook
Pro with a 2.7 GHz Intel Core i5 processor and 16 GB memory running OS X 10.11.6,
with a timeout of 300 seconds for each example.

4.3 Discussion

Experimental results are shown in Table 1, for varying number of specialisation iterations
n. The classifications “more general” and “non-trivial” in Table 1 relate the derived

1 http://www.cfdvs.iitb.ac.in/ bhargav/dagger.php
2 https://github.com/tracer-x/tracer/tree/master/test/transformation
3 http://www.mpi-sws.org/∼agupta/invgen
4 Translated to CHCs using the program specialisation approach of De Angelis et al. (2017).
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Table 1. Results on 241 (188 safe and 53 unsafe) programs; timeout 5 minutes

n = 0 n = 1 n = 2 n = 3

Safe instances (188)
non-trivial (more general) 119 (101) 143 (125) 156 (129) 160 (131)
trivial/timeouts 69/0 45/3 32/10 28/16
avg. time (sec.) 1.45 14.69 27.52 36.73

Unsafe I instances (17)
non-trivial 16 17 17 17
trivial/timeouts 1/0 0/0 0/0 0/0
avg. time (sec.) 0.23 0.82 1.64 3.35

Unsafe II instances (36)
non-trivial 9 12 12 12
trivial/timeouts 27/0 24/2 24/7 24/7
avg. time (sec.) 3.38 50.41 64.72 70.91

precondition I with the original condition on the initial states O. If |=T I �≡ false then
the result is non-trivial. If |=T O → I then the derived precondition is more general than
the given initial states. For the safe benchmarks, the “more general” results are a subset
of the “non-trivial” results, while for the unsafe benchmarks, the result cannot be more
general than the original (unsafe) condition and so there are no “more general” results.

Timeouts indicates the number of timeouts in the current iteration. When there is a
timeout in the current iteration, the precondition is the precondition generated in the
previous iteration. Therefore, the timeouts in the current iteration correspond to trivial,
non-trivial or timeouts in the previous iteration. Thus, the trivial instances in the current
iteration is the sum of trivial instances in this iteration and the trivial instances in the
previous iteration of the current timeouts.

The choice of 3 iterations is motivated by the following observations (though we can
stop at any iteration and still derive a precondition): (i) for the categories literature
and hand-crafted benchmarks, 3 iterations suffice to reproduce earlier results, and (ii)
iterations beyond the third yield negligible improvements but more timeouts.

For the safe benchmarks, the algorithm succeeds for n = 3 in generalising the safe
initial conditions in 131 of the 188 benchmarks, and returns a non-trivial safe precondition
in 160 of them. The remainder either return trivial results or a timeout. A higher
proportion of the unsafe benchmarks return a trivial safe precondition, even when the
initial state constraints are removed. A possible reason is that some of these unsafe
programs are designed with an internal bug, and thus have no safe initial states. If the
analysis returns a trivial safe precondition, it could be due to imprecision of the analysis,
but could also be an indication to the programmer to look for the problem elsewhere
than in the initial states.

The results in the column n = 0 show that the specialisation (cs ◦ pe) alone can infer
non-trivial preconditions for a large number of benchmarks, namely 63% (safe) and 37%
(unsafe) instances both in less than 10 seconds. Among 119 non-trivial safe instances,
101 are generalised constraints.

Further specialisation (n > 0) increases the number of non-trivial and generalised
preconditions by relatively small percentages of the total. The increased precision of
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Table 2. Examples and their safe preconditions

Program Precondition

bakhirkin-fig3 (Bakhirkin et al. 2014) (1 ≤ a ≤ 99 → b ≥ 1) ∧ (a ≤ 0 → b �= 0)
bakhirkin (Bakhirkin et al. 2014) 1 ≤ a ≤ 60 ∨ a ≥ 100
mine (Miné 2012a) 0 ≤ a ≤ 5
mon fig1 (Bakhirkin and Monniaux 2017) a = b ∧ a ≥ 0
moy (Moy 2008) b < 1 ∨ (b < 2 ∧ a > 0)
navas2 (crafted) a ≤ 99 ∨ b ≥ 100
simple function (Miné 2012b) 6 ≤ a ≤ 61
test both branches (Miné 2012b) 3 ≤ a ≤ 17
test nondet body (Miné 2012b) 6 ≤ a ≤ 13
test nondet cond (Miné 2012b) 3 ≤ a ≤ 17
test then branch (Miné 2012b) 10 ≤ a ≤ 20
fischer (Cassez et al. 2017) a + 2c < b ∨ a < 0 ∨ b < 0 ∨ c ≤ 0
Jhala (Jhala and McMillan 2006) a < 0 ∨ a ≥ b ∨ c �= d
Ball SLAM (Ball et al. 2004) b < c
client ssh protocol b < a ∨ b < 2 ∨ a > 3
Beyer et al. (2007) n ≤ i ∧ a + b = 3n

the preconditions comes at a significant cost in time. For Safe, Unsafe I, and Unsafe II
instances, the average time goes from 1.45, 0.23 and 3.38 seconds, respectively, when n =
0, to 36.73, 3.35 and 70.91 seconds, when n = 3. However, our prototype implementation
is amenable to much optimisation, including sharing results from one iteration to the
next, which could reduce the overhead.

For the categories of literature and hand-crafted benchmarks in which we know the
weakest safe precondition, the tool is able to reproduce the results from the literature,
see Table 2. The results were generated in at most 1 iteration in less than a second,
except for the Fischer protocol, which required 3 iterations and 35 seconds. As well as
reproducing challenging examples from the literature (Table 2), we are able to apply the
technique to larger examples (shown in Table 1) than have previously been dealt with
by automatic methods for precondition generation; we are also able to solve challenging
examples that were not solvable by previous automatic techniques (such as our running
example from Figure 1).

5 Concluding Remarks

We have presented a framework for computing a sufficient precondition of a program with
respect to assertions; it enables derivation of more precise preconditions through iterated
program specialisation. Rather than relying on weakest precondition calculation or in-
tricate transfer functions, it uses off-the-shelf components from program transformation
and abstract interpretation, which eases implementation. Furthermore, the approach does
not depend on specific abstract domain properties such as pseudo-complementation but
is domain-independent and generic. By this we mean that the individual specialisation
transformations such as partial evaluation and constraint specialisation can be adapted
to different abstract domains with their usual precision/performance limits, while still
using features of the framework such as iteration and disjunctive constraints that arise
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from polyvariant specialisation. Evaluation on a set of benchmarks is promising. We
are currently investigating the conditions under which the derived preconditions are the
weakest possible, as well as other improved termination criteria for refinement with the
aim of generating optimal preconditions.
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J. F., and Puebla, G. 2012. An overview of Ciao and its design philosophy. TPLP 12, 1-2,
219–252.

Howe, J. M., King, A., and Lu, L. 2004. Analysing logic programs by reasoning backwards.
In Program Development in Computational Logic, M. Bruynooghe and K. Lau, Eds. LNCS,
vol. 3049. Springer, 152–188.

Jaffar, J., Maher, M., Marriott, K., and Stuckey, P. J. 1998. The semantics of constraint
logic programs. J. Log. Program. 37, 1–3, 1–46.

Jaffar, J., Murali, V., Navas, J. A., and Santosa, A. E. 2012. TRACER: A symbolic
execution tool for verification. In Computer-Aided Verification, P. Madhusudan and S. A.
Seshia, Eds. LNCS, vol. 7358. Springer, 758–766.

Jhala, R. and McMillan, K. L. 2006. A practical and complete approach to predicate
refinement. In Tools and Algorithms for the Construction and Analysis of Systems,
H. Hermanns and J. Palsberg, Eds. LNCS, vol. 3920. Springer, 459–473.

Jones, N., Gomard, C., and Sestoft, P. 1993. Partial Evaluation and Automatic Software
Generation. Prentice Hall.

Kafle, B. and Gallagher, J. P. 2017a. Constraint specialisation in Horn clause verification.
Sci. Comput. Program. 137, 125–140.

Kafle, B. and Gallagher, J. P. 2017b. Horn clause verification with convex polyhedral
abstraction and tree automata-based refinement. Computer Languages, Systems &
Structures 47, 2–18.

Kafle, B., Gallagher, J. P., and Morales, J. F. 2016. RAHFT: A tool for verifying Horn
clauses using abstract interpretation and finite tree automata. In Computer-Aided Verification,
S. Chaudhuri and A. Farzan, Eds. LNCS, vol. 9779. Springer, 261–268.

Marriott, K. and Søndergaard, H. 1993. Precise and efficient groundness analysis for logic
programs. ACM LOPLAS 2, 1–4, 181–196.

Miné, A. 2006. The octagon abstract domain. Higher-Order and Symbolic Computation 19, 1,
31–100.
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